JPH09229743A - Estimation method for downstream-side pipe volume of gas meter - Google Patents

Estimation method for downstream-side pipe volume of gas meter

Info

Publication number
JPH09229743A
JPH09229743A JP3227296A JP3227296A JPH09229743A JP H09229743 A JPH09229743 A JP H09229743A JP 3227296 A JP3227296 A JP 3227296A JP 3227296 A JP3227296 A JP 3227296A JP H09229743 A JPH09229743 A JP H09229743A
Authority
JP
Japan
Prior art keywords
pipe
gas
volume
pressure
downstream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3227296A
Other languages
Japanese (ja)
Inventor
Masahiro Yasui
昌広 安井
Shuichi Okada
修一 岡田
Kazuo Eshita
和雄 江下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Kansai Gas Meter Co Ltd
Original Assignee
Osaka Gas Co Ltd
Kansai Gas Meter Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd, Kansai Gas Meter Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP3227296A priority Critical patent/JPH09229743A/en
Publication of JPH09229743A publication Critical patent/JPH09229743A/en
Pending legal-status Critical Current

Links

Landscapes

  • Examining Or Testing Airtightness (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method in which the downstream-side pipe volume of a gas meter is estimated. SOLUTION: Regarding a plurality of pipes whose volume is different, relationships between the time elapsed and pressures inside the pipes at a time when a gas is supplied under a constant supply condition are found respectively in advance as basic data. Then, a gas supply valve 4 at a gas meter 1 is opened, and the relationship between the time elapsed and a pressure inside a pipe at a time when a gas is supplied to a downstream-side pipe 3 under the same supply condition as in the above is measured. Then, data which is obtained by the measurement is compared with the plurality of basic data. A volume corresponding to the basic data which are indetical to, or approximate to, the measured data is estimated as a volume inside the pipe.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、ガスメータの下
流側(二次側)配管容積の推定方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for estimating the downstream (secondary) piping volume of a gas meter.

【0002】[0002]

【従来の技術及び解決しようとする課題】次世代のガス
メータの1つとして、ガス供給弁に双方向弁を用い、地
震等の緊急時におけるガスの遮断のみならず、遮断後の
復旧動作をも遠隔操作等により電気的に行う提案がなさ
れている。このようなガスの復旧動作を行う場合、ガス
メータの下流側配管に損傷を生じて漏れが発生している
と、復旧後のガス事故につながる恐れがあることから、
復旧に際しては、漏れの有無を確認する必要がある。
2. Description of the Related Art As one of the next-generation gas meters, a bidirectional valve is used as a gas supply valve to perform not only gas shutoff in an emergency such as an earthquake, but also recovery operation after shutoff. Proposals have been made to make it electrically by remote control. When performing such a gas recovery operation, if damage occurs in the downstream piping of the gas meter and leakage occurs, it may lead to a gas accident after recovery,
At the time of restoration, it is necessary to check for leaks.

【0003】かかるガスメータの下流側配管の漏れの確
認は、開弁して配管内にガスを供給後閉弁したときのガ
ス圧力の低下を監視することにより行い得るが、配管内
の圧力低下の度合いは配管容積にも依存することから、
復旧時における下流側配管の漏れの有無を正確に判定す
るためには、配管容積を予め把握しておく必要がある。
このため、配管容積を知るための方法の提供が望まれて
いる。
The leakage of the downstream pipe of such a gas meter can be confirmed by monitoring the decrease in gas pressure when the valve is opened and gas is supplied into the pipe and then closed. Since the degree also depends on the pipe volume,
In order to accurately determine whether or not there is a leak in the downstream side pipe at the time of restoration, it is necessary to grasp the pipe volume in advance.
Therefore, it is desired to provide a method for knowing the pipe volume.

【0004】この発明は、このような技術的背景に鑑み
てなされたものであって、ガスメータの下流側配管容積
を推定する方法を提供することを目的とする。
The present invention has been made in view of the above technical background, and an object of the present invention is to provide a method for estimating the downstream side pipe volume of a gas meter.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、発明者は、一定のガス供給条件で下流側配管にガス
を供給した場合、時間経過とともに増加する配管内圧力
の増加の度合いは、配管容積に応じて異なっている点に
着目し、この発明を完成し得たものである。
In order to achieve the above object, the inventor has found that when the gas is supplied to the downstream side pipe under a constant gas supply condition, the degree of increase in the pressure in the pipe which increases with the passage of time is The present invention has been completed by paying attention to the difference according to the pipe volume.

