JPH09229758A - Estimation method for sound pressure - Google Patents

Estimation method for sound pressure

Info

Publication number
JPH09229758A
JPH09229758A JP3460496A JP3460496A JPH09229758A JP H09229758 A JPH09229758 A JP H09229758A JP 3460496 A JP3460496 A JP 3460496A JP 3460496 A JP3460496 A JP 3460496A JP H09229758 A JPH09229758 A JP H09229758A
Authority
JP
Japan
Prior art keywords
vibration
sound
sound pressure
sound source
speaker
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3460496A
Other languages
Japanese (ja)
Other versions
JP3473246B2 (en
Inventor
Masahiro Nakamura
政弘 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP03460496A priority Critical patent/JP3473246B2/en
Publication of JPH09229758A publication Critical patent/JPH09229758A/en
Application granted granted Critical
Publication of JP3473246B2 publication Critical patent/JP3473246B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To precisely measure a space transfer characteristic between a sound-source vibration face and a sound-pressure estimation point and to estimate the sound pressure without measuring the sound pressure actually in a method which estimates the sound pressure which is caused by the sound-source vibration face and which is situated in a position at a distance from the sound-source vibration source. SOLUTION: A microphone is arranged near a sound-source vibration face. A loudspeaker and a vibration measuring instrument are arranged in an estimation position. When the sound-source vibration face is not vibrated, the loudspeaker is vibrated, the vibration speed V2 of the loudspeaker is measured by the vibration measuring instrument, and the sound pressure P1 of the sound-source vibration face is measured by the microphone. Thereby, by using the known vibration-face area S2 of the loudspeaker (or the vibration-face area S1 of a sound source), a space transfer characteristic from the microphone up to the loudspeaker is found as P1/(S2.V2)(or P1.S1/V2). Then, the vibration measuring instrument is arranged near the sound-source vibration face, the sound-source vibration face is vibrated, the vibration speed V1 of the sound-source vibration face is measured by the vibration measuring instrument, and a sound pressure P2, in the estimation position, caused by the sound-source vibration face is found by an expression of P2=(S1.V1) P1/(S2.V2) by using the known area S1 of the sound-source vibration face.

Description

【発明の詳細な説明】Detailed Description of the Invention

【発明の属する技術分野】本発明は音圧予測方法に関
し、特に、車両や産業機械のエンジン、トランスミッシ
ョン、キャブパネル等の音源振動面から離れた位置の音
圧を予測する音圧予測方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sound pressure predicting method, and more particularly to a sound pressure predicting method for predicting sound pressure at a position distant from a sound source vibrating surface of an engine, a transmission, a cab panel of a vehicle or an industrial machine. Is.

【0001】近年、自動車や産業機械から発生する騒音
が環境公害問題となっており、この騒音の静粛化が国内
外で要求されている。
In recent years, noise generated from automobiles and industrial machines has become a problem of environmental pollution, and quietness of this noise has been demanded at home and abroad.

【0002】この場合、騒音の規制値は発生源から所定
距離だけ離れた遠隔点で計測されるが、例えばエンジン
を実際の車両に搭載する前の状態で音圧が分かれば騒音
規制に対する方策をより簡単に決定することができるた
め、所定遠隔点での音圧を正確に予測できる方法が求め
られている。
In this case, the regulation value of noise is measured at a remote point separated from the source by a predetermined distance. For example, if the sound pressure is known before the engine is actually mounted on a vehicle, a measure for noise regulation is taken. There is a need for a method that can accurately predict the sound pressure at a given remote point because it can be determined more easily.

【0003】[0003]

【従来の技術】図7(1),(2)は、このような従来
の音圧予測方法を原理的に示したもので、同図(1)で
は空間の伝達特性を求めるため、地面14上に音源とな
る振動面1a〜1dを有するエンジン1と、このエンジ
ン1を覆うキャブパネル11とが配置されるとともに、
これらの音源振動面1a〜1dに起因する音圧を予測す
る点Qが前もって設定されている。
2. Description of the Related Art FIGS. 7 (1) and 7 (2) show such a conventional sound pressure prediction method in principle. In FIG. An engine 1 having vibrating surfaces 1a to 1d serving as a sound source and a cab panel 11 covering the engine 1 are arranged on the upper side, and
A point Q for predicting the sound pressure caused by these sound source vibrating surfaces 1a to 1d is set in advance.

【0004】また、音源振動面1a〜1dの近傍に、こ
の音源振動面1a〜1dの代わりに音圧をそれぞれが擬
似的に発生するスピーカ3a〜3dと,これらのスピー
カ3a〜3dで発生した音圧に起因する、各音源振動面
1a〜1dの近傍の音圧SPa〜SPdを計測するため
のマイクロホン4a〜4dがそれぞれ配置されている。
さらに、予測点Qにはスピーカ3a〜3dに起因する音
圧SPMa〜SPMdを計測するためのマイクロホン5
が配置されている。
Further, in the vicinity of the sound source vibrating surfaces 1a to 1d, instead of the sound source vibrating surfaces 1a to 1d, sound pressures are artificially generated by the speakers 3a to 3d and the speakers 3a to 3d. Microphones 4a to 4d for measuring the sound pressures SPa to SPd near the sound source vibrating surfaces 1a to 1d due to the sound pressure are arranged, respectively.
Further, at the prediction point Q, a microphone 5 for measuring the sound pressures SPMa to SPDMd caused by the speakers 3a to 3d.
Is arranged.

【0005】このような装置において、まず、音源振動
面1a〜1dは振動を停止した状態で、スピーカ3a〜
3dの内のスピーカ3aのみを振動させてこのスピーカ
3aに起因する音源振動面1aの近傍の音圧SPaをマ
イクロホン4aで測定するとともに、このスピーカ3a
に起因する予測点Qの音圧SPMaをマイクロホン5で
測定する。
In such an apparatus, first, the sound source vibrating surfaces 1a to 1d are in a state where the vibration is stopped, and the speakers 3a to 1d.
Only the speaker 3a of 3d is vibrated and the sound pressure SPa near the sound source vibrating surface 1a caused by the speaker 3a is measured by the microphone 4a.
The sound pressure SPMa at the prediction point Q due to is measured by the microphone 5.

【0006】この測定の結果、音源振動面1aの近傍の
音圧SPaと予測点Qの音圧SPMaから音源振動面1
aと予測点Q間の空間の伝達特性Haを次式により求め
る。
As a result of this measurement, from the sound pressure SPa near the sound source vibrating surface 1a and the sound pressure SPMa at the prediction point Q, the sound source vibrating surface 1 is obtained.
The transfer characteristic Ha of the space between a and the prediction point Q is obtained by the following equation.

【数1】 Ha=SPMa/SPa ・・・式(1)## EQU00001 ## Ha = SPMa / SPa ... Equation (1)

【0007】同様にして、予測点Qにはマイクロホン5
を配置した状態で、音源振動面1b〜1dの近傍に順
次、音圧をスピーカ3b〜3dにより発生させて、上記
式(1)と同様にして下記の式により空間の伝達特性H
b〜Hdをそれぞれ求める。
Similarly, the microphone 5 is connected to the prediction point Q.
Sound pressure is sequentially generated in the vicinity of the sound source vibrating surfaces 1b to 1d by the speakers 3b to 3d in the state where the sound source vibrating surfaces 1b to 1d are arranged, and the transfer characteristic H of the space is calculated by the following equation in the same manner as the equation (1).
b to Hd are obtained respectively.

