JPH09230242A - Zoom lens - Google Patents

Zoom lens

Info

Publication number
JPH09230242A
JPH09230242A JP8059969A JP5996996A JPH09230242A JP H09230242 A JPH09230242 A JP H09230242A JP 8059969 A JP8059969 A JP 8059969A JP 5996996 A JP5996996 A JP 5996996A JP H09230242 A JPH09230242 A JP H09230242A
Authority
JP
Japan
Prior art keywords
lens group
lens
wide
telephoto end
angle end
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8059969A
Other languages
Japanese (ja)
Inventor
Naoko Kodama
直子 兒玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP8059969A priority Critical patent/JPH09230242A/en
Priority to US08/731,774 priority patent/US5774267A/en
Publication of JPH09230242A publication Critical patent/JPH09230242A/en
Priority to US08/955,318 priority patent/US5847875A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/64Imaging systems using optical elements for stabilisation of the lateral and angular position of the image
    • G02B27/646Imaging systems using optical elements for stabilisation of the lateral and angular position of the image compensating for small deviations, e.g. due to vibration or shake
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/16Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
    • G02B15/177Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a negative front lens or group of lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/145Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only
    • G02B15/1455Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only the first group being negative
    • G02B15/145523Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only the first group being negative arranged -++-+

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Lenses (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a large-diameter zoom lens realizing high-speed autofocusing and having a high variable power ratio by constituting the lens to satisfy specified conditional expressions. SOLUTION: This zoom lens is constituted of a 1st lens group G1 having negative refractive power, a 2nd lens group G2 and a 3rd lens group G3 having positive refractive power, a 4th lens group G4 having the negative refractive power, and a 5th lens group G5 having the positive refractive power in this order from an object side, and is the large-diameter zoom lens having the high variable power ratio, for instance, whose focal distance is 28.9-77.5mm and whose f-number is 2.9. In the case of variable magnification from a wide angle end to a telephoto end, the lateral magnification of the lens group G2 is always positive and is monotonously decreased. The following conditional expressions are satisfied: 0.0<ΔX4/ΔX2<0.3 (0<ΔX4), 0.3<ΔX5/ΔX2<0.75 (0<ΔX5). In the expressions, ΔX2 represents the moving amount of the lens group G2 in an optical axis direction from the wide angle end to the telephoto end, ΔX4 the moving amount of the lens group G4 in the optical axis direction from the wide angle end to the telephoto end, and ΔX5 the moving amount of the lens group G5 in the optical axis direction from the wide angle end to the telephoto end.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はズームレンズに関
し、特に1眼レフカメラなどに利用されるズームレンズ
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a zoom lens, and more particularly to a zoom lens used in a single-lens reflex camera or the like.

【0002】[0002]

【従来の技術】従来、ズームレンズの合焦方式として、
最も物体側のレンズ群を繰り出して合焦を行う方法があ
る。この合焦方式は、非常に単純なレンズ鏡筒構造で実
現可能である。しかしながら、最も物体側のレンズ群す
なわち第1レンズ群の焦点距離が長いため、合焦のため
のレンズの所要移動量(合焦移動量)が大きくなり、レ
ンズ系の大きさおよび重さを増大させるという欠点を有
する。
2. Description of the Related Art Conventionally, as a focusing method for a zoom lens,
There is a method in which the lens unit closest to the object side is extended to perform focusing. This focusing method can be realized with a very simple lens barrel structure. However, since the focal length of the lens unit closest to the object side, that is, the first lens unit, is long, the required movement amount (focus movement amount) of the lens for focusing is large, and the size and weight of the lens system are increased. It has the drawback of causing

【0003】そこで、上述の欠点を改良する方法とし
て、前記第1レンズ群を複数のレンズ部分群に分割し、
その複数のレンズ部分群の一部を移動させることによっ
て合焦を行う方式が提案されている。例えば、特開昭5
9−15214号公報や特開平2−244110号公報
においては、正屈折力の第1レンズ群を正屈折力の前群
と負屈折力の後群との2つのレンズ群に分割し、負屈折
力の後群を移動させることによって合焦を行っている。
Therefore, as a method for improving the above-mentioned drawbacks, the first lens group is divided into a plurality of lens subgroups,
A method has been proposed in which focusing is performed by moving a part of the plurality of lens subgroups. For example, JP
In Japanese Patent Application Laid-Open No. 9-15214 and Japanese Patent Application Laid-Open No. 2-244110, a first lens unit having a positive refracting power is divided into two lens units, a front lens unit having a positive refracting power and a rear lens unit having a negative refracting power, to obtain negative refraction. Focus is achieved by moving the group after the force.

【0004】また、特開平2−201310号公報や特
開平4−15612号公報においては、負屈折力の第1
レンズ群を負屈折力あるいは正屈折力の前群と負屈折力
の後群との2つのレンズ群に分割し、負屈折力の後群を
移動させることによって合焦を行っている。一方、特開
平3−228008号公報においては、正負正正の4群
構成のレンズ系の第2レンズ群を移動させて合焦を行っ
ている。
Further, in JP-A-2-201310 and JP-A-4-15612, the first negative refractive power is
Focusing is performed by dividing the lens group into two lens groups, a front group having negative refractive power or positive refractive power and a rear group having negative refractive power, and moving the rear group having negative refractive power. On the other hand, in Japanese Unexamined Patent Publication No. 3-228008, focusing is performed by moving a second lens group of a lens system having a positive, negative, positive, and positive four-group configuration.

【0005】さらに、特開平5−173070号公報や
特開平5−173071号公報においては、正負あるい
は負正の2群以上で構成されるズームレンズ系におい
て、第2レンズ群を負屈折力の前群と負屈折力の後群あ
るいは正屈折力の前群と正屈折力の後群とに分割し、そ
の前群を移動させることによって合焦を行う方式が提案
されている。
Further, in JP-A-5-173070 and JP-A-5-173071, in a zoom lens system composed of two or more groups of positive and negative or negative and positive, the second lens group is made to have a negative refractive power. A method has been proposed in which focusing is performed by dividing a group and a rear group having negative refractive power, or a front group having positive refractive power and a rear group having positive refractive power, and moving the front group.

【0006】一方、手振れ等に起因する像位置の変動を
補正する、いわゆる防振補正方式が従来より知られてい
る。たとえば、特開平1−189621号公報では第1
レンズ群を、特開平1−191112号公報や特開平1
−284823号公報では第2レンズ群を、特開平1−
191113号公報では最終レンズ群を、それぞれ光軸
直交方向に移動させて防振補正する方式が提案されてい
る。
On the other hand, a so-called anti-shake correction method has been conventionally known, which corrects a change in the image position due to camera shake or the like. For example, in JP-A-1-189621, the first
A lens group is disclosed in JP-A-1-191112 and JP-A-1191112.
In Japanese Patent Laid-Open No. 284823/1982, the second lens group is disclosed in
Japanese Patent No. 1911113 proposes a method of moving the final lens group in the direction orthogonal to the optical axis to perform image stabilization.

【0007】[0007]

【発明が解決しようとする課題】上述の特開昭59−1
5214号公報、特開平2−244110号公報、特開
平2−201310号公報および特開平4−15612
号公報に開示の合焦方式では、最も物体側のレンズ群全
体を繰り出す合焦方式よりも、レンズ系の大きさおよび
重量がともに小さくなる。しかしながら、いずれにして
もレンズ径の最も大きな第1レンズ群の一部のレンズ部
分群を移動させなければならないので、オートフォーカ
ス(AF)等における駆動効率を格段に向上させること
は困難である。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
5214, JP-A-2-244110, JP-A-2-201310 and JP-A-4-15612.
In the focusing method disclosed in the publication, both the size and weight of the lens system are smaller than those of the focusing method in which the entire lens group closest to the object side is extended. However, in any case, since it is necessary to move a part of the lens subgroup of the first lens group having the largest lens diameter, it is difficult to remarkably improve the driving efficiency in autofocus (AF) or the like.

【0008】これに対して、特開平3−228008号
公報における合焦方式では、レンズ径の小さな第2レン
ズ群を移動させて合焦を行うので、合焦の高速化が可能
となる。しかしながら、収差補正上の観点から、広角系
あるいは望遠系の大口径ズームレンズに、この合焦方式
を適用することは現在のところ困難である。
On the other hand, in the focusing method disclosed in Japanese Patent Application Laid-Open No. 3-228008, focusing is performed by moving the second lens group having a small lens diameter, so that focusing can be speeded up. However, from the viewpoint of aberration correction, it is currently difficult to apply this focusing method to a wide-angle or telephoto large-diameter zoom lens.

【0009】一方、特開平5−173070号公報およ
び特開平5−173071号公報における合焦方式で
は、合焦の高速化が可能であるとともに、公報の実施例
に示されているように、広角系あるいは望遠系の大口径
ズームレンズに対する適用が可能となる。しかしなが
ら、この合焦方式を変倍比の大きなズームレンズに採用
すると、変倍の状態による合焦移動量の変化が大きくな
る。その結果、公報に記載されているように、変倍領域
の全体に亘ってほぼ一定の繰り出し量による合焦が不可
能となってしまう。
On the other hand, the focusing methods disclosed in JP-A-5-173070 and JP-A-5-173071 enable high-speed focusing and, as shown in the embodiments of the publication, a wide-angle lens. It can be applied to a large-aperture zoom lens of a zoom system or a telephoto system. However, if this focusing method is adopted in a zoom lens having a large zoom ratio, the change in the focus movement amount due to the zoom state becomes large. As a result, as described in the official gazette, focusing with a substantially constant amount of extension is impossible over the entire variable power area.

【0010】一方、特開平1−189621号公報のよ
うに第1レンズ群を光軸直交方向に移動させる防振補正
方式では、本発明のような大口径ズームレンズに適用し
た場合、最も径の大きい物体側のレンズ群を駆動するこ
とになる。その結果、レンズ群を光軸直交方向に移動さ
せる駆動機構の大型化を招いてしまう。
On the other hand, in the image stabilization system in which the first lens group is moved in the direction orthogonal to the optical axis as in Japanese Patent Laid-Open No. 1-189621, when it is applied to a large-aperture zoom lens like the present invention, it has the largest diameter. It drives the lens group on the large object side. As a result, the size of the drive mechanism for moving the lens group in the direction orthogonal to the optical axis is increased.