【0006】即ち、この発明は、容積の異なる複数の配
管について、一定の供給条件でガスを供給したときの経
過時間と配管内圧力との関係を基礎データとしてそれぞ
れ予め求めておき、ガスメータのガス供給弁を開弁し、
前記と同じ供給条件で下流側配管にガスを供給したとき
の経過時間と配管内圧力との関係を測定し、この測定に
より得られたデータと前記複数の基礎データとを比較
し、測定データと同一ないしは近似する基礎データに対
応する容積を、配管内容積と推定することを特徴とする
ものであり、これにより従来実現されていなかった下流
側配管容積の推定が可能となる。
That is, according to the present invention, for a plurality of pipes having different volumes, the relationship between the elapsed time when the gas is supplied under a constant supply condition and the pressure in the pipe is obtained in advance as basic data, and the gas of the gas meter is measured. Open the supply valve,
The relationship between the elapsed time and the pressure inside the pipe when supplying gas to the downstream side pipe under the same supply conditions as above was measured, and the data obtained by this measurement was compared with the plurality of basic data, and the measured data was obtained. The present invention is characterized in that the volume corresponding to the same or approximate basic data is estimated as the internal volume of the pipe, which makes it possible to estimate the volume of the downstream pipe, which has not been realized conventionally.

【0007】この場合、ガス供給弁の開弁直前に下流側
配管の圧力を測定し、圧力が零またはこれに近いときに
測定を行う構成にすれば、得られた圧力データと予め求
めた基礎データとの対応関係を容易に把握することがで
きる。
In this case, if the pressure of the downstream side pipe is measured immediately before the opening of the gas supply valve and the measurement is performed when the pressure is zero or close to this, the obtained pressure data and the previously determined basis are obtained. The correspondence with the data can be easily grasped.

【0008】さらに、下流側配管容積の推定後、圧力低
下を測定してガスの漏れを推定し、漏れ量が小さければ
配管容積の推定を有効とする構成にすれば、配管容積の
推定をより確実かつ高精度に行い得る。
Furthermore, after the downstream side pipe volume is estimated, the pressure drop is measured to estimate the gas leakage, and if the leakage amount is small, the estimation of the pipe volume is made effective. It can be performed reliably and with high accuracy.

【0009】[0009]

【発明の実施の形態】図1は、ガス配管系とこれに設置
されたガスメータの概略構成を示すものである。同図に
おいて、(1)はガスメータ、(2)は上流側配管、
(3)は需要家に引き込まれた下流側配管である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a schematic structure of a gas piping system and a gas meter installed therein. In the figure, (1) is a gas meter, (2) is upstream piping,
(3) is a downstream pipe drawn into the customer.

【0010】前記ガスメータは、双方向弁(4)を備
え、電気的な制御により閉弁、開弁いずれの動作も可能
に構成されている。また、前記双方向弁(4)はガスを
遮断するための主弁とガス流量を制限するための小弁を
備え、開弁時には先に小弁のみを開いて下流側配管の急
激な圧力上昇を押えることにより、圧力上昇傾向を測定
することを可能とし、上流側と下流側の差圧が一定水準
より小さくなった時点で主弁を開き、下流側配管(3)
にガスを供給できる構成となされている。
The gas meter is provided with a bidirectional valve (4) and is configured so that it can be closed or opened by electrical control. The bidirectional valve (4) is provided with a main valve for shutting off gas and a small valve for limiting the gas flow rate. When the valve is opened, only the small valve is opened first so that the pressure in the downstream side pipe suddenly rises. By pressing, it is possible to measure the tendency of pressure increase, open the main valve when the pressure difference between the upstream side and the downstream side becomes less than a certain level, and connect the downstream side pipe (3).
It is configured to be able to supply gas to.