【数2】 Hb=SPMb/SPb ・・・式(2)## EQU00002 ## Hb = SPMb / SPb ... Equation (2)

【数3】 Hc=SPMc/SPc ・・・式(3)## EQU00003 ## Hc = SPMC / SPc ... Equation (3)

【数4】 Hd=SPMd/SPd ・・・式(4)## EQU00004 ## Hd = SPMd / SPd ... Equation (4)

【0008】次に、上記のようにして求めた空間伝達特
性Ha〜Hdを用いることにより、同図(2)の構成に
より予測点Qでの音圧を予測する。
Next, by using the space transfer characteristics Ha to Hd obtained as described above, the sound pressure at the prediction point Q is predicted by the configuration of FIG.

【0009】すなわち、各音源振動面1a〜1dの近傍
にマイクロホン4a〜4dをそれぞれ配置しておき、た
だしスピーカ3a〜3dは配置しない状態で、エンジン
1を始動させ音源振動面1a〜1dを振動状態にする。
この状態でマイクロホン4a〜4dで音源振動面1a〜
1dの近傍の音圧Pa〜Pdをそれぞれ測定する。
That is, the microphones 4a to 4d are arranged in the vicinity of the sound source vibrating surfaces 1a to 1d, respectively, but the speakers 3a to 3d are not arranged, and the engine 1 is started to vibrate the sound source vibrating surfaces 1a to 1d. Put in a state.
In this state, the sound source vibrating surface 1a
The sound pressures Pa to Pd near 1d are measured.

【0010】一方、エンジン1の音源振動面1a〜1d
に起因する予測点Qの音圧P2は、上記の如く既に求め
た空間伝達特性Ha〜Hdを各音圧Pa〜Pdにそれぞ
れ乗じた値の和で与えられるから次式のようになる
On the other hand, the sound source vibrating surfaces 1a to 1d of the engine 1
The sound pressure P2 at the prediction point Q due to is given by the sum of the values obtained by multiplying the respective sound pressures Pa to Pd by the space transfer characteristics Ha to Hd already obtained as described above.

【数5】 P2=Ha・Pa+Hb・Pb+Hc・Pc+Hd・Pd ・・・式(5)[Formula 5] P2 = Ha · Pa + Hb · Pb + Hc · Pc + Hd · Pd (Equation 5)

【0011】[0011]

【発明が解決しようとする課題】このような従来の音圧
予測方法においては、例えば、車外騒音法規制等では車
両と計測点まで7.5mの距離が必要であるとともに、
ノイズ等を考慮すれば実験精度の確保にはスピーカの振
動に起因する計測点における音圧を所定の値以上にしな
ければならず、従って、スピーカの高音圧化の必要があ
る。
In such a conventional sound pressure predicting method, a distance of 7.5 m is required between the vehicle and the measuring point in accordance with, for example, vehicle exterior noise regulation, and
Considering noise and the like, the sound pressure at the measurement point due to the vibration of the speaker needs to be equal to or higher than a predetermined value in order to ensure the accuracy of the experiment. Therefore, it is necessary to increase the sound pressure of the speaker.

【0012】また、計測の対象とする音源振動面の振動
モードを再現するためには、音源振動面がローリングや
分割振動のない平行面運動(ピストン運動)するスピー
カである必要がある。
Further, in order to reproduce the vibration mode of the sound source vibrating surface to be measured, it is necessary that the sound source vibrating surface is a speaker that makes parallel plane motion (piston motion) without rolling or split vibration.

【0013】さらに、スピーカで計測の対象とする音源
振動面を擬似するための周波数成分は広帯域となるた
め、スピーカの広帯域化が必要である。
Further, since the frequency component for simulating the vibration plane of the sound source to be measured by the speaker has a wide band, it is necessary to widen the band of the speaker.

【0014】すなわち、測定に使用するスピーカは、現
実的な実験精度を確保するためには、高音圧化、広周波
数帯域化及び広ピストン領域化が要求される。
That is, the speaker used for the measurement is required to have a high sound pressure, a wide frequency band, and a wide piston area in order to secure a realistic experimental accuracy.

【0015】この結果、スピーカは大型化され、この大
型スピーカが配置された音響空間は伝達特性が変化して
しまい計測の精度が確保できなくなる場合もあり、さら
には、スピーカが大きいために音源近傍にスピーカを配
設できずに予測そのものが不可能となる場合もある。
As a result, the speaker becomes large in size, and the transmission characteristics of the acoustic space in which the large speaker is placed may change, which may make it impossible to ensure measurement accuracy. In some cases, the speaker itself cannot be installed and the prediction itself becomes impossible.

【0016】一方、振動中の各音源振動面近傍で測定す
る音圧は他の音源振動面から回り込んだ音圧の影響を受
けて測定精度の悪化の要因となる。この回り込みの影響
は、マイクロホンが音源振動面から離れるともに、測定
空間が閉空間であればあるほど大きく測定精度の悪化の
要因となる。
On the other hand, the sound pressure measured in the vicinity of the vibrating surface of each vibrating sound source is affected by the sound pressure coming from other vibrating surfaces of the sound source, which causes deterioration of measurement accuracy. The influence of this wraparound becomes a factor of deteriorating the measurement accuracy as the microphone moves away from the sound source vibrating surface and the measurement space becomes a closed space.

【0017】従って、各音源振動面近傍の測定音圧に他
の音源振動面からのこの回りこみ音圧がどの程度なのか
分からないため、どの音源振動面が騒音の直接原因であ
るかの特定が困難であり、騒音を低減するための対応に
非常に大きな時間を要する。
Therefore, since it is not known how much the sound pressure around this sound source vibrating surface is the sneaking sound pressure from other sound source vibrating surfaces, it is possible to identify which sound source vibrating surface is the direct cause of noise. However, it takes a very long time to take measures to reduce noise.

【0018】すなわち、この問題は、音源振動面の音圧
と予測点の音圧による伝達特性を使用しているために、
伝達特性の測定時に音源振動面近傍にスピーカを配置す
る必要があることと、予測時には音源振動面近傍の測定
音圧を使用しなければならないことに起因している。
That is, this problem uses the transfer characteristics of the sound pressure of the vibration surface of the sound source and the sound pressure of the prediction point.
This is because it is necessary to dispose a speaker near the vibration surface of the sound source when measuring the transfer characteristics, and it is necessary to use the measured sound pressure near the vibration surface of the sound source during prediction.

【0019】したがって本発明は、音源の振動面に起因
する該音源振動面から離れた位置での音圧を予測する方
法において、音源振動面と音圧予測点間の空間伝達特性
を正確に計測し、音圧を実際に計測することなく音圧予
測を行うことを目的とする。
Therefore, the present invention accurately measures the spatial transfer characteristic between the sound source vibration surface and the sound pressure prediction point in the method of predicting the sound pressure at a position away from the sound source vibration surface due to the sound source vibration surface. However, the purpose is to predict the sound pressure without actually measuring the sound pressure.