【0011】また、特開平1−191113号公報のよ
うに最像面側のレンズ群を移動させる方式の場合、開口
絞りから離れているレンズ群を光軸直交方向に駆動する
ことになる。その結果、本発明のような大口径ズームレ
ンズに適用した場合、レンズ群の偏心駆動による収差変
動が大きくなってしまう。さらに、特開平1−2848
23号公報や特開平1−191112号公報のように第
2レンズ群全体を移動させて防振補正を行う方式の場
合、本発明のような大口径ズームレンズに適用した場
合、レンズ群の偏心駆動による収差変動が大きくなって
しまう。
Further, in the case of the method of moving the lens group on the most image plane side as in JP-A-1-191113, the lens group distant from the aperture stop is driven in the direction orthogonal to the optical axis. As a result, when it is applied to a large-diameter zoom lens like the present invention, aberration variation due to eccentric drive of the lens group becomes large. Furthermore, JP-A 1-2848
In the case of the method of performing the image stabilization by moving the entire second lens group as in Japanese Patent Laid-Open No. H23-231911 and Japanese Patent Application Laid-Open No. 1-191112, when applied to a large aperture zoom lens like the present invention, the eccentricity of the lens group Aberration fluctuation due to driving becomes large.

【0012】本発明は、前述の課題に鑑みてなされたも
のであり、オートフォーカス(AF)の高速化が可能
な、変倍比の大きな大口径ズームレンズを提供すること
を目的とする。また、本発明は、防振補正機能を有する
変倍比の大きな大口径ズームレンズを提供することを目
的とする。
The present invention has been made in view of the above problems, and an object of the present invention is to provide a large-aperture zoom lens having a large zoom ratio and capable of speeding up autofocus (AF). Another object of the present invention is to provide a large-diameter zoom lens having a large zoom ratio, which has an image stabilization function.

【0013】[0013]

【課題を解決するための手段】前記課題を解決するため
に、本発明においては、物体側より順に、負の屈折力を
有する第1レンズ群G1と、正の屈折力を有する第2レ
ンズ群G2と、正の屈折力を有する第3レンズ群G3
と、負の屈折力を有する第4レンズ群G4と、正の屈折
力を有する第5レンズ群G5とを備えた変倍比が1.5
以上のズームレンズにおいて、広角端から望遠端への変
倍に際して、前記第2レンズ群G2の横倍率は常に正で
あり且つ単調に減少し、前記第2レンズ群G2の広角端
から望遠端への光軸方向の移動量をΔX2とし、前記第
4レンズ群G4の広角端から望遠端への光軸方向の移動
量をΔX4とし、前記第5レンズ群G5の広角端から望
遠端への光軸方向の移動量をΔX5としたとき、広角端
から望遠端までの変倍に際して、 0.0<ΔX4/ΔX2<0.3 (0<ΔX4) 0.3<ΔX5/ΔX2<0.75(0<ΔX5) の条件を満足することを特徴とするズームレンズを提供
する。
In order to solve the above-mentioned problems, in the present invention, a first lens group G1 having a negative refractive power and a second lens group having a positive refractive power are arranged in order from the object side. G2 and the third lens group G3 having a positive refractive power
And a fifth lens group G5 having a negative refractive power and a fifth lens group G5 having a positive refractive power, the zoom ratio is 1.5.
In the above zoom lens, the lateral magnification of the second lens group G2 is always positive and monotonically decreases during zooming from the wide-angle end to the telephoto end, and the second lens group G2 changes from the wide-angle end to the telephoto end. Of the fourth lens group G4 from the wide-angle end to the telephoto end, and ΔX4 is the movement amount of the fourth lens group G4 from the wide-angle end to the telephoto end. When the amount of movement in the axial direction is ΔX5, when zooming from the wide-angle end to the telephoto end, 0.0 <ΔX4 / ΔX2 <0.3 (0 <ΔX4) 0.3 <ΔX5 / ΔX2 <0.75 ( Provided is a zoom lens which satisfies the condition of 0 <ΔX5).

【0014】本発明の好ましい態様によれば、前記第2
レンズ群G2を光軸に沿って移動させて近距離物体への
合焦を行う。また、広角端から望遠端への変倍に際し
て、前記第2レンズ群G2は物体側に凸の軌道に沿って
移動し、前記第3レンズ群G3はほぼ線形な軌道に沿っ
て移動するか、あるいは前記第2レンズ群G2はほぼ線
形な軌道に沿って移動し、前記第3レンズ群G3は物体
側に凸の軌道に沿って移動することが好ましい。さら
に、上述のような本発明の構成において、第2レンズ群
G2をたとえば光軸直交方向に移動させることによって
防振補正を行うことができる。この場合、第2レンズ群
G2は少なくとも1つの貼合わせレンズを有することが
好ましい。
According to a preferred embodiment of the present invention, the second
The lens group G2 is moved along the optical axis to focus on a short-distance object. Further, at the time of zooming from the wide-angle end to the telephoto end, the second lens group G2 moves along a convex trajectory toward the object side, and the third lens group G3 moves along a substantially linear trajectory. Alternatively, it is preferable that the second lens group G2 moves along a substantially linear trajectory, and the third lens group G3 moves along a trajectory that is convex toward the object side. Furthermore, in the configuration of the present invention as described above, the image stabilization can be performed by moving the second lens group G2 in the direction orthogonal to the optical axis, for example. In this case, the second lens group G2 preferably has at least one cemented lens.

【0015】[0015]

【発明の実施の形態】上述のように、本発明では、広角
端から望遠端への変倍に際して、次の条件式(1)およ
び(2)を満足するように第4レンズ群G4および第5
レンズ群G5が移動する。 0.0<ΔX4/ΔX2<0.3 (0<ΔX4) (1) 0.3<ΔX5/ΔX2<0.75(0<ΔX5) (2) ここで、 ΔX2:第2レンズ群G2の広角端から望遠端への光軸
方向の移動量 ΔX4:第4レンズ群G4の広角端から望遠端への光軸
方向の移動量 ΔX5:第5レンズ群G5の広角端から望遠端への光軸
方向の移動量
BEST MODE FOR CARRYING OUT THE INVENTION As described above, according to the present invention, at the time of zooming from the wide-angle end to the telephoto end, the fourth lens group G4 and the fourth lens group G4 should satisfy the following conditional expressions (1) and (2). 5
The lens group G5 moves. 0.0 <ΔX4 / ΔX2 <0.3 (0 <ΔX4) (1) 0.3 <ΔX5 / ΔX2 <0.75 (0 <ΔX5) (2) where ΔX2 is the wide angle of the second lens group G2. Amount of movement from the end to the telephoto end in the optical axis direction ΔX4: Amount of movement of the fourth lens group G4 from the wide-angle end to the telephoto end in the optical axis direction ΔX5: An optical axis from the wide-angle end to the telephoto end of the fifth lens group G5 Amount of movement in direction

【0016】従来例の負正負正の4群構成に比べて、本
発明の負正正負正の5群構成では、収差補正の自由度が
増すばかりでなく、条件式(1)で規定される範囲にお
いて第2レンズ群G2と第4レンズ群G4とが同方向に
移動し且つ第2レンズ群G2よりも第4レンズ群G4の
移動速度が遅くなる。すなわち、変倍に際して、広角端
よりも望遠端において第2レンズ群G2と第4レンズ群
G4との間隔が広くなる。第2レンズ群G2と第4レン
ズ群G4との間隔が広くなると、第2レンズ群G2で収
束された光束が正屈折力の第3レンズ群G3によって広
げられることなく絞られて第4レンズ群G4に入射す
る。したがって、第4レンズ群G4の近傍に絞りを配置
すると、絞り径が小さくなり、その結果光学系の小型化
を図ることができる。
Compared to the negative-positive-negative-positive four-group configuration of the conventional example, the negative-positive-positive-negative-positive five-group configuration not only increases the degree of freedom in aberration correction, but is also defined by the conditional expression (1). In the range, the second lens group G2 and the fourth lens group G4 move in the same direction, and the moving speed of the fourth lens group G4 is slower than that of the second lens group G2. That is, during zooming, the distance between the second lens group G2 and the fourth lens group G4 becomes wider at the telephoto end than at the wide-angle end. When the distance between the second lens group G2 and the fourth lens group G4 becomes wider, the light flux converged by the second lens group G2 is narrowed down without being expanded by the third lens group G3 having a positive refractive power, and the fourth lens group It is incident on G4. Therefore, when the diaphragm is arranged near the fourth lens group G4, the diaphragm diameter becomes small, and as a result, the optical system can be downsized.

【0017】このように、条件式(1)は、第2レンズ
群G2に対する第4レンズ群G4の移動量を規定してい
る。条件式(1)の下限値を下回ると、第2レンズ群G
2と第4レンズ群G4とが互いに逆方向に移動してしま
うので不都合である。一方、条件式(1)の上限値を上
回ると、第2レンズ群G2の収束率が小さくなり、第2
レンズ群G2の収束率を大きくしようとすると第2レン
ズ群G2の屈折力が強くなる。その結果、収差補正が困
難になってしまう。
As described above, the conditional expression (1) defines the movement amount of the fourth lens group G4 with respect to the second lens group G2. If the lower limit of conditional expression (1) is exceeded, the second lens group G
This is inconvenient because the second lens unit G4 and the second lens unit G4 move in opposite directions. On the other hand, when the upper limit of conditional expression (1) is exceeded, the convergence rate of the second lens group G2 becomes small,
If the convergence rate of the lens group G2 is increased, the refracting power of the second lens group G2 becomes stronger. As a result, it becomes difficult to correct the aberration.

【0018】条件式(2)は、第2レンズ群G2に対す
る第5レンズ群G5の移動量を規定している。条件式
(2)の値が大きいほど、望遠端における第4レンズ群
G4と第5レンズ群G5との間隔が狭くなる。このよう
な配置をとるとき、望遠端と広角端との間で第4レンズ
群G4での周辺光束の高さの差が大きくなり、望遠端で
のコマ収差の補正が有利になる。条件式(2)の下限値
を下回ると、第4レンズ群G4と第5レンズ群G5との
間隔が十分狭くならず、コマ収差の補正が困難になって
しまう。一方、条件式(2)の上限値を上回ると、第5
レンズ群G5の移動量が大きくなりすぎて、第4レンズ
群G4との間隔を保つことができなくなり、レンズ全長
が長くなってしまう。
Conditional expression (2) defines the moving amount of the fifth lens group G5 with respect to the second lens group G2. The larger the value of the conditional expression (2), the narrower the distance between the fourth lens group G4 and the fifth lens group G5 at the telephoto end. When such an arrangement is adopted, the difference in height of the peripheral light flux in the fourth lens group G4 between the telephoto end and the wide-angle end becomes large, and correction of coma aberration at the telephoto end becomes advantageous. When the value goes below the lower limit of conditional expression (2), the distance between the fourth lens group G4 and the fifth lens group G5 is not sufficiently narrow, and it becomes difficult to correct coma. On the other hand, if the upper limit of conditional expression (2) is exceeded, the fifth
The amount of movement of the lens group G5 becomes too large, and it becomes impossible to maintain the distance between the lens group G5 and the fourth lens group G4, resulting in an increase in the total lens length.