【0011】下流側配管(3)の容積の推定に際して
は、まず、容積の異なる複数の配管について、一定条件
でガスを供給したときの時間と配管内圧力との関係を基
礎データとして予め求めておく。このデータは演算によ
って求めることができるし、実際に測定しても良い。演
算あるいは測定は、ガスメータ(1)に用いられている
のと同じ前記双方向弁(4)を適用し、その小弁を開い
て下流側空間の急激な圧力上昇を抑制した状態と同じ供
給条件に設定して行う。配管内圧力が零の状態でガス供
給を開始すると、時間の経過につれて配管内の圧力は増
加するが、この圧力増加の度合いは配管容積によって異
なっている。
In estimating the volume of the downstream side pipe (3), first, for a plurality of pipes having different volumes, the relationship between the time when the gas is supplied under constant conditions and the pressure in the pipe is obtained in advance as basic data. deep. This data can be obtained by calculation or may be actually measured. For the calculation or measurement, the same bidirectional valve (4) as that used in the gas meter (1) is applied, and the same supply condition as in the state in which the small valve is opened to suppress the rapid pressure increase in the downstream space. Set to. When gas supply is started in a state where the pressure in the pipe is zero, the pressure in the pipe increases with the passage of time, but the degree of this pressure increase depends on the pipe volume.

【0012】下流側配管(3)内の圧力変化は次式によ
って与えられる。
The pressure change in the downstream pipe (3) is given by the following equation.

【0013】[0013]

【数1】 ただし、 p:下流側配管のガス圧(大気圧との差
圧) p0 :ガス供給圧(大気圧との差圧) V:双方向弁(4)より下流側の配管(3)の容積 Pa :大気圧 k1 、k2 :係数 t:時間 である。上記[1]式は、以下によって導かれる。
[Equation 1] However, p: Gas pressure in the downstream pipe (differential pressure from atmospheric pressure) p0: Gas supply pressure (differential pressure in atmospheric pressure) V: Volume Pa of the pipe (3) downstream of the bidirectional valve (4) Pa : Atmospheric pressure k1, k2: coefficient t: time. The above formula [1] is derived by the following.

【0014】即ち、大気圧をPa 、下流側配管内にある
ガスの大気圧換算の体積をvとすれば、
That is, if the atmospheric pressure is Pa and the volume of the gas in the downstream side pipe in terms of atmospheric pressure is v,

【数2】 であるから、vは次式で計算できる。[Equation 2] Therefore, v can be calculated by the following equation.

【0015】[0015]

【数3】 一方、下流側配管に流入するガス流量をQ1 、該配管か
ら流出するガス流量をQ2 とすれば、下流側配管内にあ
るガスの体積は、初期量をv0 (大気圧換算)として、
(Equation 3) On the other hand, if the gas flow rate into the downstream pipe is Q1 and the gas flow rate out of the pipe is Q2, the volume of the gas in the downstream pipe is v0 (converted to atmospheric pressure) as the initial amount.

【数4】 となる。(Equation 4) Becomes

【0016】先ず、遮断後の圧力低下を考える。First, consider the pressure drop after interruption.

【0017】配管内の圧力の初期値はp0 に等しいか
ら、下流側配管内のガス体積の初期値v0 は、次式で計
算される。
Since the initial value of the pressure in the pipe is equal to p0, the initial value v0 of the gas volume in the downstream pipe is calculated by the following equation.

【0018】[0018]

【数5】 又、遮断後の弁の漏れがないとすればQ1 =0であるか
ら、このとき配管内にあるガスの体積の時間変化は、
(Equation 5) If there is no valve leakage after shutoff, then Q1 = 0, so the time variation of the gas volume in the pipe at this time is

【数6】 となる。ここで、絞りを通過する気体の体積流量は、差
圧の平方根に比例するので、配管から放出するガス流量
Q2 は係数をk2 とすれば、
(Equation 6) Becomes Here, since the volumetric flow rate of the gas passing through the throttle is proportional to the square root of the differential pressure, the gas flow rate Q2 discharged from the pipe is given by the coefficient k2.

【数7】 となる。(Equation 7) Becomes

【0019】従って、[3][6][7]式から次式が
導かれる。
Therefore, the following equations are derived from the equations [3], [6] and [7].