【0020】[0020]

【課題を解決するための手段】図1は本発明に係る音圧
予測方法をより概念的に示した図で、例えば、音源振動
面積S1で振動速度V1の音源振動面1aを有するエン
ジン1と、振動面積S2で振動速度V2の振動面2aを
有するスピーカ2とが配置設定されている。
FIG. 1 is a diagram more conceptually showing a sound pressure predicting method according to the present invention. For example, an engine 1 having a sound source vibrating surface 1a having a sound source vibrating area S1 and a vibration speed V1. , And the speaker 2 having the vibration surface 2a having the vibration area S2 and the vibration speed V2.

【0021】いま、振動面1a,2aに加わる力をそれ
ぞれF1,F2とすると次の関係式が成り立つ。
When the forces applied to the vibrating surfaces 1a and 2a are F1 and F2, respectively, the following relational expression holds.

【数6】 F1=Z11・V1+Z12・V2 ・・・式(6)[Equation 6] F1 = Z11 · V1 + Z12 · V2 ... Formula (6)

【数7】 F2=Z21・V1+Z22・V2 ・・・式(7) 但し、Z11,Z12,Z21,Z22は機械インピー
ダンスとする。
F2 = Z21 · V1 + Z22 · V2 Equation (7) However, Z11, Z12, Z21, and Z22 are mechanical impedances.

【0022】ここで、式(6)及び(7)において相反
定理が成り立つと仮定すると、次式のようになる。
Assuming that the reciprocity theorem holds in equations (6) and (7), the following equation is obtained.

【数8】 Z12=Z21 ・・・式(8)## EQU00008 ## Z12 = Z21 ... Equation (8)

【0023】一方、振動面1a,2aの表面の平均音圧
をそれぞれP1,P2、表面積をS1,S2とすると次
の関係式が成り立つ。
On the other hand, assuming that the average sound pressures on the surfaces of the vibrating surfaces 1a and 2a are P1 and P2, and the surface areas are S1 and S2, the following relational expressions are established.

【数9】 F1=P1・S1 ・・・式(9)[Equation 9] F1 = P1 · S1 ... Equation (9)

【数10】 F2=P2・S2 ・・・式(10)[Equation 10] F2 = P2 · S2 Equation (10)

【0024】式(6),(7),(9),(10)か
ら、次の関係式が得られる。
From the expressions (6), (7), (9) and (10), the following relational expressions are obtained.

【数11】 S1・P1=Z11・V1+Z12・V2 ・・・式(11)[Equation 11] S1 · P1 = Z11 · V1 + Z12 · V2 ... Formula (11)

【数12】 S2・P2=Z21・V1+Z22・V2 ・・・式(12)[Equation 12] S2 · P2 = Z21 · V1 + Z22 · V2 ... Formula (12)

【0025】次に式(11)で、V1=0(エンジン1
の振動面1aを振動させない状態)とし、両辺をV2で
割って整理すると、次の関係式が成り立つ。
Next, in the equation (11), V1 = 0 (engine 1
When the vibrating surface 1a of (1) is not vibrated) and both sides are divided by V2 and rearranged, the following relational expression holds.

【数13】 Z12=P1・S1/V2 ・・・式(13)[Equation 13] Z12 = P1 · S1 / V2 ・ ・ ・ Equation (13)

【0026】式(8),(13)から、次の関係式が得
られる。
The following relational expressions are obtained from the expressions (8) and (13).

【数14】 Z21=P1・S1/V2 ・・・式(14)## EQU16 ## Z21 = P1.S1 / V2 ... Equation (14)

【0027】同様に、式(12)で、V2=0(スピー
カ2の振動面2aを振動させない状態)とし、両辺をS
2で割って整理すると、次の関係式が成り立つ。
Similarly, in the equation (12), V2 = 0 (state in which the vibrating surface 2a of the speaker 2 is not vibrated), and both sides are S
Dividing by 2 and rearranging, the following relational expression holds.

【数15】 P2=Z21・V1/S2 ・・・式(15)[Equation 15] P2 = Z21 · V1 / S2 ・ ・ ・ Equation (15)

【0028】次に、式(14),(15)からインピー
ダンスZ21を消去して整理すると、次の関係式が成り
立つ。
Next, when the impedance Z21 is deleted from the equations (14) and (15) and rearranged, the following relational expression is established.

【数16】 P2={P1/(S2・V2)}・(S1・V1) ・・・式(16)## EQU16 ## P2 = {P1 / (S2.V2)}. (S1.V1) ... Equation (16)

【0029】すなわち、音源振動面1aを振動させて、
予測点Qでの音圧を実測する代わりに、エンジン1の振
動面1aを振動させない状態で、スピーカ2の振動面2
a(音圧予測点)を振動させ、この振動面2aの振動速
度V2と振動面1a近傍の音圧P1を測定することによ
り伝達特性G=P1/(S2・V2)が得られる。な
お、振動面面積S2は既知の値とする。また、「近傍」
とは歪みを含まない一定値以上の被測定対象が得られる
距離範囲内を意味する。
That is, by vibrating the sound source vibrating surface 1a,
Instead of actually measuring the sound pressure at the predicted point Q, the vibration surface 2
a (sound pressure prediction point) is vibrated, and by measuring the vibration speed V2 of the vibrating surface 2a and the sound pressure P1 near the vibrating surface 1a, the transfer characteristic G = P1 / (S2 · V2) is obtained. Note that the vibration surface area S2 is a known value. Also, "Nearby"
Means within a distance range in which an object to be measured having a certain value or more without distortion is obtained.

【0030】さらに、式(16)から分かることは、ス
ピーカ2の振動面2aを振動させない状態で、エンジン
1の振動面1aを振動させた時の振動面1a近傍の振動
速度V1を計測すれば振動面2a(音圧予測点)の音圧
P2は伝達特性Gに体積速度(振動面面積S1×振動速
度V1)を乗ずれば予測できるということである。な
お、振動面面積S1も既知の値とする。
Further, it can be seen from the equation (16) that if the vibrating surface 1a of the engine 1 is vibrated without vibrating the vibrating surface 2a of the speaker 2, the vibration velocity V1 near the vibrating surface 1a can be measured. This means that the sound pressure P2 of the vibration surface 2a (sound pressure prediction point) can be predicted by multiplying the transfer characteristic G by the volume velocity (vibration surface area S1 × vibration velocity V1). The vibration surface area S1 is also a known value.

【0031】このような概念に基づき、本発明に係る音
圧予測方法は、音源の振動面近傍にマイクロホンを配置
するとともに、音圧予測位置にスピーカ及び振動計測器
を配置し、該音源振動面が振動していないときに該スピ
ーカを振動させて該振動計測器で該スピーカの振動速度
(V2)を計測するとともに該マイクロホンで該音源振
動面の音圧(P1)を計測することにより、該スピーカ
の既知の振動面面積(S2)を用いて該マイクロホンか
ら該スピーカまでの空間の伝達特性をP1/(S2・V
2)として求め、次に該振動計測器を該音源振動面近傍
に配置し、該音源振動面を振動させて該振動計測器で該
音源振動面の振動速度(V1)を計測し、該音源振動面
の既知の面積(S1)を用いて該音源振動面に起因する
該予測点における音圧P2を式P2=(S1・V1)・
P1/(S2・V2)により求めることを特徴としてい
る。
Based on such a concept, the sound pressure predicting method according to the present invention arranges a microphone near the vibration surface of the sound source, a speaker and a vibration measuring instrument at the sound pressure predicting position, and When the speaker is not vibrating, the speaker vibrates to measure the vibration speed (V2) of the speaker with the vibration measuring device and the sound pressure (P1) on the sound source vibrating surface with the microphone. Using the known vibration surface area (S2) of the speaker, the transfer characteristic of the space from the microphone to the speaker is P1 / (S2 · V
2), then the vibration measuring device is arranged in the vicinity of the vibration surface of the sound source, the vibration surface of the sound source is vibrated, and the vibration velocity (V1) of the vibration surface of the sound source is measured by the vibration measuring device. Using the known area (S1) of the vibration surface, the sound pressure P2 at the prediction point caused by the vibration surface of the sound source is calculated by the equation P2 = (S1 · V1) ·
It is characterized in that it is obtained by P1 / (S2 · V2).