【0019】ただし、収差補正上の自由度と鏡筒構造の
簡素化との両立を図るために、第2レンズ群G2および
第3レンズ群G3において双方の軌道を非線形にするよ
りも、一方の軌道をほぼ線形とし他方の軌道を非線形に
するのが好ましい。このような軌道形状にすると、広角
端から望遠端までの全域に亘る収差補正に有利である。
特に、広角端から望遠端への変倍に際して、第2レンズ
群G2は物体側に凸の軌道に沿って移動し、第3レンズ
群G3はほぼ線形な軌道に沿って移動するか、あるいは
第2レンズ群G2はほぼ線形な軌道に沿って移動し、第
3レンズ群G3は物体側に凸の軌道に沿って移動するこ
とが好ましい。このような形態の場合、中間の焦点距離
状態において、像面湾曲を効果的に補正することが可能
になる。
However, in order to achieve both the degree of freedom in aberration correction and the simplification of the lens barrel structure, one of the second lens group G2 and the third lens group G3 is made to have a non-linear trajectory rather than the other. It is preferable to make the trajectories approximately linear and the other trajectories non-linear. Such an orbital shape is advantageous for aberration correction over the entire range from the wide-angle end to the telephoto end.
In particular, during zooming from the wide-angle end to the telephoto end, the second lens group G2 moves along a convex trajectory toward the object side, and the third lens group G3 moves along a substantially linear trajectory, or It is preferable that the second lens group G2 moves along a substantially linear trajectory, and the third lens group G3 moves along a trajectory that is convex toward the object side. In the case of such a form, it becomes possible to effectively correct the field curvature in the intermediate focal length state.

【0020】物体側から順に、合焦に関与しない物体側
レンズ群A(第1レンズ群G1)と、合焦に関与する合
焦レンズ群F(第2レンズ群G2)と、合焦に関与しな
い像側レンズ群B(第3レンズ群G3以降のレンズ群)
とから構成された薄肉近軸光学系に基づいて、本発明の
構成を考えるものとする。そして、物体側レンズ群Aの
焦点距離をfA とし、無限遠合焦状態における合焦レン
ズ群Fの横倍率をβF とし、無限遠物体から撮影距離
(物像間距離)Rの物体に合焦するための合焦レンズ群
Fの合焦移動量(物体側から像側への移動を正)をΔX
とする。さらに、レンズ系全体の長さ(物体側レンズ群
Aの物側主点から像面までの光軸に沿った距離)をTL
とし、物体側レンズ群Aの物側主点から物体までの光軸
に沿った距離をDO と定義する。
In order from the object side, an object side lens group A (first lens group G1) not involved in focusing, a focusing lens group F (second lens group G2) involved in focusing, and a focusing state Not image side lens group B (lens group after third lens group G3)
The configuration of the present invention is considered based on the thin paraxial optical system configured by Then, the focal length of the object-side lens unit A is f A , the lateral magnification of the focusing lens unit F in the infinity in-focus state is β F, and the object at the shooting distance (object-image distance) R is changed from the object at infinity. The focusing movement amount of the focusing lens unit F for focusing (the movement from the object side to the image side is positive) is ΔX
And Further, the length of the entire lens system (distance along the optical axis from the object-side principal point of the object-side lens group A to the image plane) is TL
And the distance along the optical axis from the object side principal point of the object side lens group A to the object is defined as D o .

【0021】この場合、特開平5−173070号公報
に開示されているように、次の式(a)に示す関係が成
立する。 (DO −fA )ΔX≒(fA 2 ×βF 2 )/(βF 2 −1) (a) 上述の式(a)をβF で微分すると、次の式(b)に示
す関係が得られる。 ΔX/dβF =−2βF /{(βF 2 −1)2 (DO −fA )} (b)
In this case, as disclosed in Japanese Patent Laid-Open No. 173070/1993, the relationship shown in the following expression (a) is established. (D O −f A ) ΔX≈ (f A 2 × β F 2 ) / (β F 2 −1) (a) Differentiating the above equation (a) by β F gives the following equation (b). Relationship is obtained. ΔX / dβ F = -2β F / {(β F 2 -1) 2 (D O -f A)} (b)

【0022】一般のズームレンズでは、式(b)におい
て(DO −fA )>0である。また、本発明では、無限
遠合焦状態における合焦レンズ群F(第2レンズ群G
2)の横倍率βF は、広角端から望遠端に亘ってβF
0である。したがって、以下の式(c)に示すように、
式(b)の右辺の値は常に負となる。 ΔX/dβF <0 (c)
In a general zoom lens, (D O −f A )> 0 in the equation (b). Further, according to the present invention, the focusing lens unit F (the second lens unit G) in the infinity focusing condition is used.
The lateral magnification β F in 2) is β F > from the wide-angle end to the telephoto end.
0. Therefore, as shown in the following equation (c),
The value on the right side of expression (b) is always negative. ΔX / dβ F <0 (c)

【0023】式(c)より、無限遠合焦状態における合
焦レンズ群Fの横倍率βF が広角端から望遠端にかけて
単調減少するとき、無限遠物体から至近距離物体への合
焦のための合焦レンズ群Fの合焦移動量ΔXは広角端か
ら望遠端にかけて単調増加することがわかる。なお、上
述の議論では、DO を近似的に定数として扱っている。
しかしながら、実際には、DO はβF に依存して変化す
るので、DO が小さい数値のときはΔXが単調増加しな
い場合もある。
From equation (c), when the lateral magnification β F of the focusing lens unit F in the infinity in-focus state monotonically decreases from the wide-angle end to the telephoto end, it is possible to focus on an object at infinity to a close-up object. It can be seen that the focusing movement amount ΔX of the focusing lens unit F of No. 1 increases monotonically from the wide-angle end to the telephoto end. In the above discussion, D O is approximately treated as a constant.
However, in practice, since D O will vary depending on the beta F, when the numerical value D O is small in some cases ΔX does not increase monotonically.

【0024】フォーカスカムの形状は、特開平3−23
5908号公報や特開平5−142475号公報に示さ
れているように、広角端から望遠端まで単調に変化する
(それぞれの実施例では単調増加)合焦移動量をカムの
光軸方向の移動量と回転方向の移動量とに重畳すること
によりフォーカスカムによるピントずれが小さくなるよ
うに決定される。本発明では、上述の構成により、広角
端から望遠端への変倍に際して合焦移動量が単調増加と
なる。その結果、ピントずれの少ないMF(マニュアル
フォーカス)が可能なフォーカスカムを構成することが
可能になり、高速のAFとピントずれの少ないMFとの
両立するズームレンズを実現することができる。
The shape of the focus cam is described in JP-A-3-23.
As disclosed in Japanese Patent No. 5908 and Japanese Unexamined Patent Publication No. 5-142475, the focusing movement amount that monotonically changes from the wide-angle end to the telephoto end (monotonically increases in each embodiment) is moved in the optical axis direction of the cam. It is determined that the focus shift due to the focus cam is reduced by superimposing the amount and the movement amount in the rotation direction. According to the present invention, with the above-described configuration, the focusing movement amount increases monotonically during zooming from the wide-angle end to the telephoto end. As a result, it is possible to configure a focus cam capable of MF (manual focus) with little focus shift, and it is possible to realize a zoom lens that achieves both high-speed AF and MF with little focus shift.

【0025】さらに、合焦移動量を小さくして近距離収
差性能を改善するとともに、レンズ全系の大きさを軽減
するためには、以下の条件式(3)を満足することが望
ましい。 1.0<ΔXT /ΔXW <1.5 (3) ここで、 ΔXW :広角端における無限遠物体から至近距離物体へ
の合焦のための第2レンズ群G2の移動量 ΔXT :望遠端における無限遠物体から至近距離物体へ
の合焦のための第2レンズ群G2の移動量
Further, in order to reduce the focusing movement amount to improve the near-distance aberration performance and reduce the size of the entire lens system, it is desirable to satisfy the following conditional expression (3). 1.0 <ΔX T / ΔX W <1.5 (3) where ΔX W : the amount of movement of the second lens group G2 for focusing from an object at infinity to a close object at the wide-angle end ΔX T : Amount of movement of the second lens group G2 for focusing from an object at infinity to an object at a close distance at the telephoto end

【0026】条件式(3)の下限値を下回ると、広角端
における合焦移動量が望遠端よりも大きくなる。すなわ
ち、広角端から望遠端への変倍に際して合焦移動量が減
少することになり、広角端から望遠端へかけて第2レン
ズ群G2の横倍率が単調に減少するという本発明の構成
を達成することができなくなってしまう。一方、条件式
(3)の上限値を上回ると、広角端と望遠端とで合焦移
動量の差が大きくなってしまう。これは、合焦レンズ群
の屈折力が弱いことを示し、結果としてレンズ全長が長
くなるため好ましくない。
When the value goes below the lower limit of the conditional expression (3), the focusing movement amount at the wide-angle end becomes larger than that at the telephoto end. That is, the amount of focusing movement is reduced during zooming from the wide-angle end to the telephoto end, and the lateral magnification of the second lens group G2 monotonically decreases from the wide-angle end to the telephoto end. You will not be able to achieve it. On the other hand, if the upper limit of conditional expression (3) is exceeded, the difference in the focus movement amount between the wide-angle end and the telephoto end becomes large. This indicates that the focusing lens group has a weak refractive power, and as a result, the total lens length becomes long, which is not preferable.

【0027】また、第2レンズ群G2をたとえば光軸直
交方向に駆動して防振補正を行う場合、第2レンズ群G
2が開口絞りに近いレンズ群であるため、第2レンズ群
G2の偏心駆動に伴う収差変動を小さく抑えることがで
きる。この場合、第2レンズ群G2に少なくとも1つの
貼合わせレンズを使用することにより、第2レンズ群G
2単独で良好な収差状態となるので効果的である。
When the second lens group G2 is driven in the direction orthogonal to the optical axis for image stabilization correction, the second lens group G2 is used.
Since 2 is a lens group close to the aperture stop, it is possible to suppress a variation in aberration caused by the eccentric drive of the second lens group G2. In this case, by using at least one cemented lens for the second lens group G2, the second lens group G2
It is effective because each of the two alone produces a good aberration state.

【0028】[0028]

【実施例】以下、本発明の各実施例を、添付図面に基づ
いて説明する。各実施例において、非球面は、光軸に垂
直な方向の高さをy、高さyにおける光軸方向の変位量
(サグ量)をS(y)、基準の曲率半径をR、円錐係数
をκ、n次の非球面係数をCn としたとき、以下の数式
(d)で表される。
Embodiments of the present invention will be described below with reference to the accompanying drawings. In each embodiment, the aspherical surface has a height y in the direction perpendicular to the optical axis, a displacement amount (sag amount) in the optical axis direction at the height y, S (y), a reference radius of curvature R, and a conic coefficient. Is represented by κ and the aspherical coefficient of the n-th order is represented by Cn, it is expressed by the following mathematical expression (d).