【0020】[0020]

【数8】 pについて整理すると、(Equation 8) If you organize about p,

【数9】 ここで、[Equation 9] here,

【数10】 として、さらに(Equation 10) As

【数11】 と置けば、[Equation 11] If you put

【数12】 となる。故に、圧力変化pは次式で計算出来る。(Equation 12) Becomes Therefore, the pressure change p can be calculated by the following equation.

【0021】[0021]

【数13】 次に、開弁後の圧力増加について考える。(Equation 13) Next, let us consider the increase in pressure after valve opening.

【0022】この場合、絞りを通過する流量が差圧の平
方根に比例すると考えると後の計算が複雑になるため、
近似的に流量が差圧に比例するとして考える。
In this case, if the flow rate passing through the throttle is considered to be proportional to the square root of the differential pressure, the subsequent calculation becomes complicated.
It is considered that the flow rate is approximately proportional to the differential pressure.

【0023】この場合、Q1 、Q2 は、次式で計算され
る。
In this case, Q1 and Q2 are calculated by the following equations.

【0024】[0024]

【数14】 このときの配管内のガスの体積は[4]式から、[Equation 14] The volume of gas in the pipe at this time is calculated from the formula [4],

【数15】 従って、[3][15]式から(Equation 15) Therefore, from the expressions [3] and [15],

【数16】 ここで、開弁時の配管のガス圧を0とすれば初期のガス
体積v0 =Vとなり、[16]式は以下となる。
(Equation 16) Here, if the gas pressure in the pipe when the valve is opened is 0, the initial gas volume v0 = V, and the equation [16] is as follows.

【0025】[0025]

【数17】 pについて整理すれば、次式で圧力変化を計算できる。[Equation 17] If p is arranged, the pressure change can be calculated by the following equation.

【0026】[0026]

【数18】 表1は、下流側配管に漏れが存在しない状態で、ガス供
給圧200mmH2 O、弁を通過するガス流量の初期値が
2000リットル/時間の条件で、4リットル、8リッ
トル、12リットル、16リットル、20リットルの各
容積を有する配管にガスを供給したときの時間と配管内
の圧力との関係を示すものであり、上記[1]式を用い
て算出したものである。また、図2はこれをグラフに表
したものである。なお、温度変化はないものとしてい
る。この表1、図2から明らかなように、下流側配管
(3)内の圧力増加特性は配管容積によって変化してい
ることがわかる。
(Equation 18) Table 1 shows 4 liters, 8 liters, 12 liters, 16 liters under the condition that there is no leak in the downstream pipe, the gas supply pressure is 200 mmH 2 O, and the initial value of the gas flow rate passing through the valve is 2000 liters / hour. It shows the relationship between the time when gas is supplied to a pipe having each volume of liter and 20 liters and the pressure in the pipe, and is calculated using the above formula [1]. Further, FIG. 2 shows this in a graph. It is assumed that there is no temperature change. As is clear from Table 1 and FIG. 2, it can be seen that the pressure increase characteristic in the downstream side pipe (3) changes depending on the pipe volume.

【0027】[0027]

【表1】 上記により得られた配管容積と圧力との関係を示す測定
データは、予めガスメータ(1)内に設けられた基礎デ
ータ記憶手段(5)に記憶させておく。
[Table 1] The measurement data indicating the relationship between the pipe volume and the pressure obtained as described above is stored in advance in the basic data storage means (5) provided in the gas meter (1).

【0028】次に、実施工されたガスメータ(1)の下
流側配管(3)について、該配管にガスを供給したとき
の時間と配管内圧力との関係を、下流側配管(3)に臨
んでガスメータ(1)内に設置した圧力センサ(6)を
用いて測定する。このような測定は、ガスメータの新規
設置のときや下流側配管の増設のとき等に適宜行えば良
い。また、測定は、前述した基礎データ作成時と同じガ
ス供給条件で行うことが、基礎データとの対応関係を保
持するうえから必要である。
Next, regarding the downstream side pipe (3) of the gas meter (1) that has been actually worked, the downstream side pipe (3) is examined for the relationship between the time when the gas is supplied to the pipe and the pressure inside the pipe. The measurement is performed using the pressure sensor (6) installed in the gas meter (1). Such a measurement may be appropriately performed when a gas meter is newly installed or when downstream piping is added. In addition, it is necessary to perform the measurement under the same gas supply conditions as when the basic data was created in order to maintain the correspondence with the basic data.