【0032】なお、上記の式(16)から分かるように
空間の伝達特性は、スピーカ2の振動面面積S2の代わ
りに該音源振動面の面積S1を用いることにより、(P
1・S1)/V2としても求めることができる。
As can be seen from the above equation (16), the transfer characteristic of the space is calculated by using the area S1 of the sound source vibration surface instead of the vibration surface area S2 of the speaker 2 (P
It can also be calculated as 1 · S1) / V2.

【0033】また、該音源振動面を複数の区画に分け、
該マイクロホン及び該振動計測器を各区画に対応して移
動させた状態で各区画の音圧を予測し、これらの予測音
圧を合成するのがより好ましい。
Further, the sound source vibrating surface is divided into a plurality of sections,
More preferably, the sound pressure of each section is predicted in a state where the microphone and the vibration measuring device are moved corresponding to each section, and these predicted sound pressures are combined.

【0034】[0034]

【発明の実施の形態】上記の本発明の音圧予測方法にお
ける空間伝達特性を求めるための手段を図2(1)によ
り説明すると、この音圧予測方法はやはり空間伝達特性
を求めるための図7(1)に示した従来例と比較する
と、音圧を予測する点Qにスピーカ2を配置し、このス
ピーカ2の近傍にスピーカ2の振動面2aの振動速度V
2を測定する振動計測器6(振動速度測定器)を配置
し、更にエンジン1の振動面1aの近傍にマイクロホン
4を配置して、振動面1aと予測点Q間の空間の伝達特
性を測定する点が異なっている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The means for obtaining the spatial transfer characteristic in the sound pressure predicting method of the present invention will be described with reference to FIG. 2 (1). This sound pressure predicting method is also a diagram for finding the spatial transfer characteristic. As compared with the conventional example shown in 7 (1), the speaker 2 is arranged at the point Q at which the sound pressure is predicted, and the vibration speed V of the vibrating surface 2a of the speaker 2 is near the speaker 2.
A vibration measuring device 6 (vibration velocity measuring device) for measuring 2 is arranged, and further a microphone 4 is arranged in the vicinity of the vibrating surface 1a of the engine 1 to measure the transfer characteristic of the space between the vibrating surface 1a and the prediction point Q. The point to do is different.

【0035】まず、エンジン1を停止して振動面1a〜
1dを振動させない状態で、スピーカ2を振動させ、こ
のスピーカ2の振動面2aの振動速度V2を振動計測器
6で測定するとともに、スピーカ2に起因する振動面1
a近傍の音圧P1aをマイクロホン4で測定する。
First, the engine 1 is stopped and the vibrating surface 1a-
While the speaker 1d is not vibrated, the speaker 2 is vibrated, the vibration speed V2 of the vibration surface 2a of the speaker 2 is measured by the vibration measuring device 6, and the vibration surface 1 caused by the speaker 2 is measured.
The microphone 4 measures the sound pressure P1a near a.

【0036】この測定結果により,振動面1aの近傍の
音圧P1aと予測点Qのスピーカ2の振動速度V2から
振動面1aと予測点Qとの間の空間の伝達特性Gaを次
式により求める。
From this measurement result, the transfer characteristic Ga of the space between the vibration surface 1a and the prediction point Q is obtained from the sound pressure P1a near the vibration surface 1a and the vibration speed V2 of the speaker 2 at the prediction point Q by the following equation. .

【数17】 Ga=P1a/(S2・V2) ・・・式(17) 但し、スピーカ2の振動面積S2は上記の通り既知の値
である。
Ga = P1a / (S2 · V2) Equation (17) However, the vibration area S2 of the speaker 2 is a known value as described above.

【0037】なお、上記の如く、この伝達特性Gaは
(P1a・S1)/V2としても求められる。
As described above, this transfer characteristic Ga can also be obtained as (P1a.S1) / V2.

【0038】次に、エンジン1を停止して振動面1a〜
1dを振動させない状態で、スピーカ2を振動させ、振
動面1b〜1dの近傍にマイクロホン4を順次移動して
それぞれ振動面1b〜1d近傍の音圧P1b〜P1dを
測定し、上記式(17)と同様にして下記の式により空
間の伝達特性Gb〜Gdをそれぞれ求める。
Next, the engine 1 is stopped and the vibrating surfaces 1a ...
In a state where 1d is not vibrated, the speaker 2 is vibrated, the microphone 4 is sequentially moved to the vicinity of the vibrating surfaces 1b to 1d, and the sound pressures P1b to P1d near the vibrating surfaces 1b to 1d are measured, respectively. Similarly, the transfer characteristics Gb to Gd of the space are obtained by the following equations.

【数18】 Gb=P1b/(S2・V2) ・・・式(18)[Equation 18] Gb = P1b / (S2 · V2) Equation (18)

【数19】 Gc=P1c/(S2・V2) ・・・式(19)[Formula 19] Gc = P1c / (S2 · V2) Equation (19)

【数20】 Gd=P1d/(S2・V2) ・・・式(20)[Equation 20] Gd = P1d / (S2 · V2) ... Expression (20)

【0039】次に、上記のようにして求めた空間伝達特
性Ga〜Gdを用いることにより、図2(2)の構成に
より予測点Qでの音圧を予測する。
Next, by using the spatial transfer characteristics Ga to Gd obtained as described above, the sound pressure at the prediction point Q is predicted by the configuration of FIG. 2 (2).

【0040】まず、振動面1aの近傍に振動計測器6を
配置し、エンジン1を始動して振動面1a(及び振動面
1b〜1d)を振動状態にするとともに、スピーカ2は
存在しないので振動しない状態と等価になり、振動計測
器6で振動面1aの近傍の振動速度V1aを測定する。
First, the vibration measuring device 6 is arranged in the vicinity of the vibrating surface 1a, the engine 1 is started to bring the vibrating surface 1a (and the vibrating surfaces 1b to 1d) into a vibrating state, and the speaker 2 does not exist. The state becomes equivalent to the state in which it does not occur, and the vibration measuring device 6 measures the vibration velocity V1a near the vibration surface 1a.

【0041】以下同様にして、振動面1a〜1dの振動
状態を維持して、振動計測器6を順次、振動面1b〜1
dの近傍に配置してそれぞれ振動面1b〜1dの近傍の
振動速度V1b〜V1dを計測する。
In the same manner, the vibration measuring devices 6 are sequentially moved to the vibrating surfaces 1b to 1d while maintaining the vibrating states of the vibrating surfaces 1a to 1d.
Vibration velocities V1b to V1d near the vibrating surfaces 1b to 1d are measured in the vicinity of the vibration surfaces 1b to 1d.