【数1】 S(y)=(y2 /R)/〔1+(1−κ・y2 /R2 1/2 〕 +C2 ・y2 +C4 ・y4 +C6 ・y6 +C8 ・y8 +C10・y10+・・・ (d) 各実施例において、非球面には面番号の右側に*印を付
している。
[Equation 1] S (y) = (y 2 / R) / [1+ (1-κ · y 2 / R 2 ) 1/2 ] + C 2 · y 2 + C 4 · y 4 + C 6 · y 6 + C 8 in · y 8 + C 10 · y 10 + ··· (d) each of the embodiments, the aspheric are asterisked right of the surface number.

【0029】〔実施例1〕図1は、本発明の第1実施例
にかかるズームレンズのレンズ構成を示す図である。ま
た、図2は、第1実施例において広角端から望遠端への
変倍に際する各レンズ群の移動を説明する図である。図
1のズームレンズは、物体側から順に、負屈折力の第1
レンズ群G1と、正屈折力の第2レンズ群G2と、正屈
折力の第3レンズ群G3と、負屈折力の第4レンズ群G
4と、正屈折力の第5レンズ群G5とからなる。第1実
施例のズームレンズは、焦点距離28.9〜77.5m
mでFナンバー2.9の変倍比の大きな大口径ズームレ
ンズであり、至近距離は0.6mに設定されている。
Example 1 FIG. 1 is a diagram showing a lens configuration of a zoom lens according to Example 1 of the present invention. FIG. 2 is a diagram for explaining the movement of each lens unit upon zooming from the wide-angle end to the telephoto end in the first embodiment. The zoom lens of FIG. 1 has a first negative refractive power in order from the object side.
A lens group G1, a second lens group G2 having a positive refractive power, a third lens group G3 having a positive refractive power, and a fourth lens group G having a negative refractive power.
4 and a fifth lens group G5 having a positive refractive power. The zoom lens of the first embodiment has a focal length of 28.9 to 77.5 m.
It is a large-aperture zoom lens with a large zoom ratio of F number 2.9 at m, and the closest distance is set to 0.6 m.

【0030】そして、第1レンズ群G1は、物体側から
順に、物体側に凸面を向けた負メニスカスレンズ、両凹
レンズ、および物体側に凸面を向けた正メニスカスレン
ズからなる。また、第2レンズ群G2は、物体側から順
に、物体側に凸面を向けた負メニスカスレンズと両凸レ
ンズと物体側に凹面を向けた負メニスカスレンズとの接
合正レンズからなる。さらに、第3レンズ群G3は、物
体側から順に、物体側に凸面を向けた正メニスカスレン
ズおよび両凸レンズからなる。
The first lens group G1 comprises, in order from the object side, a negative meniscus lens having a convex surface facing the object side, a biconcave lens, and a positive meniscus lens having a convex surface facing the object side. The second lens group G2 includes, in order from the object side, a negative positive meniscus lens having a convex surface facing the object side, a biconvex lens, and a negative positive meniscus lens having a concave surface facing the object side. Further, the third lens group G3 is composed of, in order from the object side, a positive meniscus lens having a convex surface facing the object side and a biconvex lens.

【0031】また、第4レンズ群G4は、物体側から順
に、物体側に凹面を向けた正メニスカスレンズと両凹レ
ンズとの接合負レンズ、および両凹レンズと物体側に凸
面を向けた正メニスカスレンズとの接合負レンズからな
る。さらに、第5レンズ群G5は、物体側から順に、物
体側に凸面を向けた負メニスカスレンズと両凸レンズと
の接合正レンズ、両凸レンズ、および物体側に凹面を向
けた負メニスカスレンズからなる。
The fourth lens group G4 includes, in order from the object side, a cemented negative lens of a positive meniscus lens having a concave surface facing the object side and a biconcave lens, and a biconcave lens and a positive meniscus lens having a convex surface facing the object side. It consists of a cemented negative lens. Further, the fifth lens group G5 is composed of, in order from the object side, a cemented positive lens having a negative meniscus lens having a convex surface facing the object side and a biconvex lens, a biconvex lens, and a negative meniscus lens having a concave surface facing the object side.

【0032】また、開口絞りSは、第3レンズ群G3と
第4レンズ群G4との間に配置されている。図1は、広
角端における各レンズ群の位置関係を示しており、望遠
端への変倍時には図2に矢印で示すズーム軌道に沿って
光軸上を移動する。すなわち、図2に示すように、広角
端から望遠端への変倍に際して、第2レンズ群G2は物
体側に凸の軌道に沿って移動し、第3レンズ群G3はほ
ぼ線形な軌道に沿って移動する。また、第2レンズ群G
2を光軸に沿って像側へ移動させて、近距離物体への合
焦を行う。さらに、第2レンズG2を光軸直交方向に移
動させることによって、手振れ等に起因する像位置の変
動を補正している。
The aperture stop S is arranged between the third lens group G3 and the fourth lens group G4. FIG. 1 shows the positional relationship of each lens group at the wide-angle end, and when the magnification is changed to the telephoto end, it moves on the optical axis along the zoom orbit shown by the arrow in FIG. That is, as shown in FIG. 2, during zooming from the wide-angle end to the telephoto end, the second lens group G2 moves along a convex trajectory toward the object side, and the third lens group G3 follows a substantially linear trajectory. To move. In addition, the second lens group G
2 is moved to the image side along the optical axis to focus on a short-distance object. Furthermore, by moving the second lens G2 in the direction orthogonal to the optical axis, the fluctuation of the image position due to camera shake or the like is corrected.

【0033】次の表(1)に、本発明の第1実施例の諸
元の値を掲げる。表(1)において、fは焦点距離を、
FNOはFナンバーを、2ωは画角を、Bfはバックフォ
ーカスを、βは撮影倍率を、d0 は物体から最も物体側
のレンズ面までの光軸に沿った距離をそれぞれ表してい
る。さらに、面番号は光線の進行する方向に沿った物体
側からのレンズ面の順序を、屈折率およびアッベ数はそ
れぞれd線(λ=587.6nm)に対する値を示して
いる。
The following table (1) lists the values of specifications of the first embodiment of the present invention. In Table (1), f is the focal length,
FNO is the F number, 2ω is the angle of view, Bf is the back focus, β is the shooting magnification, and d0 is the distance from the object to the lens surface closest to the object along the optical axis. Further, the surface number indicates the order of the lens surface from the object side along the direction in which the light beam travels, and the refractive index and Abbe number indicate values for the d-line (λ = 587.6 nm).

【0034】[0034]

【表1】 f=28.9〜77.5 FNO=2.9 2ω=76.0〜30.7 (非球面データ) κ C2 4 4 面 -0.0842 0.0000 7.1296 ×10-86 8 10 -3.0702 ×10-10 5.0743 ×10-13 -1.5016 ×10-16 κ C2 4 17面 -3.9460 0.0000 -3.5252 ×10-66 8 10 9.6494 ×10-9 -7.6024 ×10-11 1.7602 ×10-13 (変倍における可変間隔) f/β 28.9 43.0 77.5 -0.0630 -0.0917 -0.1672 d0 ∞ ∞ ∞ 402.423 417.763 418.380 d6 53.167 25.058 2.215 57.865 29.985 8.081 d10 7.339 10.448 7.339 2.641 5.521 1.473 d14 5.227 13.372 33.887 5.227 13.372 33.887 d20 15.835 11.083 3.033 15.835 11.083 3.033 Bf 39.709 45.976 58.847 39.709 45.976 58.847 [Table 1] f = 28.9 to 77.5 FNO = 2.9 2ω = 76.0 to 30.7 (Aspherical data) κ C 2 C 4 4 surface -0.0842 0.0000 7.1296 × 10 -8 C 6 C 8 C 10 -3.0702 × 10 -10 5.0743 × 10 -13 -1.5016 × 10 -16 κ C 2 C 4 17 surface -3.9460 0.0000 -3.5252 × 10 -6 C 6 C 8 C 10 9.6494 × 10 -9 -7.6024 × 10 -11 1.7602 × 10 -13 (Variable spacing during zooming) f / β 28.9 43.0 77.5 -0.0630 -0.0917 -0.1672 d0 ∞ ∞ ∞ 402.423 417.763 418.380 d6 53.167 25.058 2.215 57.865 29.985 8.081 d10 7.339 10.448 7.339 2.641 5.521 1.473 d14 5.227 13.372 33.887 5.227 13.372 33.887 d20 15.835 11.083 3.033 15.835 11.083 3.033 Bf 39.709 45.976 58.847 39.847 39.

【0035】表(1)の条件対応値の欄に示すように、
広角端から望遠端にかけて、合焦レンズ群である第2レ
ンズ群G2の無限遠合焦状態における横倍率βF が単調
減少し、第2レンズ群G2の合焦移動量ΔXが単調増加
している。なお、表(1)の条件対応値の欄において、
βF は合焦レンズ群である第2レンズ群G2の無限遠合
焦状態における横倍率であり、ΔXは無限遠物体から至
近距離物体への合焦のための第2レンズ群G2の合焦移
動量(像側への移動を正)である。
As shown in the condition corresponding value column of Table (1),
From the wide-angle end to the telephoto end, the lateral magnification β F of the second lens group G2, which is a focusing lens group, in the in-focus state at infinity monotonously decreases, and the focusing movement amount ΔX of the second lens group G2 monotonically increases. There is. In addition, in the column of the value corresponding to the condition of Table (1),
β F is the lateral magnification of the second lens group G2, which is the focusing lens group, in the in-focus state at infinity, and ΔX is the focusing of the second lens group G2 for focusing from an object at infinity to an object at a close range. The amount of movement (movement to the image side is positive).

【0036】次の表(2)は、第1実施例の合焦用移動
カムの形状を回転方向の移動量(ANGLE )と光軸方向の
移動量(DIS )に関するスプライン関数(『数値解析と
FORTRAN 』:丸善、『スプライン関数とその応用』:教
育出版、等に準拠)で表現する場合のスプライン用サン
プルデータを示している。すなわち、表(2)は、スプ
ライン補間サンプル点における回転方向の移動量(ANGL
E )および光軸方向の移動量(DIS )を示している。な
お、光軸方向の移動量(DIS )は物体側へ移動する場合
を正とする。
The following Table (2) shows the shape of the focusing moving cam of the first embodiment as a spline function ("Numerical Analysis and Numerical Analysis") concerning the moving amount (ANGLE) in the rotational direction and the moving amount (DIS) in the optical axis direction.
FORTRAN: Maruzen, Spline function and its application: Educational Publishing, etc.). That is, Table (2) shows the movement amount (ANGL) in the rotation direction at the spline interpolation sample point.
E) and the amount of movement in the optical axis direction (DIS) are shown. The amount of movement in the optical axis direction (DIS) is positive when moving toward the object side.