【0029】測定は次の手順で行う。即ち、まず双方向
弁(4)の開弁直前に、下流側配管(3)内の圧力を測
定し、圧力が零またはこれに近いことを確認し、その後
開弁してガスを供給する。このように、下流側配管
(3)の圧力が零またはこれに近いときに開弁すること
で、得られる測定データと前記基礎データとの対応関係
を簡単に把握することができるものとなる。もとより、
下流側配管(3)に初期圧力が存在する状態で開弁して
も良いが、この場合には、測定データと前記基礎データ
との対応関係を求めるために複雑な演算処理が必要とな
る。
The measurement is performed according to the following procedure. That is, first, immediately before the opening of the bidirectional valve (4), the pressure in the downstream pipe (3) is measured, and it is confirmed that the pressure is zero or close thereto, and then the valve is opened to supply the gas. In this way, by opening the valve when the pressure in the downstream pipe (3) is zero or close to zero, the correspondence between the obtained measurement data and the basic data can be easily grasped. Of course,
The valve may be opened in a state where the downstream side pipe (3) has an initial pressure, but in this case, a complicated calculation process is required to obtain the correspondence between the measurement data and the basic data.

【0030】開弁後、一定時間経過したときに再度配管
(3)内の圧力を測定し、測定値を測定データ記憶手段
(7)に記憶させておく。この圧力測定は、主弁が開弁
して配管(3)内の圧力増加が飽和限界に達するまでに
行う。
After the valve is opened, the pressure in the pipe (3) is measured again after a lapse of a fixed time, and the measured value is stored in the measured data storage means (7). This pressure measurement is performed until the main valve opens and the pressure increase in the pipe (3) reaches the saturation limit.

【0031】次に、主弁が開弁して下流側配管内の圧力
増加が飽和限界に達した後、閉弁し配管(3)内の圧力
低下を測定して、該配管(3)からの漏れの有無を調べ
る。漏れの有無は、ガス供給後の配管内圧力の増加特性
にも影響を及ぼし、測定データの信頼性に欠けるものと
なる。しかるに、ガス流量等の供給条件に対して漏れ量
が小さければ、下流側配管(3)内の圧力増加特性に及
ぼす影響は軽微であり、漏れがないときの測定データと
ほぼ同一と見なすことができる。表2及び表3に、一定
の漏れを有する配管に、表1と同一のガス供給条件でガ
スを供給したときの時間と圧力との関係を演算により求
めたものを示す。表2は、100リットル/時間の漏れ
があるとき、表3は300リットル/時間の漏れがある
ときのものであり、図3は表2を、図4は表3をそれぞ
れグラフに表したものである。これらの表2、表3と表
1の比較、及び図3、図4と図2の比較からもわかるよ
うに、漏れ量が100リットル/時間のとき(表2)の
各経過時間における圧力値は、漏れがないとき(表1)
の圧力値に近似してその変動はわずかであり、測定値と
して十分に信頼性を有するものとみなし得る。従って、
ガス供給圧200mmH2 O、弁を通過するガス流量の初
期値が2000リットル/時間の条件の場合には、ガス
漏れ量が100リットル/時間以下であれば、測定デー
タを有効なものとすることができる。
Next, after the main valve is opened and the pressure increase in the downstream side pipe reaches the saturation limit, the main valve is closed and the pressure drop in the pipe (3) is measured. Check for leaks. The presence / absence of leakage also affects the increase characteristic of the pressure in the pipe after gas supply, resulting in lack of reliability of measurement data. However, if the leakage amount is small with respect to the supply conditions such as the gas flow rate, the influence on the pressure increase characteristic in the downstream side pipe (3) is slight, and it can be considered that it is almost the same as the measurement data when there is no leakage. it can. Tables 2 and 3 show the calculation of the relationship between time and pressure when gas is supplied to a pipe having a constant leak under the same gas supply conditions as in Table 1. Table 2 is for a leak of 100 liters / hour, Table 3 is for a leak of 300 liters / hour, and FIG. 3 is a graph showing Table 2 and FIG. 4 is a graph showing Table 3 respectively. Is. As can be seen from the comparison between Table 2, Table 3 and Table 1 and the comparison between FIG. 3, FIG. 4 and FIG. 2, the pressure value at each elapsed time when the leak rate is 100 liters / hour (Table 2). When there is no leakage (Table 1)
The fluctuations are small in the proximity of the pressure value of, and can be regarded as sufficiently reliable as the measured value. Therefore,
When the gas supply pressure is 200 mmH 2 O and the initial value of the gas flow rate through the valve is 2000 liters / hour, the measured data shall be valid if the gas leakage amount is 100 liters / hour or less. You can