【0042】以上の測定結果により、エンジン1の振動
面1a〜1dに起因する予測点Qの音圧P2は、既に求
めた空間伝達特性Ga〜Gdと、各振動速度V1a〜V
1dと各振動面1a〜1dの面積S1a〜S1dを乗じ
た各結果(体積速度)とを乗じた値の和で与えられるか
ら次式のようになる。
From the above measurement results, the sound pressure P2 at the prediction point Q caused by the vibration surfaces 1a to 1d of the engine 1 is the space transfer characteristics Ga to Gd already obtained and the respective vibration speeds V1a to V.
It is given by the sum of the values obtained by multiplying 1d and the results (volume velocity) obtained by multiplying the areas S1a to S1d of the vibrating surfaces 1a to 1d by the following equation.

【数21】 P2=Ga・(V1a・S1a)+Gb・(V1b・S1b)+Gc・(V1 c・S1c)+Gd・(V1d・S1d) ・・・式(21) 但し、振動面面積S1a〜S1dは上記の通り既知の値
である。
[Equation 21] P2 = Ga · (V1a · S1a) + Gb · (V1b · S1b) + Gc · (V1c · S1c) + Gd · (V1d · S1d) Equation (21) However, the vibration surface area S1a to S1d Is a known value as described above.

【0043】なお、式(21)は、次式と同等である。Expression (21) is equivalent to the following expression.

【数22】 P2=P1a・(S1a・V1a)/(S2・V2)+P1b・(S1b・V 1b)/(S2・V2)+P1c・(S1c・V1c)/(S2・V2)+P1 d・(S1d・V1d)/(S2・V2) ・・・式(22)[Equation 22] P2 = P1a · (S1a · V1a) / (S2 · V2) + P1b · (S1b · V1b) / (S2 · V2) + P1c · (S1c · V1c) / (S2 · V2) + P1 d · ( S1d ・ V1d) / (S2 ・ V2) ・ ・ ・ Equation (22)

【0044】従って、上記のように伝達特性Ga〜Gd
を求めずに、直接計測結果を式(22)に代入しても予
測点Qの音圧は求めることができる。
Therefore, as described above, the transfer characteristics Ga to Gd are obtained.
The sound pressure at the prediction point Q can be obtained by directly substituting the measurement result into the equation (22) without obtaining

【0045】なお、本発明においては、エンジン1の回
りにキャブパネル11が設けられているが、音源として
のエンジン1の音圧を検出するのではなく、振動計測器
6によって振動速度を検出しているので、キャブパネル
11の有無に関係なく予測点Qでの音圧を予測すること
ができる。
Although the cab panel 11 is provided around the engine 1 in the present invention, the vibration velocity is detected by the vibration measuring instrument 6 instead of detecting the sound pressure of the engine 1 as a sound source. Therefore, the sound pressure at the prediction point Q can be predicted regardless of the presence or absence of the cab panel 11.

【0046】[0046]

【実施例】図3(1),(2)は、本発明に係る音圧予
測方法の実施例を示したもので、同図(1)で空間の伝
達特性を求めるために、振動面1a(矩形振動板:外形
寸法 縦0.33m×横0.63m×板厚2mm)は支
持台12に溶接で固定されており、振動面1aの上面の
みから音が放射されるように振動面1aの下面は支持台
12と遮蔽部13で音に対して二重に遮蔽されている。
3 (1) and 3 (2) show an embodiment of a sound pressure predicting method according to the present invention. In order to obtain the transfer characteristic of space in FIG. (Rectangular vibrating plate: external dimensions: 0.33 m in length x 0.63 m in width x 2 mm in plate thickness) is fixed to the support base 12 by welding, and the vibrating surface 1a is arranged so that sound is emitted only from the upper surface of the vibrating surface 1a. The lower surface of is double-shielded with respect to sound by the support 12 and the shield 13.

【0047】振動面1aの近傍の音圧P1Jを計測する
マイクロホン4と、スピーカ2の振動面S2の振動速度
V2を計測する振動計測器6は、FFT解析装置7に接
続されている。
The microphone 4 for measuring the sound pressure P1J near the vibration surface 1a and the vibration measuring device 6 for measuring the vibration velocity V2 of the vibration surface S2 of the speaker 2 are connected to the FFT analysis device 7.

【0048】このFFT解析装置7はパワーアンプ8,
9に接続され、これらのパワーアンプ8,9はスピーカ
2,3にそれぞれ接続され、スピーカ2、3を駆動す
る。なお、スピーカ2の振動面積S2は予め計測されて
いて既知である。また、スピーカ3は図2に示したエン
ジン1に対応した音源を形成している。
This FFT analysis device 7 includes a power amplifier 8,
9, the power amplifiers 8 and 9 are connected to the speakers 2 and 3, respectively, and drive the speakers 2 and 3. The vibration area S2 of the speaker 2 is measured in advance and is known. Further, the speaker 3 forms a sound source corresponding to the engine 1 shown in FIG.

【0049】さらに、このFFT解析装置7はそのデー
タを分析するコンピュータ10に接続されている。
Further, the FFT analysis device 7 is connected to a computer 10 which analyzes the data.

【0050】一方、スピーカ2はその振動面2aの中心
点が音圧の予測点Qに一致するように設置され、スピー
カ3は振動面1aを音響加振するするために、支持台1
2の内部に設置されている。
On the other hand, the speaker 2 is installed so that the center point of its vibrating surface 2a coincides with the predicted point Q of sound pressure, and the speaker 3 vibrates the vibrating surface 1a acoustically.
It is installed inside 2.

【0051】図4は、スピーカ2が設置されている予測
点Qの振動面1aに対する位置を示しており、この振動
面1aの縦方向の中心線Xの正方向より振動面1aの横
方向の中心線Yの正方向に向かって30度回転した直線
Lを含み、振動面1aに垂直な面上で振動面1aの中心
Cから距離が3mで、しかも振動面1aからの距離が
1.2mの点を予測点Qと設定している。
FIG. 4 shows the position of the predicted point Q where the speaker 2 is installed with respect to the vibrating surface 1a. The position of the predicted point Q in the lateral direction of the vibrating surface 1a is more positive than the positive direction of the longitudinal centerline X of the vibrating surface 1a. A straight line L rotated by 30 degrees in the positive direction of the center line Y is included, and a distance from the center C of the vibrating surface 1a is 3 m on a plane perpendicular to the vibrating surface 1a and a distance from the vibrating surface 1a is 1.2 m. Points are set as prediction points Q.

【0052】図3(1),(2)における計測例では、
振動面1aの振動モードが再現できるようにするため
に、図5に示すように、振動面1aの縦方向を9分割
し、横方向を17分割して計153面の振動する微小区
画1aJ(J=1〜153)に分割して、分割した各振
動面区画1aJと予測点Qとの間の空間伝達特性をそれ
ぞれ求めている。
In the measurement examples in FIGS. 3 (1) and 3 (2),
In order to reproduce the vibration mode of the vibrating surface 1a, as shown in FIG. 5, the longitudinal direction of the vibrating surface 1a is divided into 9 parts and the lateral direction is divided into 17 parts, and a total of 153 vibrating minute sections 1aJ ( J = 1 to 153), and the spatial transfer characteristics between each of the divided vibrating surface sections 1aJ and the predicted point Q are obtained.