【0037】[0037]

【表2】 [Table 2]

【0038】次の表(3)は、各焦点距離状態における
第1実施例の合焦用移動カムの無限遠合焦位置(無限遠
対応位置)、および各撮影距離に対する合焦用移動カム
の回転移動量(合焦回転量)を示している。表(3)に
おいて、広角端(f=28.9)から望遠端(f=7
7.5)への変倍回転量が50になるように規格化して
いる。このとき、無限遠合焦位置(撮影距離R=∞)か
ら至近合焦位置(R=0.6m)までの合焦回転量は5
0となっている。
The following table (3) shows the infinity in-focus position of the in-focus moving cam of the first embodiment (position corresponding to infinity) in each focal length state, and the in-focus moving cam for each shooting distance. The amount of rotational movement (focusing amount of rotation) is shown. In Table (3), the wide-angle end (f = 28.9) to the telephoto end (f = 7)
It is standardized so that the amount of variable magnification rotation to 7.5) becomes 50. At this time, the focus rotation amount from the infinity in-focus position (shooting distance R = ∞) to the closest in-focus position (R = 0.6 m) is 5
It is 0.

【0039】[0039]

【表3】 焦点距離 無限遠対応位置 撮影距離 合焦回転量 28.9mm 0.000 3m 9.019 35.0mm 5.400 2m 13.664 43.0mm 13.000 1.5m 18.426 50.0mm 20.000 1.0m 28.278 60.0mm 31.350 0.7m 41.651 68.0mm 40.250 0.6m 50.000 77.5mm 50.000 [Table 3] Focal length Infinity correspondence position Shooting distance Focusing rotation amount 28.9mm 0.000 3m 9.019 35.0mm 5.400 2m 13.664 43.0mm 13.000 1.5m 18.426 50.0mm 20.000 1.0m 28.278 60.0mm 31.350 0.7m 41.651 68.0mm 40.250 0.6m 50.000 77.5 mm 50.000

【0040】次に、第1実施例のズームレンズにおい
て、いわゆるMF(マニュアルフォーカス)が可能にな
っているかを検討する。なお、所定の結像点位置からの
像面(結像点)の変位量がズームレンズの焦点深度を越
えると、いわゆるヘリコイド(らせん状のねじ)等を用
いたマニュアルフォーカス(MF)は不可能となってし
まう。次の表(4)は、第1実施例の合焦移動用カムを
用いてMF操作をする際の結像点(像面)の変位量を、
各焦点距離状態および各撮影距離状態に対応して示して
いる。
Next, it will be examined whether or not so-called MF (manual focus) is possible in the zoom lens of the first embodiment. If the amount of displacement of the image plane (image forming point) from the position of the predetermined image forming point exceeds the depth of focus of the zoom lens, manual focusing (MF) using a so-called helicoid (spiral screw) or the like is impossible. Will be. The following table (4) shows the displacement amount of the image forming point (image plane) when performing the MF operation using the focusing movement cam of the first embodiment.
It is shown corresponding to each focal length state and each shooting distance state.

【0041】[0041]

【表4】 0.6m 0.7m 1.0m 1.5m 2m 3m 28.9mm 0.000 0.006 0.000 0.000 -0.015 -0.018 35.0mm -0.037 -0.009 -0.009 0.012 0.013 -0.005 43.0mm -0.038 0.013 0.008 0.018 0.031 0.041 50.0mm -0.059 0.002 -0.005 -0.018 -0.016 -0.010 60.0mm -0.037 0.059 0.043 0.030 0.018 0.004 68.0mm -0.061 0.057 0.052 0.042 0.038 0.027 77.5mm 0.000 0.000 0.000 0.000 0.000 0.000 [Table 4] 0.6m 0.7m 1.0m 1.5m 2m 3m 28.9mm 0.000 0.006 0.000 0.000 -0.015 -0.018 35.0mm -0.037 -0.009 -0.009 0.012 0.013 -0.005 43.0mm -0.038 0.013 0.008 0.018 0.031 0.041 50.0mm -0.059 0.002 -0.005 -0.018 -0.016 -0.010 60.0mm -0.037 0.059 0.043 0.030 0.018 0.004 68.0mm -0.061 0.057 0.052 0.042 0.038 0.027 77.5mm 0.000 0.000 0.000 0.000 0.000 0.000

【0042】表(4)から明らかなように、各焦点距離
状態および各撮影距離状態における結像点の変位量が第
1実施例のレンズ系の焦点深度(0.09mm)に対し
て十分小さく、ピントずれの少ない正確なマニュアルフ
ォーカスが可能であることがわかる。
As is clear from Table (4), the amount of displacement of the image forming point in each focal length state and each photographing distance state is sufficiently small with respect to the focal depth (0.09 mm) of the lens system of the first embodiment. , It can be seen that accurate manual focus with less focus shift is possible.

【0043】図3乃至図8は、d線(λ=587.6n
m)に対する第1実施例の諸収差図である。なお、図3
は広角端での無限遠合焦状態における諸収差図であり、
図4は中間焦点距離状態での無限遠合焦状態における諸
収差図であり、図5は望遠端での無限遠合焦状態におけ
る諸収差図である。また、図6は広角端での近距離合焦
状態における諸収差図であり、図7は中間焦点距離状態
での近距離合焦状態における諸収差図であり、図8は望
遠端での近距離合焦状態における諸収差図である。図9
は、第1実施例の防振補正前における広角端(無限遠合
焦状態)および望遠端(無限遠合焦状態)での諸収差図
である。また、図10は、第1実施例の防振補正時にお
ける広角端(無限遠合焦状態)および望遠端(無限遠合
焦状態)での諸収差図である。図10では、第2レンズ
群G2が像側で画角0.2°に対応する量だけ偏心した
場合の諸収差量を示している。
3 to 8 show the d line (λ = 587.6n).
FIG. 7 is a diagram illustrating various aberrations of the first example with respect to m). Note that FIG.
Is a diagram of various aberrations at the wide-angle end when focused on infinity,
FIG. 4 is a diagram of various aberrations in the state of infinity focusing at the intermediate focal length state, and FIG. 5 is a diagram of various aberrations in the state of focusing at infinity at the telephoto end. FIG. 6 is a diagram of various aberrations at a wide-angle end in a short-distance focus state, FIG. 7 is a diagram of various aberrations at a short-distance focus state at an intermediate focal length condition, and FIG. 8 is a close-up graph at the telephoto end. FIG. 7 is a diagram of various types of aberration in a state in which a distance is in focus. FIG.
[Fig. 6A] is an aberration diagram of Example 1 at the wide-angle end (infinity in-focus state) and the telephoto end (infinity-in-focus state) before image stabilization. FIG. 10 is a diagram of various aberrations at the wide-angle end (infinity in-focus state) and the telephoto end (infinity-in-focus state) during image stabilization in the first embodiment. FIG. 10 shows various aberration amounts when the second lens group G2 is decentered on the image side by an amount corresponding to an angle of view of 0.2 °.

【0044】各収差図において、FNOはFナンバーを、
NAは開口数を、Yは像高をそれぞれ示している。ま
た、非点収差を示す収差図において、実線Sはサジタル
像面を示し、破線Mはメリディオナル像面を示してい
る。さらに、球面収差を示す収差図において、破線はサ
インコンディション(正弦条件)を示している。図3乃
至図8の各収差図から明らかなように、本実施例では、
広角端から望遠端に亘って各撮影距離状態において諸収
差が良好に補正されていることがわかる。また、図9お
よび図10の各収差図から明らかなように、本実施例で
は、防振補正前よりも防振補正時の方が収差変動が少な
く、良好な結像性能を保持しているので防振補正可能で
あることがわかる。
In each aberration diagram, FNO is the F number,
NA indicates the numerical aperture, and Y indicates the image height. In the aberration diagram showing astigmatism, the solid line S shows the sagittal image plane, and the broken line M shows the meridional image plane. Further, in the aberration diagram showing the spherical aberration, a broken line indicates a sine condition (sine condition). As is clear from the aberration diagrams of FIGS. 3 to 8, in the present embodiment,
It can be seen that various aberrations are satisfactorily corrected in each shooting distance state from the wide-angle end to the telephoto end. Further, as is clear from the aberration diagrams of FIGS. 9 and 10, in the present embodiment, the aberration variation during the image stabilization correction is smaller than that before the image stabilization correction, and good imaging performance is maintained. Therefore, it can be seen that image stabilization can be performed.

【0045】〔実施例2〕図11は、本発明の第2実施
例にかかるズームレンズのレンズ構成を示す図である。
また、図12は、第2実施例において広角端から望遠端
への変倍に際する各レンズ群の移動を説明する図であ
る。図11のズームレンズは、物体側から順に、負屈折
力の第1レンズ群G1と、正屈折力の第2レンズ群G2
と、正屈折力の第3レンズ群G3と、負屈折力の第4レ
ンズ群G4と、正屈折力の第5レンズ群G5とからな
る。第2実施例のズームレンズは、焦点距離28.9〜
77.5mmでFナンバー2.9の変倍比の大きな大口
径ズームレンズであり、至近距離は0.6mに設定され
ている。
[Embodiment 2] FIG. 11 is a diagram showing a lens configuration of a zoom lens according to a second embodiment of the present invention.
FIG. 12 is a diagram for explaining the movement of each lens unit upon zooming from the wide-angle end to the telephoto end in the second embodiment. The zoom lens of FIG. 11 has, in order from the object side, a first lens group G1 having negative refractive power and a second lens group G2 having positive refractive power.
And a third lens group G3 having a positive refractive power, a fourth lens group G4 having a negative refractive power, and a fifth lens group G5 having a positive refractive power. The zoom lens of the second embodiment has a focal length of 28.9 ~.
It is a large-diameter zoom lens with a large zoom ratio of 77.5 mm and an F-number of 2.9, and the closest distance is set to 0.6 m.

【0046】そして、第1レンズ群G1は、物体側から
順に、物体側に凸面を向けた負メニスカスレンズ、両凹
レンズ、および物体側に凸面を向けた正メニスカスレン
ズからなる。また、第2レンズ群G2は、物体側から順
に、物体側に凸面を向けた負メニスカスレンズと両凸レ
ンズと物体側に凹面を向けた負メニスカスレンズとの接
合正レンズからなる。さらに、第3レンズ群G3は、物
体側から順に、物体側に凸面を向けた正メニスカスレン
ズおよび両凸レンズからなる。
The first lens group G1 comprises, in order from the object side, a negative meniscus lens having a convex surface facing the object side, a biconcave lens, and a positive meniscus lens having a convex surface facing the object side. The second lens group G2 includes, in order from the object side, a negative positive meniscus lens having a convex surface facing the object side, a biconvex lens, and a negative positive meniscus lens having a concave surface facing the object side. Further, the third lens group G3 is composed of, in order from the object side, a positive meniscus lens having a convex surface facing the object side and a biconvex lens.

【0047】また、第4レンズ群G4は、物体側から順
に、物体側に凹面を向けた正メニスカスレンズと両凹レ
ンズとの接合負レンズ、および両凹レンズと物体側に凸
面を向けた正メニスカスレンズとの接合負レンズからな
る。さらに、第5レンズ群G5は、物体側から順に、物
体側に凸面を向けた負メニスカスレンズと両凸レンズと
の接合正レンズ、両凸レンズ、および物体側に凹面を向
けた負メニスカスレンズからなる。
The fourth lens group G4 includes, in order from the object side, a cemented negative lens composed of a positive meniscus lens having a concave surface facing the object side and a biconcave lens, and a biconcave lens and a positive meniscus lens having a convex surface facing the object side. It consists of a cemented negative lens. Further, the fifth lens group G5 is composed of, in order from the object side, a cemented positive lens having a negative meniscus lens having a convex surface facing the object side and a biconvex lens, a biconvex lens, and a negative meniscus lens having a concave surface facing the object side.

【0048】また、開口絞りSは、第3レンズ群G3と
第4レンズ群G4との間に配置されている。図11は、
広角端における各レンズ群の位置関係を示しており、望
遠端への変倍時には図12に矢印で示すズーム軌道に沿
って光軸上を移動する。すなわち、図12に示すよう
に、広角端から望遠端への変倍に際して、第2レンズ群
G2はほぼ線形な軌道に沿って移動し、第3レンズ群G
3は物体側に凸の軌道に沿って移動する。また、第2レ
ンズ群G2を光軸に沿って像側へ移動させて、近距離物
体への合焦を行う。さらに、第2レンズG2を光軸直交
方向に移動させることによって、手振れ等に起因する像
位置の変動を補正している。
The aperture stop S is arranged between the third lens group G3 and the fourth lens group G4. FIG.
The positional relationship of each lens group at the wide-angle end is shown, and during zooming to the telephoto end, the lens units move on the optical axis along the zoom orbit shown by the arrow in FIG. That is, as shown in FIG. 12, during zooming from the wide-angle end to the telephoto end, the second lens group G2 moves along a substantially linear trajectory, and the third lens group G2
3 moves along a trajectory convex to the object side. Further, the second lens group G2 is moved to the image side along the optical axis to focus on a short-distance object. Furthermore, by moving the second lens G2 in the direction orthogonal to the optical axis, the fluctuation of the image position due to camera shake or the like is corrected.

【0049】次の表(5)に、本発明の第2実施例の諸
元の値を掲げる。表(5)において、fは焦点距離を、
FNOはFナンバーを、2ωは画角を、Bfはバックフォ
ーカスを、βは撮影倍率を、d0 は物体から最も物体側
のレンズ面までの光軸に沿った距離をそれぞれ表してい
る。さらに、面番号は光線の進行する方向に沿った物体
側からのレンズ面の順序を、屈折率およびアッベ数はそ
れぞれd線(λ=587.6nm)に対する値を示して
いる。
The following table (5) lists the values of the specifications of the second embodiment of the present invention. In Table (5), f is the focal length,
FNO is the F number, 2ω is the angle of view, Bf is the back focus, β is the shooting magnification, and d0 is the distance from the object to the lens surface closest to the object along the optical axis. Further, the surface number indicates the order of the lens surface from the object side along the direction in which the light beam travels, and the refractive index and Abbe number indicate values for the d-line (λ = 587.6 nm).

【0050】[0050]

【表5】 f=28.9〜77.5 FNO=2.9 2ω=75.6〜30.7 (非球面データ) κ C2 4 4 面 -0.0842 0.0000 4.7358 ×10-86 8 10 -4.6171 ×10-10 7.2146 ×10-13 -2.0611 ×10-16 κ C2 4 17面 -3.9460 0.0000 -2.9044 ×10-66 8 10 1.1660 ×10-8 -8.3609 ×10-11 1.9060 ×10-13 (変倍における可変間隔) f/β 28.9 43.0 77.5 -0.0637 -0.0916 -0.1672 d0 ∞ ∞ ∞ 398.916 419.501 419.419 d6 51.820 24.270 1.164 56.566 29.183 7.031 d10 12.167 9.167 7.058 7.421 4.254 1.192 d14 5.392 13.537 34.052 5.392 13.537 34.052 d20 15.160 11.010 2.760 15.160 11.010 2.760 Bf 40.245 46.214 59.246 40.245 46.214 59.246 [Table 5] f = 28.9 to 77.5 FNO = 2.9 2ω = 75.6 to 30.7 (Aspherical data) κ C 2 C 4 4 surface -0.0842 0.0000 4.7358 × 10 -8 C 6 C 8 C 10 -4.6171 × 10 -10 7.2 146 × 10 -13 -2.0611 × 10 -16 κ C 2 C 4 17 surface -3.9460 0.0000 -2.9044 × 10 -6 C 6 C 8 C 10 1.1660 × 10 -8 -8.3609 × 10 -11 1.9060 × 10 -13 (Variable spacing during zooming) f / β 28.9 43.0 77.5 -0.0637 -0.0916 -0.1672 d0 ∞ ∞ ∞ 398.916 419.501 419.419 d6 51.820 24.270 1.164 56.566 29.183 7.031 d10 12.167 9.167 7.058 7.421 4.254 1.192 d14 5.392 13.537 34.052 5.392 13.537 34.052 d20 15.160 11.010 2.760 15.160 11.010 2.760 Bf 40.245 46.214 59.246 40.245 46.214

【0051】表(5)の条件対応値の欄に示すように、
広角端から望遠端にかけて、合焦レンズ群である第2レ
ンズ群G2の無限遠合焦状態における横倍率βF が単調
減少し、第2レンズ群G2の合焦移動量ΔXが単調増加
している。なお、表(5)の条件対応値の欄において、
βF は合焦レンズ群である第2レンズ群G2の無限遠合
焦状態における横倍率であり、ΔXは無限遠物体から至
近距離物体への合焦のための第2レンズ群G2の合焦移
動量(像側への移動を正)である。
As shown in the condition corresponding value column of Table (5),
From the wide-angle end to the telephoto end, the lateral magnification β F of the second lens group G2, which is a focusing lens group, in the in-focus state at infinity monotonously decreases, and the focusing movement amount ΔX of the second lens group G2 monotonically increases. There is. In addition, in the column of the value corresponding to the condition of Table (5),
β F is the lateral magnification of the second lens group G2, which is the focusing lens group, in the in-focus state at infinity, and ΔX is the focusing of the second lens group G2 for focusing from an object at infinity to an object at a close range. The amount of movement (movement to the image side is positive).

【0052】次の表(6)は、第2実施例の合焦用移動
カムの形状を回転方向の移動量(ANGLE )と光軸方向の
移動量(DIS )に関するスプライン関数(『数値解析と
FORTRAN 』:丸善、『スプライン関数とその応用』:教
育出版、等に準拠)で表現する場合のスプライン用サン
プルデータを示している。すなわち、表(6)は、スプ
ライン補間サンプル点における回転方向の移動量(ANGL
E )および光軸方向の移動量(DIS )を示している。な
お、光軸方向の移動量(DIS )は物体側へ移動する場合
を正とする。
The following Table (6) shows the shape of the focusing moving cam of the second embodiment in terms of the spline function ("Numerical Analysis and Numerical Analysis") relating to the moving amount (ANGLE) in the rotational direction and the moving amount (DIS) in the optical axis direction.
FORTRAN: Maruzen, Spline function and its application: Educational Publishing, etc.). That is, Table (6) shows the movement amount (ANGL) in the rotation direction at the spline interpolation sample point.
E) and the amount of movement in the optical axis direction (DIS) are shown. The amount of movement in the optical axis direction (DIS) is positive when moving toward the object side.

【0053】[0053]

【表6】 [Table 6]

【0054】次の表(7)は、各焦点距離状態における
第2実施例の合焦用移動カムの無限遠合焦位置(無限遠
対応位置)、および各撮影距離に対する合焦用移動カム
の回転移動量(合焦回転量)を示している。表(7)に
おいて、広角端(f=28.9)から望遠端(f=7
7.5)への変倍回転量が50になるように規格化して
いる。このとき、無限遠合焦位置(撮影距離R=∞)か
ら至近合焦位置(R=0.6m)までの合焦回転量は5
0.021となっている。
The following table (7) shows the in-focus position of the moving cam for focusing according to the second embodiment in each focal length state (the position corresponding to infinity), and the moving cam for focusing for each photographing distance. The amount of rotational movement (focusing amount of rotation) is shown. In Table (7), from the wide-angle end (f = 28.9) to the telephoto end (f = 7
It is standardized so that the amount of variable magnification rotation to 7.5) becomes 50. At this time, the focus rotation amount from the infinity in-focus position (shooting distance R = ∞) to the closest in-focus position (R = 0.6 m) is 5
It is 0.021.

【0055】[0055]

【表7】 焦点距離 無限遠対応位置 撮影距離 合焦回転量 28.9mm 0.000 3m 9.109 35.0mm 4.250 2m 13.812 43.0mm 10.500 1.5m 18.608 50.0mm 16.500 1.0m 28.522 60.0mm 27.000 0.7m 42.019 68.0mm 36.500 0.6m 50.021 77.5mm 50.000 [Table 7] Focal length Infinity correspondence position Shooting distance Focusing rotation amount 28.9mm 0.000 3m 9.109 35.0mm 4.250 2m 13.812 43.0mm 10.500 1.5m 18.608 50.0mm 16.500 1.0m 28.522 60.0mm 27.000 0.7m 42.019 68.0mm 36.500 0.6m 50.021 77.5 mm 50.000

【0056】次に、第2実施例のズームレンズにおい
て、いわゆるMF(マニュアルフォーカス)が可能にな
っているかを検討する。なお、所定の結像点位置からの
像面(結像点)の変位量がズームレンズの焦点深度を越
えると、いわゆるヘリコイド(らせん状のねじ)等を用
いたマニュアルフォーカス(MF)は不可能となってし
まう。次の表(8)は、第2実施例の合焦移動用カムを
用いてMF操作をする際の結像点(像面)の変位量を、
各焦点距離状態および各撮影距離状態に対応して示して
いる。
Next, it will be examined whether or not so-called MF (manual focus) is possible in the zoom lens of the second embodiment. If the amount of displacement of the image plane (image forming point) from the position of the predetermined image forming point exceeds the depth of focus of the zoom lens, manual focusing (MF) using a so-called helicoid (spiral screw) or the like is impossible. Will be. The following table (8) shows the displacement amount of the image forming point (image plane) when performing the MF operation using the focusing movement cam of the second embodiment.
It is shown corresponding to each focal length state and each shooting distance state.

【0057】[0057]

【表8】 0.6m 0.7m 1.0m 1.5m 2m 3m 28.9mm 0.005 0.005 0.005 0.013 -0.002 -0.013 35.0mm -0.035 -0.026 -0.004 0.026 0.028 0.008 43.0mm -0.037 -0.034 0.001 0.023 0.046 0.055 50.0mm -0.055 -0.048 -0.042 -0.021 -0.011 -0.012 60.0mm -0.023 -0.012 -0.046 -0.046 -0.030 -0.025 68.0mm 0.021 0.035 0.006 -0.034 -0.047 -0.029 77.5mm 0.000 0.000 0.000 0.000 0.000 0.000 [Table 8] 0.6m 0.7m 1.0m 1.5m 2m 3m 28.9mm 0.005 0.005 0.005 0.013 -0.002 -0.013 35.0mm -0.035 -0.026 -0.004 0.026 0.028 0.008 43.0mm -0.037 -0.034 0.001 0.023 0.046 0.055 50.0mm -0.055- 0.048 -0.042 -0.021 -0.011 -0.012 60.0mm -0.023 -0.012 -0.046 -0.046 -0.030 -0.025 68.0mm 0.021 0.035 0.006 -0.034 -0.047 -0.029 77.5mm 0.000 0.000 0.000 0.000 0.000 0.000

【0058】表(8)から明らかなように、各焦点距離
状態および各撮影距離状態における結像点の変位量が第
2実施例のレンズ系の焦点深度(0.09mm)に対し
て十分小さく、ピントずれの少ない正確なマニュアルフ
ォーカスが可能であることがわかる。
As is clear from Table (8), the amount of displacement of the image formation point in each focal length state and each photographing distance state is sufficiently small with respect to the focal depth (0.09 mm) of the lens system of the second embodiment. , It can be seen that accurate manual focus with less focus shift is possible.

【0059】図13乃至図18は、d線(λ=587.
6nm)に対する第2実施例の諸収差図である。なお、
図13は広角端での無限遠合焦状態における諸収差図で
あり、図14は中間焦点距離状態での無限遠合焦状態に
おける諸収差図であり、図15は望遠端での無限遠合焦
状態における諸収差図である。また、図16は広角端で
の近距離合焦状態における諸収差図であり、図17は中
間焦点距離状態での近距離合焦状態における諸収差図で
あり、図18は望遠端での近距離合焦状態における諸収
差図である。図19は、第2実施例の防振補正前におけ
る広角端(無限遠合焦状態)および望遠端(無限遠合焦
状態)での諸収差図である。また、図20は、第2実施
例の防振補正時における広角端(無限遠合焦状態)およ
び望遠端(無限遠合焦状態)での諸収差図である。図2
0では、第2レンズ群G2が像側で画角0.2°に対応
する量だけ偏心した場合の諸収差量を示している。
FIGS. 13 to 18 show the d line (λ = 587.
FIG. 9 is a diagram illustrating various aberrations of the second example with respect to 6 nm). In addition,
FIG. 13 is a diagram of various aberrations at the wide-angle end in the infinity focused state, FIG. 14 is a diagram of various aberrations at the intermediate focal length state at the infinity focused state, and FIG. 15 is a graph of the various aberrations at the telephoto end. FIG. 7 is a diagram of various types of aberration in a focused state. 16 is a diagram of various aberrations in the short-distance focus state at the wide-angle end, FIG. 17 is a diagram of various aberrations in the short-distance focus state at the intermediate focal length state, and FIG. 18 is a near-distance focus state at the telephoto end. FIG. 7 is a diagram of various types of aberration in a state in which a distance is in focus. FIG. 19 is a diagram of various types of aberration at the wide-angle end (infinity in-focus state) and the telephoto end (infinity-in-focus state) before image stabilization in the second embodiment. FIG. 20 is a diagram of various types of aberration at the wide-angle end (infinity in-focus condition) and the telephoto end (infinity-in-focus condition) during image stabilization in the second embodiment. FIG.
0 represents the amount of various aberrations when the second lens group G2 is decentered on the image side by an amount corresponding to an angle of view of 0.2 °.

【0060】各収差図において、FNOはFナンバーを、
NAは開口数を、Yは像高をそれぞれ示している。ま
た、非点収差を示す収差図において、実線Sはサジタル
像面を示し、破線Mはメリディオナル像面を示してい
る。さらに、球面収差を示す収差図において、破線はサ
インコンディション(正弦条件)を示している。図13
乃至図18の各収差図から明らかなように、本実施例で
は、広角端から望遠端に亘って各撮影距離状態において
諸収差が良好に補正されていることがわかる。また、図
19および図20の各収差図から明らかなように、本実
施例では、防振補正前よりも防振補正時の方が収差変動
が少なく、良好な結像性能を保持しているので防振補正
可能であることがわかる。
In each aberration diagram, FNO represents an F number,
NA indicates the numerical aperture, and Y indicates the image height. In the aberration diagram showing astigmatism, the solid line S shows the sagittal image plane, and the broken line M shows the meridional image plane. Further, in the aberration diagram showing the spherical aberration, a broken line indicates a sine condition (sine condition). FIG.
As can be seen from the aberration diagrams of FIGS. 18A to 18C, in the present embodiment, various aberrations are satisfactorily corrected in each shooting distance state from the wide-angle end to the telephoto end. Further, as is clear from the aberration diagrams of FIGS. 19 and 20, in the present embodiment, the aberration variation during the image stabilization is smaller than that before the image stabilization and the good image forming performance is maintained. Therefore, it can be seen that image stabilization can be performed.

【0061】[0061]

【効果】以上説明したように、本発明によれば、駆動効
率の高いオートフォーカスとピントずれの少ない正確な
マニュアルフォーカスとが可能で、且つ防振補正機能を
有する変倍比の大きな大口径ズームレンズを実現するこ
とができる。
[Effect] As described above, according to the present invention, it is possible to perform high-efficiency autofocus and accurate manual focus with little focus shift, and have a large zoom ratio with a large zoom ratio that has an image stabilization function. A lens can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例にかかるズームレンズのレ
ンズ構成を示す図である。
FIG. 1 is a diagram showing a lens configuration of a zoom lens according to Example 1 of the present invention.

【図2】第1実施例において広角端から望遠端への変倍
に際する各レンズ群の移動を説明する図である。
FIG. 2 is a diagram illustrating the movement of each lens unit during zooming from the wide-angle end to the telephoto end in the first embodiment.

【図3】第1実施例の広角端での無限遠合焦状態におけ
る諸収差図である。
FIG. 3 is a diagram illustrating various aberrations of the first embodiment at a wide-angle end in an infinity in-focus condition;

【図4】第1実施例の中間焦点距離での無限遠合焦状態
における諸収差図である。
FIG. 4 is a diagram of various types of aberration in the in-focus state at infinity at the intermediate focal length according to the first example.

【図5】第1実施例の望遠端での無限遠合焦状態におけ
る諸収差図である。
FIG. 5 is a diagram of various types of aberration in the first embodiment at a telephoto end and focused at infinity.

【図6】第1実施例の広角端での近距離合焦状態におけ
る諸収差図である。
FIG. 6 is a diagram of various types of aberration in a short-distance focus state at the wide-angle end according to the first example.

【図7】第1実施例の中間焦点距離での近距離合焦状態
における諸収差図である。
FIG. 7 is a diagram of various types of aberration in a short-distance focus state at the intermediate focal length according to the first example.

【図8】第1実施例の望遠端での近距離合焦状態におけ
る諸収差図である。
FIG. 8 is a diagram of various types of aberration in a short-distance focus state at the telephoto end of the first example.

【図9】第1実施例の防振補正前における広角端(無限
遠合焦状態)および望遠端(無限遠合焦状態)での諸収
差図である。
FIG. 9 is a diagram of various types of aberration at the wide-angle end (infinity in-focus state) and the telephoto end (infinity-in-focus state) before image stabilization in the first embodiment.

【図10】第1実施例の防振補正時における広角端(無
限遠合焦状態)および望遠端(無限遠合焦状態)での諸
収差図である。
FIG. 10 is a diagram of various types of aberration at the wide-angle end (infinity in-focus condition) and the telephoto end (infinity-in-focus condition) during image stabilization in the first embodiment.

【図11】本発明の第2実施例にかかるズームレンズの
レンズ構成を示す図である。
FIG. 11 is a diagram showing a lens configuration of a zoom lens according to Example 2 of the present invention.

【図12】第2実施例において広角端から望遠端への変
倍に際する各レンズ群の移動を説明する図である。
FIG. 12 is a diagram for explaining the movement of each lens unit upon zooming from the wide-angle end to the telephoto end in the second embodiment.

【図13】第2実施例の広角端での無限遠合焦状態にお
ける諸収差図である。
FIG. 13 is a diagram of various types of aberration of the second example at the wide-angle end when focused on infinity.

【図14】第2実施例の中間焦点距離での無限遠合焦状
態における諸収差図である。
FIG. 14 is a diagram of various types of aberration in the second example when focused on an object at infinity at an intermediate focal length.

【図15】第2実施例の望遠端での無限遠合焦状態にお
ける諸収差図である。
FIG. 15 is a diagram of various types of aberration of the second example at the telephoto end in the in-focus state at infinity.

【図16】第2実施例の広角端での近距離合焦状態にお
ける諸収差図である。
FIG. 16 is a diagram of various types of aberration in a short-distance focus state at the wide-angle end according to the second example.

【図17】第2実施例の中間焦点距離での近距離合焦状
態における諸収差図である。
FIG. 17 is a diagram of various types of aberration in a short-distance focus state at the intermediate focal length according to the second example.

【図18】第2実施例の望遠端での近距離合焦状態にお
ける諸収差図である。
FIG. 18 is a diagram of various types of aberration in a close-distance focusing state at the telephoto end of the second example.

【図19】第2実施例の防振補正前における広角端(無
限遠合焦状態)および望遠端(無限遠合焦状態)での諸
収差図である。
FIG. 19 is a diagram of various types of aberration at the wide-angle end (infinity in-focus state) and the telephoto end (infinity-in-focus state) before image stabilization in the second example.

【図20】第2実施例の防振補正時における広角端(無
限遠合焦状態)および望遠端(無限遠合焦状態)での諸
収差図である。
FIG. 20 is a diagram of various types of aberration at the wide-angle end (infinity in-focus condition) and the telephoto end (infinity-in-focus condition) during image stabilization in the second embodiment.

【符号の説明】[Explanation of symbols]

G1 第1レンズ群 G2 第2レンズ群 G3 第3レンズ群 G4 第4レンズ群 G5 第5レンズ群 S 開口絞り G1 first lens group G2 second lens group G3 third lens group G4 fourth lens group G5 fifth lens group S aperture stop

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 物体側より順に、負の屈折力を有する第
1レンズ群G1と、正の屈折力を有する第2レンズ群G
2と、正の屈折力を有する第3レンズ群G3と、負の屈
折力を有する第4レンズ群G4と、正の屈折力を有する
第5レンズ群G5とを備えた変倍比が1.5以上のズー
ムレンズにおいて、 広角端から望遠端への変倍に際して、前記第2レンズ群
G2の横倍率は常に正であり且つ単調に減少し、 前記第2レンズ群G2の広角端から望遠端への光軸方向
の移動量をΔX2とし、前記第4レンズ群G4の広角端
から望遠端への光軸方向の移動量をΔX4とし、前記第
5レンズ群G5の広角端から望遠端への光軸方向の移動
量をΔX5としたとき、広角端から望遠端までの変倍に
際して、 0.0<ΔX4/ΔX2<0.3 (0<ΔX4)0.
3<ΔX5/ΔX2<0.75(0<ΔX5)の条件を
満足することを特徴とするズームレンズ。
1. A first lens group G1 having a negative refractive power and a second lens group G having a positive refractive power in order from the object side.
2, a third lens group G3 having a positive refractive power, a fourth lens group G4 having a negative refractive power, and a fifth lens group G5 having a positive refractive power, the zoom ratio is 1. In a zoom lens of 5 or more, the lateral magnification of the second lens group G2 is always positive and monotonically decreases during zooming from the wide-angle end to the telephoto end, and the second lens group G2 changes from the wide-angle end to the telephoto end. To the telephoto end from the wide-angle end of the fourth lens group G4 by ΔX2, and from the wide-angle end to the telephoto end of the fifth lens group G5. When the amount of movement in the optical axis direction is ΔX5, 0.0 <ΔX4 / ΔX2 <0.3 (0 <ΔX4) when changing the magnification from the wide-angle end to the telephoto end.
A zoom lens characterized by satisfying a condition of 3 <ΔX5 / ΔX2 <0.75 (0 <ΔX5).
【請求項2】 前記第2レンズ群G2を光軸に沿って移
動させて近距離物体への合焦を行うことを特徴とする請
求項1に記載のズームレンズ。
2. The zoom lens according to claim 1, wherein the second lens group G2 is moved along the optical axis to focus on a short-distance object.
【請求項3】 広角端から望遠端への変倍に際して、前
記第2レンズ群G2は物体側に凸の軌道に沿って移動
し、前記第3レンズ群G3はほぼ線形な軌道に沿って移
動することを特徴とする請求項1または2に記載のズー
ムレンズ。
3. At the time of zooming from the wide-angle end to the telephoto end, the second lens group G2 moves along a convex trajectory toward the object side, and the third lens group G3 moves along a substantially linear trajectory. The zoom lens according to claim 1 or 2, wherein
【請求項4】 広角端から望遠端への変倍に際して、前
記第2レンズ群G2はほぼ線形な軌道に沿って移動し、
前記第3レンズ群G3は物体側に凸の軌道に沿って移動
することを特徴とする請求項1または2に記載のズーム
レンズ。
4. The second lens group G2 moves along a substantially linear trajectory during zooming from the wide-angle end to the telephoto end.
The zoom lens according to claim 1, wherein the third lens group G3 moves along a trajectory that is convex toward the object side.
【請求項5】 広角端における無限遠物体から至近距離
物体への合焦のための前記第2レンズ群G2の移動量を
ΔXW とし、望遠端における無限遠物体から至近距離物
体への合焦のための前記第2レンズ群G2の移動量をΔ
T としたとき、 1.0<ΔXT /ΔXW <1.5 の条件を満足することを特徴とする請求項1乃至4のい
ずれか1項に記載のズームレンズ。
5. A focusing distance from an infinite object to a close-range object at the telephoto end, where ΔX W is a movement amount of the second lens group G2 for focusing from an infinite object to a close-range object at the wide-angle end. The moving amount of the second lens group G2 for
The zoom lens according to claim 1, wherein a condition of 1.0 <ΔX T / ΔX W <1.5 is satisfied, where X T.
【請求項6】 前記第2レンズ群G2を光軸を横切る方
向に移動させるための変位手段を備えていることを特徴
とする請求項1乃至5のいずれか1項に記載のズームレ
ンズ。
6. The zoom lens according to claim 1, further comprising a displacement means for moving the second lens group G2 in a direction crossing the optical axis.
【請求項7】 前記第2レンズ群G2は、少なくとも1
つの貼合わせレンズを有することを特徴とする請求項6
に記載のズームレンズ。
7. The second lens group G2 has at least 1
7. It has one cemented lens.
A zoom lens according to claim 1.
【請求項8】 前記第2レンズ群G2の広角端から望遠
端への光軸方向の移動量をΔX2とし、前記第3レンズ
群G3の広角端から望遠端への光軸方向の移動量をΔX
3としたとき、広角端から望遠端までの変倍に際して、 1<ΔX3/ΔX2<10 の条件を満足することを特徴とする請求項1乃至7のい
ずれか1項に記載のズームレンズ。
8. A moving amount of the second lens group G2 in the optical axis direction from the wide-angle end to the telephoto end is ΔX2, and a moving amount of the third lens group G3 in the optical axis direction from the wide-angle end to the telephoto end. ΔX
The zoom lens according to any one of claims 1 to 7, wherein when the zoom ratio is 3, the zoom lens satisfies the condition 1 <ΔX3 / ΔX2 <10 when zooming from the wide-angle end to the telephoto end.
JP8059969A 1995-10-20 1996-02-22 Zoom lens Pending JPH09230242A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP8059969A JPH09230242A (en) 1996-02-22 1996-02-22 Zoom lens
US08/731,774 US5774267A (en) 1995-10-20 1996-10-18 Zoom lens
US08/955,318 US5847875A (en) 1995-10-20 1997-10-21 Zoom lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8059969A JPH09230242A (en) 1996-02-22 1996-02-22 Zoom lens

Publications (1)

Publication Number Publication Date
JPH09230242A true JPH09230242A (en) 1997-09-05

Family

ID=13128520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8059969A Pending JPH09230242A (en) 1995-10-20 1996-02-22 Zoom lens

Country Status (1)

Country Link
JP (1) JPH09230242A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001100100A (en) * 1999-09-29 2001-04-13 Cosina Co Ltd Zoom lens for projection
JP2001311872A (en) * 2000-04-27 2001-11-09 Nitto Kogaku Kk Zoom lens for projection and projector device
US6885506B2 (en) 2003-02-05 2005-04-26 Pentax Corporation Wide-angle zoom lens system
JP2006030469A (en) * 2004-07-14 2006-02-02 Canon Inc Zoom lens and image projection device having the same
JP2006323233A (en) * 2005-05-20 2006-11-30 Olympus Corp Optical system and imaging apparatus using same
JP2007058168A (en) * 2005-07-28 2007-03-08 Kyocera Corp Zoom lens, optical module, and personal digital assistant
JP2010176097A (en) * 2009-02-02 2010-08-12 Panasonic Corp Zoom lens system, interchangeable lens apparatus and camera system
JP2011112716A (en) * 2009-11-24 2011-06-09 Nikon Corp Photographic lens, optical device and method for adjusting the photographic lens
US8199411B2 (en) 2009-03-17 2012-06-12 Nikon Corporation Imaging lens, optical apparatus equipped therewith and method for manufacturing the imaging lens
US8605370B2 (en) 2010-03-15 2013-12-10 Nikon Corporation Imaging lens, optical apparatus equipped therewith, and method for manufacturing imaging lens
US8908273B2 (en) 2010-09-21 2014-12-09 Nikon Corporation Imaging lens, optical apparatus equipped therewith and method for manufacturing imaging lens
JP2015031869A (en) * 2013-08-05 2015-02-16 キヤノン株式会社 Zoom lens and imaging apparatus including the same
JPWO2021117563A1 (en) * 2019-12-10 2021-06-17

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001100100A (en) * 1999-09-29 2001-04-13 Cosina Co Ltd Zoom lens for projection
JP4616966B2 (en) * 2000-04-27 2011-01-19 日東光学株式会社 Projection zoom lens and projector apparatus
JP2001311872A (en) * 2000-04-27 2001-11-09 Nitto Kogaku Kk Zoom lens for projection and projector device
US6885506B2 (en) 2003-02-05 2005-04-26 Pentax Corporation Wide-angle zoom lens system
JP2006030469A (en) * 2004-07-14 2006-02-02 Canon Inc Zoom lens and image projection device having the same
JP2006323233A (en) * 2005-05-20 2006-11-30 Olympus Corp Optical system and imaging apparatus using same
JP2007058168A (en) * 2005-07-28 2007-03-08 Kyocera Corp Zoom lens, optical module, and personal digital assistant
JP2010176097A (en) * 2009-02-02 2010-08-12 Panasonic Corp Zoom lens system, interchangeable lens apparatus and camera system
US8199411B2 (en) 2009-03-17 2012-06-12 Nikon Corporation Imaging lens, optical apparatus equipped therewith and method for manufacturing the imaging lens
JP2011112716A (en) * 2009-11-24 2011-06-09 Nikon Corp Photographic lens, optical device and method for adjusting the photographic lens
US8605370B2 (en) 2010-03-15 2013-12-10 Nikon Corporation Imaging lens, optical apparatus equipped therewith, and method for manufacturing imaging lens
US8908273B2 (en) 2010-09-21 2014-12-09 Nikon Corporation Imaging lens, optical apparatus equipped therewith and method for manufacturing imaging lens
JP2015031869A (en) * 2013-08-05 2015-02-16 キヤノン株式会社 Zoom lens and imaging apparatus including the same
JPWO2021117563A1 (en) * 2019-12-10 2021-06-17
WO2021117563A1 (en) * 2019-12-10 2021-06-17 株式会社ニコン Variable magnification optical system, optical device, and method for manufacturing variable magnification optical system

Similar Documents

Publication Publication Date Title
JP3587272B2 (en) Zoom lens
JP4902191B2 (en) Zoom lens and imaging apparatus having the same
EP2325680A2 (en) Zoom lens system with vibration reduction
EP2360504A1 (en) Zoom lens system, optical apparatus and method for manufacturing zoom lens system
JPH05173071A (en) Wide angle zoom lens
EP1881357A1 (en) Vibration-proof telephoto zoom lens having four lens groups
JP5972020B2 (en) Zoom lens system
JPH1195105A (en) Focusing system for variable power optical system
JP2001194586A (en) Zoom lens and photographing device using the same
JP2001033703A (en) Rear focus type zoom lens
JPH08201695A (en) Rear focus type zoom lens
JPH10104520A (en) Wide angle zoom lens
JP3018723B2 (en) Zoom lens
JP2002311330A (en) Zoom lens and optical apparatus using the same
JPH07306362A (en) Zoom lens
JPH09230242A (en) Zoom lens
JPH1164733A (en) Zoom lens long in back focus
JP2862272B2 (en) Wide-angle zoom lens
JPH09113808A (en) Zoom lens
JPH11202202A (en) Zoom lens
WO2021039696A1 (en) Variable-power optical system, optical device, and method for manufacturing variable-power optical system
JP3368099B2 (en) Rear focus zoom lens
JPH095626A (en) Variable power optical system
JP4203284B2 (en) Telephoto zoom lens
JP3376143B2 (en) Zoom lens