【0032】[0032]

【表2】 [Table 2]

【表3】 上記により、漏れの有無を調べ、漏れがないかあっても
一定水準以下の場合には、測定データ記憶手段(7)に
記憶された測定データと、基礎データ記憶手段(5)に
記憶されている容積別の基礎データとを、比較推定手段
(8)により比較照合し、同一ないしは近似する基礎デ
ータに対応する容積を、測定した下流側配管(3)の容
積と推定し、これを容積記憶手段(9)に記憶する。な
お、比較推定手段(8)は、ガスメータ(1)内に組み
込まれたマイクロコンピュータにより構成すれば良い。
また、下流側配管(3)の漏れの有無を調べることな
く、測定データと基礎データを比較して配管容積を推定
するものとしても良いことは勿論であるが、より確実か
つ高精度な推定値を得られる点で、本実施形態のように
漏れの有無を調べた方が望ましい。
[Table 3] Based on the above, the presence or absence of leakage is checked, and if there is no leakage or if it is below a certain level, the measured data stored in the measured data storage means (7) and the basic data storage means (5) are stored. The basic data for each volume is compared and collated by the comparison and estimation means (8), and the volume corresponding to the same or approximate basic data is estimated as the measured volume of the downstream pipe (3), and this is stored in the volume memory. Store in means (9). The comparison / estimation means (8) may be constituted by a microcomputer incorporated in the gas meter (1).
Further, it is needless to say that the pipe volume can be estimated by comparing the measured data with the basic data without checking the downstream side pipe (3) for leakage, but a more reliable and highly accurate estimated value can be obtained. Therefore, it is preferable to check the presence / absence of leakage as in this embodiment.

【0033】そして、例えばその後に下流側配管の増設
等があった場合等に、上記と同様の手順により配管容積
を推定して、推定値に変動があればこれを容積記憶手段
(9)に新たに記憶させれば良い。
If, for example, a downstream side pipe is added later, the pipe volume is estimated by the same procedure as above, and if there is a change in the estimated value, this is stored in the volume storage means (9). It should be newly stored.

【0034】而して、地震等の緊急時におけるガス遮断
後の復旧動作に際しては、容積記憶手段(9)に記憶さ
れている配管容積の推定値を用いて、下流側配管の損壊
等による漏れが生じているか否かを確認すれば良い。
Therefore, in the recovery operation after gas shutoff in an emergency such as an earthquake, the estimated value of the pipe volume stored in the volume storage means (9) is used to leak due to damage to the downstream side pipe or the like. It is only necessary to confirm whether or not has occurred.

【0035】[0035]

【発明の効果】請求項1に記載の発明によれば、比較的
簡単に下流側配管の容積を推定することができる。従っ
て、例えば、地震等の緊急時におけるガス遮断後のガス
供給弁の復旧動作に際して、配管損壊等による漏れが生
じているか否かを把握することが可能となり、ガスメー
タの高機能化に資するものとなし得る。
According to the invention described in claim 1, the volume of the downstream side pipe can be estimated relatively easily. Therefore, for example, in the recovery operation of the gas supply valve after gas shutoff in an emergency such as an earthquake, it becomes possible to grasp whether or not there is a leak due to pipe damage or the like, which contributes to the high performance of the gas meter. You can do it.

【0036】また、請求項2に記載の発明によれば、上
記の効果に加えて、ガス供給弁の開弁直前に下流側配管
の圧力を測定し、圧力が零またはこれに近いときにガス
供給弁を開弁するから、得られた圧力データと予め求め
た基礎データとの対応関係を容易に把握することがで
き、圧力データと基礎データとの比較照合のための構成
を簡素化できる効果がある。
According to the second aspect of the invention, in addition to the above effects, the pressure in the downstream side pipe is measured immediately before the opening of the gas supply valve, and when the pressure is zero or close to this, Since the supply valve is opened, the correspondence relationship between the obtained pressure data and the basic data obtained in advance can be easily grasped, and the configuration for comparing and collating the pressure data and the basic data can be simplified. There is.

【0037】また、請求項3に記載の発明によれば、上
記の効果に加えて、下流側配管容積の推定後、圧力低下
を測定してガスの漏れを推定し、漏れ量が小さければ配
管容積の推定を有効とするから、配管容積の推定をより
確実にかつ高精度に行うことができる。
Further, according to the invention described in claim 3, in addition to the above effects, after estimating the downstream side pipe volume, the pressure drop is measured to estimate the gas leakage, and if the leakage amount is small, the pipe is Since the volume estimation is effective, the pipe volume can be estimated more reliably and highly accurately.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を適用される一例としてのガスメータ及
び配管系の概略構成図である。
FIG. 1 is a schematic configuration diagram of a gas meter and a piping system as an example to which the present invention is applied.

【図2】下流側配管に漏れが無いときの、一定条件下に
おけるガス供給の経過時間と圧力との関係を示すグラフ
である。
FIG. 2 is a graph showing the relationship between the elapsed time of gas supply and the pressure under constant conditions when there is no leakage in the downstream pipe.

【図3】下流側配管に僅かな漏れがあるときの、一定条
件下におけるガス供給の経過時間と圧力との関係を示す
グラフである。
FIG. 3 is a graph showing the relationship between the elapsed time of gas supply and the pressure under constant conditions when there is a slight leak in the downstream pipe.

【図4】下流側配管に比較的大きな漏れがあるときの、
一定条件下におけるガス供給の経過時間と圧力との関係
を示すグラフである。
[Fig. 4] When there is a relatively large leak in the downstream piping,
It is a graph which shows the relationship between the elapsed time of gas supply and pressure under fixed conditions.

【符号の説明】[Explanation of symbols]

1…ガスメータ 3…下流側配管 4…双方向弁(ガス供給弁) 1 ... Gas meter 3 ... Downstream piping 4 ... Bidirectional valve (gas supply valve)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 江下 和雄 大阪市東成区東小橋2丁目10番16号 関西 ガスメータ株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kazuo Eshita 2-10-16 Higashiobashi, Higashinari-ku, Osaka City Kansai Gas Meter Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 容積の異なる複数の配管について、一定
の供給条件でガスを供給したときの経過時間と配管内圧
力との関係を基礎データとしてそれぞれ予め求めてお
き、 ガスメータのガス供給弁を開弁し、前記と同じ供給条件
で下流側配管にガスを供給したときの経過時間と配管内
圧力との関係を測定し、 この測定により得られたデータと前記複数の基礎データ
とを比較し、測定データと同一ないしは近似する基礎デ
ータに対応する容積を、配管内容積と推定することを特
徴とするガスメータの下流側配管容積の推定方法。
1. With respect to a plurality of pipes having different volumes, a relationship between an elapsed time when gas is supplied under a constant supply condition and a pressure in the pipe is obtained in advance as basic data, and a gas supply valve of a gas meter is opened. Valve, measuring the relationship between the elapsed time and the pressure inside the pipe when supplying gas to the downstream side pipe under the same supply conditions as above, and comparing the data obtained by this measurement with the plurality of basic data, A method for estimating the volume of a pipe on the downstream side of a gas meter, characterized in that the volume corresponding to basic data that is the same as or similar to the measured data is estimated as the internal volume of the pipe.
【請求項2】 ガス供給弁の開弁直前に下流側配管の圧
力を測定し、圧力が零またはこれに近いときにガス供給
弁を開弁する請求項1に記載のガスメータの下流側配管
容積の推定方法。
2. The downstream pipe volume of the gas meter according to claim 1, wherein the pressure of the downstream pipe is measured immediately before the opening of the gas supply valve, and the gas supply valve is opened when the pressure is zero or close to zero. Estimation method.
【請求項3】 下流側配管容積の推定後、圧力低下を測
定してガスの漏れを推定し、漏れ量が小さければ配管容
積の推定を有効とする請求項1または2に記載のガスメ
ータの下流側配管容積の推定方法。
3. The downstream of the gas meter according to claim 1, wherein after the downstream side pipe volume is estimated, the pressure drop is measured to estimate the gas leakage, and if the leakage amount is small, the estimation of the pipe volume is effective. Side pipe volume estimation method.
JP3227296A 1996-02-20 1996-02-20 Estimation method for downstream-side pipe volume of gas meter Pending JPH09229743A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3227296A JPH09229743A (en) 1996-02-20 1996-02-20 Estimation method for downstream-side pipe volume of gas meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3227296A JPH09229743A (en) 1996-02-20 1996-02-20 Estimation method for downstream-side pipe volume of gas meter