【0053】ここで、各区画1aJの中心点をCJと
し、この中心点CJの近傍の音圧をP1J、振動面区画
1aJの振動面面積と振動速度をそれぞれS1J,V1
Jとする。なお、振動面面積S1Jは既知の値とし、ス
ピーカ2の既知の振動面面積S2とともに、既にFFT
解析装置7またはコンピュータ10に記憶されているも
のとする。
Here, the center point of each section 1aJ is CJ, the sound pressure in the vicinity of this center point CJ is P1J, and the vibration surface area and vibration speed of the vibration surface section 1aJ are S1J and V1, respectively.
J. Note that the vibration surface area S1J has a known value, and the known vibration surface area S2 of the speaker 2 has already been combined with the FFT.
It is assumed to be stored in the analysis device 7 or the computer 10.

【0054】まず、伝達特性の計測動作においては図3
(1)で、まず、音源振動面区画1a1の中心CJの上
方向5mm以内にマイクロホン4が設定され、スピーカ
2の振動速度V2を計測する振動計測器6はスピーカ2
の振動面2aの中心部の近傍に設置される。
First, in the operation of measuring the transfer characteristic, as shown in FIG.
In (1), first, the microphone 4 is set within 5 mm in the upward direction of the center CJ of the sound source vibration surface section 1a1, and the vibration measuring instrument 6 for measuring the vibration speed V2 of the speaker 2 is the speaker 2
It is installed near the center of the vibrating surface 2a.

【0055】スピーカ3を振動停止し振動面1aが振動
しない状態にして、スピーカ2を、FFT解析装置7か
らの信号出力でパワーアンプ8を介して一定電圧値で周
波数を0Hz〜1kHzの間を変動させながら振動させ
る。
With the vibration of the speaker 3 stopped and the vibrating surface 1a not vibrating, the speaker 2 outputs a signal from the FFT analysis device 7 via the power amplifier 8 at a constant voltage value and a frequency of 0 Hz to 1 kHz. Vibrate while fluctuating.

【0056】このとき同時にマイクロホン4はスピーカ
2の振動に起因する音源振動面区画1a1の近傍の音圧
P1Jを計測し、計測結果をFFT解析装置7に与え、
同時に振動計測器6はスピーカ2の振動速度V2を計測
し、計測結果をFFT解析装置7に与える。なお振動速
度V2はスピーカ2を駆動する電圧値が一定であるため
一定の値となる。
At this time, at the same time, the microphone 4 measures the sound pressure P1J near the sound source vibrating surface section 1a1 caused by the vibration of the speaker 2, and gives the measurement result to the FFT analyzer 7.
At the same time, the vibration measuring instrument 6 measures the vibration velocity V2 of the speaker 2 and gives the measurement result to the FFT analysis device 7. The vibration speed V2 is a constant value because the voltage value for driving the speaker 2 is constant.

【0057】この音圧P1Jと振動速度V2を入力した
FFT解析装置7は、スピーカ2に対して出力した周波
数に対応して音圧P1Jを所定の周波数間隔のサンプリ
ング幅で記憶する。
The FFT analysis device 7 to which the sound pressure P1J and the vibration velocity V2 are input stores the sound pressure P1J in a sampling width of a predetermined frequency interval corresponding to the frequency output to the speaker 2.

【0058】以下同様の手順で、マイクロホン4を振動
面区画1a2〜1a153に順次移動して、所定の周波
数領域においてこの周波数に対応する音圧P12〜P1
153のデータを計測してFFT解析装置7に記憶す
る。
In the same procedure as described below, the microphone 4 is sequentially moved to the vibrating surface sections 1a2 to 1a153, and the sound pressures P12 to P1 corresponding to this frequency in a predetermined frequency range.
The data of 153 is measured and stored in the FFT analysis device 7.

【0059】これらの音圧P1Jと振動速度V2と振動
面積S2より各区画1aJと振動面2a間(予測点Q)
の所定の周波数に対応した伝達特性GJは次式で求めら
れる。
From the sound pressure P1J, the vibration velocity V2, and the vibration area S2, the distance between each section 1aJ and the vibration surface 2a (prediction point Q)
The transfer characteristic GJ corresponding to the predetermined frequency is calculated by the following equation.

【数23】 GJ=P1J/(S2・V2) ・・・式(23) 但し、J=1〜153である。GJ = P1J / (S2 · V2) Equation (23) where J = 1 to 153.

【0060】次に、上記のようにして求めた空間伝達関
数G1〜153を用いることにより、図3(2)の構成
により予測点Qでの音圧を予測する。
Next, by using the spatial transfer functions G1 to 153 obtained as described above, the sound pressure at the prediction point Q is predicted by the configuration of FIG. 3 (2).

【0061】まず、振動面区画1a1の近傍に振動計測
器6を配置し、スピーカ2が存在しない状態(振動停止
状態)で、音源としてのスピーカ3をFFT解析装置7
からパワーアンプ9を介して一定電圧値で周波数を0H
z〜1kHzに変動させながら振動させ、以て振動面1
aを振動させる。
First, the vibration measuring instrument 6 is arranged in the vicinity of the vibrating surface section 1a1, and the speaker 3 as the sound source is set to the FFT analysis device 7 in a state where the speaker 2 does not exist (vibration stop state).
To 0H with a constant voltage value via the power amplifier 9
It is vibrated while fluctuating from z to 1 kHz, so that the vibrating surface 1
vibrate a.

【0062】同時に、振動計測器6で振動面区画1a1
の振動速度V11を計測し、この計測データをFFT解
析装置7に与える。
At the same time, the vibration measuring unit 6 vibrates the surface section 1a1.
The vibration velocity V11 of is measured and the measured data is given to the FFT analysis device 7.

【0063】この振動速度V1を入力したFFT解析装
置7は、スピーカ3に対して出力した周波数に対応して
振動速度V1を所定の周波数間隔のサンプリング幅で記
憶する。
The FFT analysis device 7 to which the vibration speed V1 is input stores the vibration speed V1 in a sampling width of a predetermined frequency interval corresponding to the frequency output to the speaker 3.

【0064】以下同様にして、振動計測器6を順次、振
動面区画1a2〜1a153の近傍に配置してこれらの
振動面区画1a2〜1a153近傍の振動速度V12〜
V1153を計測する。
In the same manner, the vibration measuring instrument 6 is sequentially arranged near the vibrating surface sections 1a2-1a153, and the vibration speed V12-near these vibrating surface sections 1a2-1a153.
V1153 is measured.

【0065】以上の測定結果により、音源振動面1aの
各振動面区画1a1〜1a153に起因する予測点Qの
音圧P2は、既に求めた空間伝達特性G1〜G153に
対して、各振動速度V11〜V1153と各振動面区画
1a1〜1a153の振動面積S11〜S1153とを
乗じた値(体積速度)を乗じて加算した値で与えられる
から次式のようになる。
From the above measurement results, the sound pressure P2 at the prediction point Q caused by the respective vibration surface sections 1a1 to 1a153 of the sound source vibration surface 1a can be determined by the vibration velocity V11 with respect to the space transfer characteristics G1 to G153 already obtained. .About.V1153 and the vibration areas S11 to S1153 of the respective vibration surface sections 1a1 to 1a153 are multiplied by a value (volume velocity) and added, so that the following equation is obtained.

【数24】 (Equation 24)

【0066】以上で、予測点Qにおける、振動面1aの
振動による周波数0Hz〜1kHzに対応する音圧P2
を予測することができた。
As described above, the sound pressure P2 corresponding to the frequency 0 Hz to 1 kHz due to the vibration of the vibrating surface 1a at the prediction point Q
Could be predicted.

【0067】なお、式(24)に式(23)を代入し、
スピーカ2の振動面積S2と振動速度V2は一定値であ
ることを考慮すると、次式が得られる。
Substituting equation (23) into equation (24),
Considering that the vibration area S2 and the vibration velocity V2 of the speaker 2 are constant values, the following equation is obtained.

【数25】 (Equation 25)

【0068】ここで、音源振動面の分割数は153であ
り、P1Jは分割面の近傍音圧(Pa)、S1Jは分割
面の面積(m2)、V1Jは分割面の振動速度(m/
s)、V2はスピーカの振動速度(m/s)、S2は振
動面積(m2)を表す。
Here, the number of divisions of the vibration surface of the sound source is 153, P1J is the sound pressure near the division surface (Pa), S1J is the area of the division surface (m 2 ), and V1J is the vibration velocity of the division surface (m /
s), V2 is the vibration speed (m / s) of the speaker, and S2 is the vibration area (m 2 ).

【0069】図6(1),(2)は音圧予測点Qにおけ
る本発明による音圧予測方法で計算予測した計算値と、
実際に予測点Qでの音圧P2を所定の周波数領域につい
て測定した実験値との比較を示したグラフ図である。
FIGS. 6 (1) and 6 (2) show calculated values at the sound pressure prediction point Q calculated and predicted by the sound pressure prediction method according to the present invention.
It is the graph figure which showed comparison with the experimental value which measured sound pressure P2 in the prediction point Q actually about the predetermined frequency range.

【0070】なお、測定対象以外の音の影響を除くため
に測定は全て半無響室で行われている。
Note that all measurements are performed in a semi-anechoic chamber in order to eliminate the influence of sounds other than those to be measured.

【0071】また、同図(1)は、図4のカバー11で
音源振動面1aを遮蔽しない場合であり、同図(2)は
カバー11で音源振動面1aを遮蔽した場合を示してい
る。
Further, FIG. 1A shows the case where the cover 11 of FIG. 4 does not shield the vibration surface 1a of the sound source, and FIG. 2B shows the case where the cover 11 shields the vibration surface 1a of the sound source. .

【0072】このグラフ図より、本発明ではかなり正確
に実験値と予測値とが一致していることが分かる。
From this graph, it can be seen that in the present invention, the experimental value and the predicted value agree quite accurately.

【0073】[0073]

【発明の効果】以上説明したように、本発明に係る音圧
予測方法によれば、音源振動面近傍にマイクロホンを配
置し、該音源振動面が振動していないときに予測位置に
スピーカ及び振動計測器を配置し、該スピーカを振動さ
せて該振動計測器で該スピーカの振動速度V2を計測す
るとともに該マイクロホンで該音源振動面の音圧P1を
計測することにより、該スピーカの既知の振動面面積S
2を用いて該マイクロホンから該スピーカまでの空間の
伝達特性をP1/(S2・V2)として求め、次に該振
動計測器を該音源振動面近傍に配置し、該音源振動面を
振動させて該振動計測器で該音源振動面の振動速度V1
を計測し、該振動面の既知の面積S1を用いて該音源振
動面に起因する該予測点における音圧P2を式P2=
(S1・V1)・P1/(S2・V2)により求めるよ
うに構成したので、別の箇所の音源振動面から発生する
音圧の影響を受けず、特定音源振動面から発せられる、
予測点における音圧を予測することが可能となり、かつ
各音源振動面からの予測音圧を合成すれば精度の高い音
圧を予測することが可能となる。
As described above, according to the sound pressure predicting method of the present invention, the microphone is arranged near the sound source vibrating surface, and when the sound source vibrating surface is not vibrating, the speaker and the vibration are placed at the predicted position. A known vibration of the speaker is obtained by arranging a measuring device, vibrating the speaker, measuring the vibration speed V2 of the speaker with the vibration measuring device, and measuring the sound pressure P1 of the vibration surface of the sound source with the microphone. Surface area S
2 is used to obtain the transfer characteristic of the space from the microphone to the speaker as P1 / (S2 · V2), and then the vibration measuring device is arranged in the vicinity of the sound source vibrating surface to vibrate the sound source vibrating surface. The vibration velocity V1 of the vibration surface of the sound source measured by the vibration measuring device
Is measured, and the sound pressure P2 at the predicted point due to the sound source vibration surface is calculated using the known area S1 of the vibration surface by the equation P2 =
Since it is configured to obtain by (S1 · V1) · P1 / (S2 · V2), it is emitted from the specific sound source vibration surface without being affected by the sound pressure generated from the sound source vibration surface at another location.
It is possible to predict the sound pressure at the prediction point, and it is possible to predict the sound pressure with high accuracy by combining the predicted sound pressures from the vibration planes of the sound sources.

【0074】また、本発明においては、音源の振動面の
音圧を検出するのではなく、振動計測器によって振動速
度を検出しているので、音源の設置場所やキャブパネル
(カバー)の有無に関係なく音圧予測を行うことができ
ることとなり、例えばエンジンを車両に一々搭載しなく
ても所定遠隔点での騒音を予測することが可能となる。
Further, in the present invention, the sound pressure on the vibrating surface of the sound source is not detected, but the vibration velocity is detected by the vibration measuring device. Therefore, the sound source installation location and the presence or absence of the cab panel (cover) are determined. This makes it possible to predict the sound pressure irrespective of, and for example, it is possible to predict the noise at a predetermined remote point without mounting each engine on the vehicle.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る音圧予測方法で用いる解析モデル
図である。
FIG. 1 is an analytical model diagram used in a sound pressure prediction method according to the present invention.

【図2】本発明に係る音圧予測方法の実施の形態を示し
た図である。
FIG. 2 is a diagram showing an embodiment of a sound pressure prediction method according to the present invention.

【図3】本発明に係る音圧予測方法の実施例を示す測定
システム構成図である。
FIG. 3 is a measurement system configuration diagram showing an embodiment of a sound pressure prediction method according to the present invention.

【図4】本発明に係る音圧予測方法の実施例における装
置配置寸法を示した図である。
FIG. 4 is a diagram showing device arrangement dimensions in an embodiment of a sound pressure prediction method according to the present invention.

【図5】本発明に係る音圧予測方法の実施例で使用され
る音源振動面の測定区画の分割図である。
FIG. 5 is a division view of a measurement section of a sound source vibration surface used in an embodiment of a sound pressure prediction method according to the present invention.

【図6】本発明に係る音圧予測方法の実施例の計算値と
実測値との比較を示すグラフ図である。
FIG. 6 is a graph showing a comparison between a calculated value and an actually measured value in the embodiment of the sound pressure prediction method according to the present invention.

【図7】従来の音圧予測方法の原理構成図である。FIG. 7 is a principle configuration diagram of a conventional sound pressure prediction method.