Publications (1)

Publication Number Publication Date
JPH09229743A true JPH09229743A (en) 1997-09-05

Family

ID=12354360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3227296A Pending JPH09229743A (en) 1996-02-20 1996-02-20 Estimation method for downstream-side pipe volume of gas meter

Country Status (1)

Country Link
JP (1) JPH09229743A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009150734A (en) * 2007-12-20 2009-07-09 East Japan Railway Co Cavity testing method of concrete construct
JP2014081366A (en) * 2012-09-25 2014-05-08 Aim Tech:Kk Volume measurement method
JP2015224978A (en) * 2014-05-28 2015-12-14 東京瓦斯株式会社 Piping capacity estimation device, gas leakage inspection device, piping capacity estimation method, and piping capacity estimation program

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009150734A (en) * 2007-12-20 2009-07-09 East Japan Railway Co Cavity testing method of concrete construct
JP2014081366A (en) * 2012-09-25 2014-05-08 Aim Tech:Kk Volume measurement method
JP2015224978A (en) * 2014-05-28 2015-12-14 東京瓦斯株式会社 Piping capacity estimation device, gas leakage inspection device, piping capacity estimation method, and piping capacity estimation program

Similar Documents

Publication Publication Date Title
US5072621A (en) Pipeline leak detector apparatus and method
JP4881391B2 (en) Diagnostic mechanism for differential pressure mass flow controller
US7412986B2 (en) Method and system for flow measurement and validation of a mass flow controller
KR101425007B1 (en) Mass flow verifiers capable of providing different volumes, and related methods
CN101256106B (en) Impulse line-clogging detecting unit and impulse line-clogging detecting method
JP3344742B2 (en) Method and apparatus for detecting fluid leaks from tubes
JP5113722B2 (en) Flow measuring device
CN115930357A (en) Refrigerant leakage detection method of refrigerant circulation system and air conditioner using same
JP2008506116A (en) Method and system for flow measurement and mass flow regulator validation
JPH09229743A (en) Estimation method for downstream-side pipe volume of gas meter
JP2006275906A (en) Leakage inspection method and system
JP2000039347A (en) Flowrate inspection device
CN102392940B (en) Method and system for testing tightness of underground gas pipeline
KR20210129723A (en) Measuring system for measuring mass flow, density, temperature and/or flow rate
JP3538989B2 (en) Piping leak monitoring device
CN106289372A (en) Welded insulated gas cylinder Daily boil-off-rate measuring instrument method of testing
JP3117835B2 (en) Gas leak detection method
JP2765456B2 (en) Pipeline leak detection method
CN220670922U (en) Comprehensive testing device for safety accessories of petroleum storage tank
JP3798252B2 (en) Gas pipe leak inspection method and leak inspection apparatus
JP3117842B2 (en) Gas leak detection method
McKee Pulsation effects on orifice metering considering primary and secondary elements
JP3438955B2 (en) Gas leak detection device for common piping
JPH059635Y2 (en)
JPH11241972A (en) Leakage confirming method of secondary piping of gas meter and leakage confirming device thereof