【符号の説明】[Explanation of symbols]

1 エンジン 1a〜1d,2a 振動面 2,3,3a〜3d スピーカ 4,4a〜4d,5 マイクロホン 6 振動計測器 7 FFT解析装置 8,9 パワーアンプ 10 コンピュータ 11 キャブパネル(カバー) 12 支持台 13 遮蔽部 14 地面 図中、同一符号は同一又は相当部分を示す。 DESCRIPTION OF SYMBOLS 1 engine 1a-1d, 2a vibration surface 2,3,3a-3d speaker 4,4a-4d, 5 microphone 6 vibration measuring instrument 7 FFT analysis device 8,9 power amplifier 10 computer 11 cab panel (cover) 12 support stand 13 Shielding part 14 In the ground view, the same reference numerals indicate the same or corresponding parts.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】音源の振動面に起因する音圧を該音源振動
面から離れた位置で予測する方法において、 該音源振動面近傍にマイクロホンを配置するとともに、
該予測位置にスピーカ及び振動計測器を配置し、該音源
振動面が振動していないときに該スピーカを振動させて
該振動計測器で該スピーカの振動速度(V2)を計測す
るとともに該マイクロホンで該音源振動面の音圧(P
1)を計測することにより、該スピーカの既知の振動面
面積(S2)を用いて該マイクロホンから該スピーカま
での空間の伝達特性をP1/(S2・V2)として求
め、 次に該振動計測器を該音源振動面近傍に配置し、該音源
振動面を振動させて該振動計測器で該音源振動面の振動
速度V1を計測し、該音源振動面の既知の面積(S1)
を用いて該音源振動面に起因する該予測点における音圧
(P2)を式P2=(S1・V1)・P1/(S2・V
2)により求めることを特徴とした音圧予測方法。
1. A method of predicting sound pressure due to a vibration surface of a sound source at a position distant from the vibration surface of the sound source, wherein a microphone is arranged near the vibration surface of the sound source, and
A speaker and a vibration measuring device are arranged at the predicted position, and when the sound source vibrating surface is not vibrating, the speaker is vibrated to measure the vibration velocity (V2) of the speaker with the vibration measuring device and with the microphone. The sound pressure (P
By measuring 1), the transfer characteristic of the space from the microphone to the speaker is obtained as P1 / (S2 · V2) using the known vibration surface area (S2) of the speaker, and then the vibration measuring instrument is used. Is arranged in the vicinity of the sound source vibrating surface, the sound source vibrating surface is vibrated, the vibration velocity V1 of the sound source vibrating surface is measured by the vibration measuring device, and a known area (S1) of the sound source vibrating surface is measured.
The sound pressure (P2) at the prediction point caused by the vibration plane of the sound source is expressed by the formula P2 = (S1 · V1) · P1 / (S2 · V
A sound pressure prediction method characterized by being obtained by 2).
【請求項2】請求項1において、 該空間の伝達特性が、該スピーカの振動面面積(S2)
の代わりに該音源振動面の既知の面積(S1)を用いる
ことにより、(P1・S1)/V2として求められるこ
とを特徴とする音圧予測方法。
2. The transmission characteristic of the space according to claim 1, wherein a vibration surface area (S2) of the speaker.
By using a known area (S1) of the vibration plane of the sound source instead of, the sound pressure prediction method is obtained as (P1 · S1) / V2.
【請求項3】請求項1又は2において、 該音源振動面を複数の区画に分け、該マイクロホン及び
該振動計測器を各区画に対応して移動させた状態で各区
画の音圧を予測し、これらの予測音圧を合成することを
特徴とした音圧予測方法。
3. The sound source vibration surface according to claim 1 or 2, wherein the sound source vibrating surface is divided into a plurality of sections, and the sound pressure of each section is predicted in a state in which the microphone and the vibration measuring device are moved corresponding to each section. , A sound pressure prediction method characterized by synthesizing these predicted sound pressures.
JP03460496A 1996-02-22 1996-02-22 Sound pressure prediction method Expired - Fee Related JP3473246B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03460496A JP3473246B2 (en) 1996-02-22 1996-02-22 Sound pressure prediction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03460496A JP3473246B2 (en) 1996-02-22 1996-02-22 Sound pressure prediction method

Publications (2)

Publication Number Publication Date
JPH09229758A true JPH09229758A (en) 1997-09-05
JP3473246B2 JP3473246B2 (en) 2003-12-02

Family

ID=12418970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03460496A Expired - Fee Related JP3473246B2 (en) 1996-02-22 1996-02-22 Sound pressure prediction method

Country Status (1)

Country Link
JP (1) JP3473246B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007512510A (en) * 2003-11-10 2007-05-17 ブリュエル アンド ケアー サウンド アンド ヴァイブレーション メジャーメント エー/エス Method for calculating the sound pressure resulting from surface elements of a sound producing surface
WO2021172254A1 (en) 2020-02-27 2021-09-02 Jfeスチール株式会社 Method for producing sintered ore
US11570545B2 (en) 2020-11-12 2023-01-31 Kabushiki Kaisha Toshiba Acoustic inspection apparatus and acoustic inspection method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007512510A (en) * 2003-11-10 2007-05-17 ブリュエル アンド ケアー サウンド アンド ヴァイブレーション メジャーメント エー/エス Method for calculating the sound pressure resulting from surface elements of a sound producing surface
WO2021172254A1 (en) 2020-02-27 2021-09-02 Jfeスチール株式会社 Method for producing sintered ore
US11570545B2 (en) 2020-11-12 2023-01-31 Kabushiki Kaisha Toshiba Acoustic inspection apparatus and acoustic inspection method

Also Published As

Publication number Publication date
JP3473246B2 (en) 2003-12-02

Similar Documents

Publication Publication Date Title
CN104205873B (en) Speaker unit and its operation method and the device for noise compensation
JPH03203496A (en) Active type noise controller
CN104837092A (en) Echo cancellation methodology and assembly for electroacoustic communication apparatuses
NL8300671A (en) AUTOMATIC EQUALIZATION SYSTEM WITH DTF OR FFT.
JP2002513262A (en) Method and apparatus for positioning bending wave transducer means
JP3473246B2 (en) Sound pressure prediction method
JPH10164689A (en) Duct active noise removing circuit and correcting method for noise removing signal
US9204065B2 (en) Removing noise generated from a non-audio component
WO2018143232A1 (en) Acoustic device and acoustic control device
Tijs et al. Fast, high resolution panel noise contribution method
WO2023021735A1 (en) Sensor module, active control device, active control method, and program
Moorhouse Virtual acoustic prototypes: Listening to machines that don't exist
JPH08159929A (en) Method and apparatus for measurement of sound-insulation performance of floor
JP3656357B2 (en) Volume velocity measuring method and apparatus
JP3489282B2 (en) Sound source search method
JP5946039B2 (en) Noise monitoring system
JP4882526B2 (en) Acoustic sensitivity measuring device
JP3169802B2 (en) Low noise fan
CN112532901A (en) Display device and terminal
JPH09179565A (en) Noise reducing device
JPH02193500A (en) Correcting method for acoustic frequency characteristic
JPS62115326A (en) Estimating method for acoustic radiation state
Puri et al. A variable step-size filtered-x least mean square algorithm for continuously varying noise
JP2004282419A (en) Device for evaluating handsfree device and method for adjusting handsfree device
JP6296573B2 (en) A signal generation device and a speaker for generating a force change signal for driving the speaker

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030819

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090919

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090919

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100919

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees