JPH09229645A - Gear chamfer face measuring device and chamfer face irradiating method - Google Patents

Gear chamfer face measuring device and chamfer face irradiating method

Info

Publication number
JPH09229645A
JPH09229645A JP3657296A JP3657296A JPH09229645A JP H09229645 A JPH09229645 A JP H09229645A JP 3657296 A JP3657296 A JP 3657296A JP 3657296 A JP3657296 A JP 3657296A JP H09229645 A JPH09229645 A JP H09229645A
Authority
JP
Japan
Prior art keywords
image
sided
pixel value
gear
double
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3657296A
Other languages
Japanese (ja)
Inventor
Kaoru Kato
薫 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP3657296A priority Critical patent/JPH09229645A/en
Publication of JPH09229645A publication Critical patent/JPH09229645A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Gear Processing (AREA)
  • Machine Tool Sensing Apparatuses (AREA)

Abstract

PROBLEM TO BE SOLVED: To establish an accurate judgement of the acceptability of gear chamfering workmanship worked to the end faces of each tooth of gear, which is made through an image measurement of the symmetry amount to the two chamfer faces. SOLUTION: A one-side image to represent a chamfer face on one surface is extracted among picked-up images (S1), and a regression equation of a presumed ridge line presumed along approx. the ordinate axis is determined on the basis of the obtained one-side image (S2). The position of the addendum circle is located on the basis of the picked-up image determined in the direction of the regressive straight line which is defined by the regression equation (S3), and a reference line is set perpendicular to the regressive straight line as positioned inward for a prescribed distance from the position of the addendum circle (S4). The picture element value distribution of the picked-up image is determined in the direction of the set reference line, and the picture element value varying point to represent the position of ridge line and two picture element value varying points to represent the contour positions of the left and right tooth flanks are decided from the obtained picture element value distribution, and the symmetry amount is calculated from these picture element value varying points to serve for judgement of the acceptability of the chamfering workmanship (S4-S7).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、トランスミッショ
ンにおけるスリーブの内歯とシンクロナイザリングの外
歯のように、歯すじ方向に移動して変速を行うギヤにお
いて、各歯毎その端面に歯すじ方向のテーパをもって形
成される面取り面の振分け量を新規な手法によって計測
し合否を判定するギヤ面取り面測定装置及び面取り面照
明方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gear that moves in the tooth trace direction to change gears, such as the inner teeth of a sleeve and the outer teeth of a synchronizer ring in a transmission. The present invention relates to a gear chamfered surface measuring device and a chamfered surface illuminating method for measuring a distribution amount of a chamfered surface formed with a taper by a new method and determining pass / fail.

【0002】[0002]

【従来の技術】マニュアルトランスミッションのギヤシ
フトは、クラッチを切り、シフトフォークによってスリ
ーブを移動させると、スリーブと突起によって嵌合して
いるシンクロナイザキーがスリーブと共に移動してキー
端面でシンクロナイザリングをサードギヤのコーン部に
押し付ける。そして、スリーブの移動が進み、スリーブ
とシンクロナイザキーとの嵌合が外れると、周方向(回
転方向)に互いに位相がずれたスリーブの内歯(スプラ
イン)とシンクロナイザリングの外歯(スプライン)と
の端面同士の干渉によってスリーブの移動をシンクロナ
イザリングが阻止し、スリーブが直接にシンクロナイザ
リングを押すことになって、シンクロナイザリングが強
くサードギヤのコーン部に圧着する(同期作用)。この
後、サードギヤがスリーブとシンクロナイザリングの回
転と同じになると、シンクロナイザリングが自由になっ
てスリーブの移動を阻止しなくなり、スリーブはシンク
ロナイザリングを通過してサードギヤのスプラインと噛
合いギヤシフトが完了する。
2. Description of the Related Art In a manual transmission gear shift, when a clutch is disengaged and a sleeve is moved by a shift fork, a synchronizer key fitted with a sleeve and a protrusion moves together with the sleeve, and a synchronizer ring is attached to the end face of the key to connect a synchronizer ring to a cone of a third gear. Press on the part. When the sleeve progresses and the sleeve and the synchronizer key are disengaged from each other, the internal teeth (splines) of the sleeve and the external teeth (splines) of the synchronizer ring that are out of phase with each other in the circumferential direction (rotational direction) The synchronizer ring blocks the movement of the sleeve due to the interference between the end faces, and the sleeve directly presses the synchronizer ring, and the synchronizer ring strongly presses against the cone portion of the third gear (synchronization action). After this, when the third gear becomes the same as the rotation of the sleeve and the synchronizer ring, the synchronizer ring becomes free and does not block the movement of the sleeve, and the sleeve passes through the synchronizer ring to complete the mesh gear shift with the spline of the third gear.

【0003】従って、一般にトランスミッションに使用
されるスリーブの内歯とシンクロナイザリングの外歯の
向かい合う各端面には、図15に示すように、歯丈方向
の両縁部に各面取り面を形成して、シンクロナイザリン
グに対してスリーブが円滑にサードギヤ側に移動するよ
うにしている。ここで、上記スリーブの移動が円滑とな
るためには、両面取り面がほぼ同じ量だけ削られること
が望ましい。即ち、両面取り面同士が交わる稜線が、図
16に示すように、一歯毎の歯すじ方向の中心Aと一致
していることが、サードギヤのコーン部と圧着するシン
クロナイザリングとスリーブとの噛合が確実になり、早
期の同期につながる。
Therefore, as shown in FIG. 15, chamfered surfaces are formed at both end portions in the tooth height direction on the end faces of the inner teeth of the sleeve and the outer teeth of the synchronizer ring which are generally used in a transmission, as shown in FIG. , The sleeve moves smoothly to the third gear side with respect to the synchronizer ring. Here, in order to make the movement of the sleeve smooth, it is desirable that the double-sided chamfered surface be ground by substantially the same amount. That is, as shown in FIG. 16, the ridge line where the chamfered surfaces intersect with each other matches that the center A in the tooth trace direction of each tooth is that the synchronizer ring crimped to the cone portion of the third gear and the sleeve are engaged with each other. Will be secured and lead to early synchronization.

【0004】ここで、両面取り面の稜線が一歯毎の中心
Aとの一致の度合いを示すパラメータとしては、図17
(A)に示すように、例えばピッチ円P上の稜線位置C
と左右歯面位置B1、B2とを両面取り面正面から見た
ときの距離aとbの比で表される振分け量a/b(又は
b/a)が用いられる。上記面取り面の振分け量の計測
装置は、従来より測定治具上に設置した被検査ギヤの面
取り側端面をサーフライン蛍光灯等の反射の少ないリン
グ状の照明手段で照射し、両面取り面を均等に照明して
撮像画像を得、上記ピッチ円P上の画素値分布(図17
(B)参照)を求め、稜線位置Cと左右歯面位置B1,
B2を決定し、振分け量を計測するものである。
Here, as a parameter showing the degree of coincidence of the ridgeline of the double-sided surface with the center A of each tooth, FIG.
As shown in (A), for example, the ridge line position C on the pitch circle P
And the distribution amount a / b (or b / a) represented by the ratio of the distances a and b when the left and right tooth flank positions B1 and B2 are viewed from the front of the double-sided chamfer. The measuring device for the distribution amount of the chamfered surface irradiates the chamfered side end surface of the gear to be inspected, which has been conventionally installed on the measurement jig, with a ring-shaped illumination means such as a surfline fluorescent lamp with a small reflection, and the chamfered surface is Evenly illuminated to obtain a captured image, the pixel value distribution on the pitch circle P (see FIG. 17).
(See (B)), the ridge line position C and the left and right tooth flank positions B1,
B2 is determined and the distribution amount is measured.

【0005】[0005]

【発明が解決しようとする課題】従来のギヤ面取り面計
測装置は、撮像手段の焦点を例えば稜線位置Cに合わせ
ると、左右歯面位置B1,B2の画素値分布が不明瞭と
なり、正確に振分け量を算出することができない。これ
は、左右歯面位置B1,B2に焦点を合わせても同様で
ある。
In the conventional gear chamfering surface measuring device, when the focus of the image pickup means is adjusted to the ridge line position C, the pixel value distribution of the left and right tooth flank positions B1 and B2 becomes unclear, and the accurate distribution is performed. Unable to calculate quantity. This is the same when focusing on the left and right tooth flank positions B1 and B2.

【0006】また、従来のギヤ面取り面計測装置は、ピ
ッチ円Pの位置を視野境界又は歯先円位置に対して平行
シフトした固定の位置に設定しているため、被検査ギヤ
が治具上に傾斜してセットされると、正確に距離aとb
が得られず、振分け量測定精度が劣化する。本発明は、
上記撮像画像より片側面取り面だけを抽出し、該抽出し
た片面画像に基づいて左右歯面位置と稜線位置とを決定
することにより、振分け量測定精度を高めるようにした
ギヤの面取り面計測装置を提供することを解決すべき課
題とする。
Further, in the conventional gear chamfering chamfering device, the position of the pitch circle P is set to a fixed position which is parallel-shifted with respect to the visual field boundary or the tip circle position, so that the gear to be inspected is on the jig. When set tilted to, the distances a and b
Is not obtained, and the accuracy of distribution amount measurement deteriorates. The present invention
By extracting only one side chamfered surface from the captured image and determining the left and right tooth flank positions and the ridge line position based on the extracted one sided image, a chamfered chamfering device for gears that improves the distribution amount measurement accuracy is provided. Providing is a problem to be solved.

【0007】また、本発明は、両面取り面を明るさに差
異が生じるように照明することにより、明瞭な撮像画像
を取得して振分け量測定精度をより高めるようにしたギ
ヤの面取り面計測のための照明方法を提供することを解
決すべき課題とする。
Further, according to the present invention, the chamfered chamfered surface of the gear is measured by illuminating the chamfered surface so that there is a difference in brightness, thereby obtaining a clear picked-up image and further enhancing the accuracy of the distribution amount measurement. It is an issue to be solved to provide a lighting method for the purpose.

【0008】[0008]

【課題を解決するための手段】上記課題を解決した請求
項1の発明の要旨は、(a)ギヤの各歯の端面に加工さ
れる両面取り面を撮像する撮像手段と、(b)該撮像手
段より得られる撮像画像のうち片側面取り面を表す片面
画像を抽出する片側面取り面抽出手段と、(c)上記片
面画像の複数の平行な一軸方向画素値分布に基づきほぼ
前記一軸と直交する方向に推定される推定稜線の回帰式
を求める回帰式設定手段と、(d)上記回帰式より定義
される回帰直線に基づき歯先円位置を求める歯先円位置
決定手段と、(e)該歯先円位置決定手段によって決定
された歯先円位置より所定距離だけ内方向に上記回帰直
線と直交する基準線を設定する基準線設定手段と、
(f)該基準線設定手段によって設定された上記基準線
の方向に上記撮像画像の画素値分布を求め、該画素値分
布より稜線位置を表す画素値変化点及び両輪郭位置を表
す二つの画素値変化点を決定する振分け量判定点算出手
段と、(g)該振分け量判定点算出手段で決定した上記
各画素値変化点より振分け量を演算する演算手段と、
(h)該演算手段の結果に基づき両面取り面が加工され
上記ギヤの良否を判定する判定手段とを具備したことに
ある。
The gist of the invention of claim 1 which has solved the above-mentioned problems is (a) an image pickup means for picking up a double-sided surface to be machined on the end face of each tooth of a gear; A single-sided chamfer extraction means for extracting a single-sided image representing a single-sided chamfer from the imaged image obtained by the image-capturing means; and (c) substantially orthogonal to the single-axis based on a plurality of parallel uniaxial pixel value distributions of the single-sided image. Regression equation setting means for obtaining a regression equation of an estimated ridge line estimated in a direction, (d) tip circle position determining means for obtaining a tip circle position based on a regression line defined by the above regression equation, and (e) Reference line setting means for setting a reference line orthogonal to the regression line inward by a predetermined distance from the tip circle position determined by the tip circle position determining means,
(F) A pixel value distribution of the captured image is obtained in the direction of the reference line set by the reference line setting means, and a pixel value change point indicating a ridge line position and two pixels indicating both contour positions are obtained from the pixel value distribution. Distribution amount determination point calculation means for determining a value change point, and (g) calculation means for calculating a distribution amount from each of the pixel value change points determined by the distribution amount determination point calculation means,
(H) A determination means for determining whether the gear is good or bad is provided by processing the chamfered surface based on the result of the calculation means.

【0009】請求項1の発明のギヤの面取り面計測装置
は図1のような手順で振分け量を算出する。図1におい
て、ステップS1は片側面取り面抽出手段が行う処理、
S2は回帰式設定手段が行う処理、S3は歯先円位置決
定手段が行う処理、S4は基準線設定手段が行う処理、
S5は振分け量判定点算出手段が行う処理、S6は演算
手段が行う処理、S7は判定手段が行う処理である。
The chamfered chamfer measuring device for gears according to the first aspect of the present invention calculates the distribution amount by the procedure shown in FIG. In FIG. 1, step S1 is a process performed by the one-side chamfered surface extraction unit,
S2 is a process performed by the regression equation setting unit, S3 is a process performed by the tip circle position determining unit, S4 is a process performed by the reference line setting unit,
S5 is a process performed by the distribution amount determination point calculation unit, S6 is a process performed by the calculation unit, and S7 is a process performed by the determination unit.

【0010】撮像手段より得られる撮像画像は、多階調
の濃淡画像であり、この撮像画像の特定レベルをしきい
値として、片側面取り面抽出手段は、両面取り面を表す
各階調を区別し、片面画像を抽出する(S1)。回帰式
設定手段は、上記片面画像を画面の複数の横軸方向に沿
って画素値を読取り複数横軸方向画素値分布を求める。
そして、複数横軸方向画素値分布の画素値が急変する複
数点の座標値より直線の回帰式を定義する。この回帰式
は、ほぼ縦軸方向に存在が推定される稜線を画面上での
直線関数として表したものとなる(S2)。
A picked-up image obtained by the pick-up means is a multi-gradation gray-scale image, and the one-side chamfered surface extraction means discriminates each gradation representing the double-sided chamfer by using a specific level of the picked-up image as a threshold value. , A single-sided image is extracted (S1). The regression equation setting means reads pixel values of the one-sided image along a plurality of horizontal axis directions on the screen to obtain a plurality of horizontal axis direction pixel value distributions.
Then, a linear regression equation is defined based on the coordinate values of a plurality of points at which the pixel values of the plurality of pixel value distributions in the horizontal axis direction change abruptly. This regression equation represents the ridge line whose existence is estimated to be substantially in the vertical axis direction as a linear function on the screen (S2).

【0011】歯先円位置決定手段は、上記回帰式で定ま
る回帰直線の方向、例えば回帰直線上に沿って上記撮像
画像の画素値分布を求め、画素値が急変する点を歯先円
位置とする(S3)。上記歯先円位置が決まれば、該歯
先円位置より内方向には必ず両面取り面の画像が存在す
るので、基準線設定手段は、上記歯先円位置より所定距
離だけ内方向のある位置を通り、上記回帰直線と直交す
る基準線の回帰式を設定すれば、この基準線が実際の稜
線と交わる直線として得られることになる(S4)。
The tip circle position determining means obtains the pixel value distribution of the captured image along the direction of the regression line determined by the above regression equation, for example, on the regression line, and the point where the pixel value suddenly changes is defined as the tip circle position. Yes (S3). When the tip circle position is determined, the image of the double-sided surface always exists inward of the tip circle position. Therefore, the reference line setting means is located at a position inward from the tip circle position by a predetermined distance. If a regression equation of a reference line orthogonal to the regression line is set, the reference line can be obtained as a straight line intersecting with the actual ridgeline (S4).

【0012】そこで、振分け量判定点算出手段は、上記
基準線に沿って撮像手段の撮像画像を読取り、これによ
り得られる画素値分布より稜線位置を表す画素値変化点
及び左右歯面輪郭位置を表す二つの画素値変化点を決定
することができる(S5)。上記稜線位置と左右歯面輪
郭位置の座標が求まれば、振分け量RATMATは、基
準線上の稜線位置をCPCL、左右歯面輪郭位置をCP
L、CPRとして、
Therefore, the distribution amount determination point calculation means reads the image picked up by the image pickup means along the reference line, and from the pixel value distribution obtained by this, the pixel value change points and the left and right tooth flank contour positions which represent the ridge line position are obtained. Two pixel value change points to be represented can be determined (S5). When the coordinates of the ridge line position and the left and right tooth flank contour positions are obtained, the distribution amount RATEMAT is CPCL for the ridge line position on the reference line and CP for the left and right tooth flank contour positions.
As L and CPR,

【0013】[0013]

【数1】 ただし、CPL<CPCL<CPRを演算することによ
り求められる(S6)。
[Equation 1] However, it is obtained by calculating CPL <CPCL <CPR (S6).

【0014】求められた振分け量は、判定手段により判
定する(S7)。このように請求項1の発明では、片側
面取り面を表す片面画像に基づいて正確に稜線を推定し
た回帰直線を求めており、この回帰直線より稜線位置及
び左右歯面輪郭位置を決定するための基準線を決定する
ので、振分け量が格段と正しく算出され、振分け量判定
の合否の正確性が向上する。
The obtained distribution amount is judged by the judging means (S7). As described above, according to the first aspect of the invention, the regression line in which the ridge line is accurately estimated is obtained based on the single-sided image showing the single-side chamfered surface, and the ridge line position and the left and right tooth flank contour positions are determined from the regression line. Since the reference line is determined, the distribution amount is calculated remarkably correctly, and the accuracy of pass / fail of the distribution amount determination is improved.

【0015】ここで、上記歯先円位置より所定距離だけ
内方向のある位置とは、ピッチ円位置が好ましい。請求
項2の発明の要旨は、片側面取り面抽出手段が、撮像手
段により得られる背景部を除いた撮像画像の同一画素値
の最大面積領域と他の領域とを濃淡に分けた2値画像と
して前記片面画像を抽出する最大領域抽出手段であるこ
とを特徴とするものである。
Here, the position which is inward from the tip circle position by a predetermined distance is preferably a pitch circle position. The gist of the invention of claim 2 is that the one-sided chamfer extraction means is a binary image in which the maximum area area of the same pixel value of the captured image excluding the background portion obtained by the imaging means and the other area are divided into shades. It is characterized in that it is maximum area extraction means for extracting the one-sided image.

【0016】請求項3の発明の要旨は、片側面取り面抽
出手段として請求項2の最大領域抽出手段を含むギヤの
面取り面計測装置を用い、両面取り面の明るさに差が生
じるように照明することにある。請求項3の発明によれ
ば、両面取り面の明るさに差を生じるように被検査ギヤ
を照明するので、撮像手段より得られる撮像画像は、稜
線を境に両面取り面を表す濃淡のコントラストが極めて
明瞭になる。従って、請求項2の最大領域抽出手段のよ
うに、背景部を除く撮像画像の同一画素値の最大面積領
域と他の領域とを濃淡に分けて片面画像としての2値画
像とする操作において、しきい値を確実に片側面取り面
を判別し得る値に設定でき、片面画像が実際の片側面取
り面をより忠実に表したものとなって、請求項1の発明
より更に振分け量合否判定の正確性が得られる。
The gist of the invention of claim 3 is to use a chamfered chamfering device for gears including the maximum area extraction means of claim 2 as the one-side chamfered chamfer extraction means, and to illuminate the chamfered chamfers so that there is a difference in brightness. To do. According to the third aspect of the present invention, the gear to be inspected is illuminated so as to cause a difference in brightness of the double-sided surface, so that the captured image obtained by the image capturing means has a contrast of light and shade representing the double-sided surface with the ridge line as a boundary. Becomes extremely clear. Therefore, as in the maximum area extraction means of claim 2, in the operation of dividing the maximum area area of the same pixel value of the captured image excluding the background portion and the other area into shades to form a binary image as a single-sided image, The threshold value can be set to a value that can reliably discriminate the one-side chamfered surface, and the one-sided image is a more faithful representation of the actual one-side chamfered surface. Sex is obtained.

【0017】[0017]

【発明の効果】以上述べたように本発明によれば、片側
面取り面を表す片面画像に基づいて稜線を推定しその回
帰直線を求めているので、該回帰直線が被検査ギヤの傾
きに応じて正確に得られるため、ピッチ円(基準線)も
歯先円に対し確実に平行なものが得られ、撮像画像から
決定する稜線位置及び左右歯面輪郭位置を誤差を少なく
決定できることにより、振分け量判定の合否の正確性を
向上することができる。
As described above, according to the present invention, the ridge line is estimated based on the single-sided image showing the single-side chamfered surface and the regression line thereof is obtained. Therefore, the regression line depends on the inclination of the gear to be inspected. Since it can be obtained accurately, the pitch circle (reference line) can be surely parallel to the addendum circle, and the ridge line position and the left and right tooth flank contour positions determined from the captured image can be determined with a small error, so that the sorting can be performed. It is possible to improve the accuracy of pass / fail of the amount determination.

【0018】特に、請求項3の照明方法を採用すること
により、片面画像をより正確に抽出できて振分け量合否
判定の正確性が更に向上する。
In particular, by adopting the illumination method according to the third aspect, the one-sided image can be more accurately extracted, and the accuracy of the distribution amount pass / fail judgment is further improved.

【0019】[0019]

【発明の実施の形態】以下、本発明のギヤの面取り面計
測装置及び面取り面照明方法を具体的に説明する。図2
は本発明の面取り面照明方法を採用したギヤの面取り面
計測装置の全体構成を示す。図2に示すように、被検査
ギヤピース1は、外部光を遮光する密閉箱2の中に収納
して計測される。密閉箱2には、被検査ギヤピース1を
設置する治具3と、該治具3上の被検査ギヤピース1を
照明する照明手段4と、該照明手段4によって照明され
た被検査ギヤピース1を撮像する撮像手段5とを内蔵し
ている。
BEST MODE FOR CARRYING OUT THE INVENTION The chamfered chamfering surface measuring device and chamfered chamfered illumination method of the present invention will be described in detail below. FIG.
Shows an overall configuration of a chamfered surface measuring device for a gear that employs the chamfered surface illumination method of the present invention. As shown in FIG. 2, the gear piece 1 to be inspected is housed in a sealed box 2 that shields external light and measured. A jig 3 for installing the gear piece 1 to be inspected, an illuminating means 4 for illuminating the gear piece 1 to be inspected on the jig 3, and an image of the gear piece 1 to be inspected illuminated by the illuminating means 4 are imaged in the closed box 2. And an image pickup means 5 for performing the operation.

【0020】詳細には被検査ギヤピース1は、面取りさ
れた各歯の端面側がCCDカメラ6と接写レンズ7とか
らなる撮像手段5に向くように密閉箱2の底板に設置さ
れた治具3上に固定される。ここで、照明手段4は、外
部のハロゲン光源9が発する照明光を各光ファイバーか
らなるライトガイド4a、4bで各面取り面A、Bをそ
れぞれ照明するようにしている。そして、一方の面取り
面A(図面上左側)を照明するライトガイド4aの先端
には集光レンズ8を設け、面取り面Aの方が面取り面B
より明るく照明されるようになっている。
In detail, the gear piece 1 to be inspected is on a jig 3 installed on the bottom plate of the hermetically sealed box 2 so that the end faces of the chamfered teeth face the image pickup means 5 consisting of the CCD camera 6 and the close-up lens 7. Fixed to. Here, the illuminating means 4 is adapted to illuminate the respective chamfered surfaces A and B with the light guides 4a and 4b formed of respective optical fibers with the illumination light emitted from the external halogen light source 9. A condenser lens 8 is provided at the tip of the light guide 4a that illuminates one chamfered surface A (left side in the drawing), and the chamfered surface A is the chamfered surface B.
It is illuminated more brightly.

【0021】上記CCDカメラ6から出力される撮像信
号の画像処理系は、画像読込みプログラム、画像表示プ
ログラム、画像変換プログラム、画像特徴計算プログラ
ム及び振分け量合否判定プログラムを有した画像処理装
置10と、該画像処理装置10の振分け量合否判定プロ
グラムによって判定された結果を総合的に管理するホス
トコンピュータ11と、画像処理装置10の制御プログ
ラム開発や動作管理を行う通信制御装置12とを主体に
構成され、画像処理装置10には、TVモニタ13、キ
ー入力ボード14及びビデオプリンタ15が接続されて
いる。通信制御装置12は、例えばNEC社製パソコン
9801Tを用い、通信ソフトWTERMを起動してい
る。
An image processing system for an image pickup signal output from the CCD camera 6 includes an image processing apparatus 10 having an image reading program, an image display program, an image conversion program, an image feature calculation program and a distribution amount pass / fail judgment program. A host computer 11 that comprehensively manages the results determined by the distribution amount pass / fail determination program of the image processing apparatus 10, and a communication control apparatus 12 that performs control program development and operation management of the image processing apparatus 10 are mainly configured. A TV monitor 13, a key input board 14, and a video printer 15 are connected to the image processing apparatus 10. The communication control device 12 uses, for example, a personal computer 9801T manufactured by NEC, and activates the communication software WTERM.

【0022】なお、画像処理装置10は、治具3を旋回
させる旋回指令をサーボドライバ16に発し、該サーボ
ドライバ16を介して治具3を旋回させるサーボモータ
17を制御して、被検査ギヤピース1を1歯単位で旋回
・位置決めする。次に上記画像処理系により行われる振
分け量の合否判定動作を図1のステップS1〜S7を更
に詳解した図3に基づいて説明する。
The image processing apparatus 10 issues a turning command for turning the jig 3 to the servo driver 16 and controls the servo motor 17 for turning the jig 3 via the servo driver 16 to inspect the gear piece to be inspected. Rotate and position 1 per tooth. Next, the distribution amount acceptance / rejection determination operation performed by the image processing system will be described based on FIG. 3 which further details steps S1 to S7 in FIG.

【0023】S1〔片面画像の抽出〕 先ず、面取り加工された端面側を上向きに被検査ギヤピ
ース1を治具3上にセットし、照明手段4の各ライトガ
イド4a、4bが一歯毎の両面取り面A、Bをそれぞれ
の照明能力で照明するように照明手段4の照射角度等を
調整する。これにより面取り面Aが面取り面Bより高輝
度で照明される。
S1 [Extraction of single-sided image] First, the gear piece 1 to be inspected is set on the jig 3 with the chamfered end face side facing upward, and the light guides 4a and 4b of the illumination means 4 are double-sided for each tooth. The irradiation angle and the like of the illumination means 4 are adjusted so that the surfaces A and B are illuminated with their respective illumination capabilities. As a result, the chamfered surface A is illuminated with higher brightness than the chamfered surface B.

【0024】従って、図3のステップS11〔撮像画像
読込み〕において画像処理装置10により読込まれるC
CDカメラ6からの撮像画像は、図4(A)に示すよう
に、面取り面Aが最も明るく、面取り面B、背景部Cの
順に輝度が低くなった画像となる。読込まれた撮像画像
には、S12〔平滑化〕の画像処理がなされる。この平
滑化は、処理対象の画素Pnに隣接するi(i=1,2
……8)個毎の画素値Pi(X,Y)の積和平均をn番
目の画素値Qn(X,Y)とするものである。
Therefore, C read by the image processing apparatus 10 in step S11 [reading of captured image] in FIG.
As shown in FIG. 4A, the image picked up by the CD camera 6 is an image in which the chamfered surface A is the brightest, and the chamfered surface B and the background portion C have lower brightness in this order. The read captured image is subjected to the image processing of S12 [smoothing]. This smoothing is performed by i (i = 1, 2, 1) adjacent to the pixel Pn to be processed.
... 8) The product sum average of the pixel values Pi (X, Y) for each pixel is set as the nth pixel value Qn (X, Y).

【0025】具体的には、 これにより、照明のムラなどによるランダムノイズを軽
減する。
Specifically, This reduces random noise due to uneven lighting.

【0026】次に平滑化された撮像画像は、S13〔2
値化変換〕により濃淡の2値画像に変換する。具体的に
は、図4(A)に示す撮像画像を縦軸Y=150(確実
に両面取り面A、Bを通る位置)の位置で読取り、図5
に示すように輝度の高い側を高濃度とした画素値分布を
得て、その最大値TH「255」を求め、該最大値TH
をしきい値として濃部と淡部とからなる2値画像(図5
参照)を生成する。
Next, the smoothed picked-up image is S13 [2
Convert to binarized image by binarization conversion]. Specifically, the captured image shown in FIG. 4A is read at a position of the vertical axis Y = 150 (a position that surely passes through the double-sided chamfered surfaces A and B).
As shown in FIG. 5, a pixel value distribution in which the high-luminance side is high density is obtained, the maximum value TH “255” is obtained, and the maximum value TH
A binary image consisting of a dark part and a light part with a threshold value (see FIG. 5).
See).

【0027】このS13では、上記2値画像に対しモフ
ォロジ縮小・膨張処理を2段階に加え、表面の凹凸によ
る小規模ノイズ及び中規模ノイズを除去する。更に図5
の2値画像において、面積が最大の濃部領域を抽出し、
図6のような2値画像とする。具体的には、画像メモリ
において、「0」を濃部、「1」を淡部とすれば、
「0」が連続した最大面積の画素セル群だけを残してす
べての画素セルを「1」とする。こうして、面取り面A
を表した片面画像が抽出される。
In step S13, morphological reduction / expansion processing is applied to the binary image in two steps to remove small-scale noise and medium-scale noise due to surface irregularities. Further FIG.
In the binary image of, the dark area with the largest area is extracted,
The binary image is as shown in FIG. Specifically, in the image memory, if "0" is a dark portion and "1" is a light portion,
All pixel cells are set to "1", leaving only the pixel cell group having the maximum area in which "0" s are continuous. Thus, chamfered surface A
A single-sided image representing is extracted.

【0028】S2(推定稜線の回帰式を設定) 次に両面取り面によって形成される稜線を推定する。推
定稜線は、図6の片面画像を縦軸Yの値を最低二つ、こ
こでは例えば図7のY=100、200、300、40
0の位置で読取った画素値分布が、「0」から「1」に
変化する横軸Xの値PX(i)を求め、座標値〔PY
(100),PX(1)〕、〔PY(200),PX
(2)〕、〔PY(300),PX(2)〕、〔PY
(400),PX(3)〕により回帰式を設定する。
S2 (setting regression equation of estimated ridge line) Next, the ridge line formed by the chamfered surface is estimated. As the estimated ridge line, the single-sided image of FIG. 6 has at least two values of the vertical axis Y, here, for example, Y = 100, 200, 300, 40 in FIG.
The value PX (i) of the horizontal axis X at which the pixel value distribution read at the position of 0 changes from “0” to “1” is calculated, and the coordinate value [PY
(100), PX (1)], [PY (200), PX
(2)], [PY (300), PX (2)], [PY
(400), PX (3)] to set the regression equation.

【0029】即ち、XMを稜線位置の平均値、YMをY
軸座標値の平均値と定義した時、次の統計的手法により
相関係数GMRの計算と回帰式の傾き(回帰係数)の計
算を行う。 SY=(100−YM)2 +(200−YM)2 +(300−YM)2 = 50000 SXY=(100−YM)×(PX(0)−XM) +(200−YM)×(PX(1)−XM) +(300−YM)×(PX(2)−XM) +(400−YM)×(PX(3)−XM) =−150×(PX(0)−XM)−50×(PX(1)−XM) +50×(PX(2)−XM)+150×(PX(3)−XM) GMR=SXY/(SX×SY)1/2 BB=SXY/SX となる。
That is, XM is the average value of the ridge line positions, and YM is Y.
When defined as the average value of axis coordinate values, the correlation coefficient GMR and the slope of the regression equation (regression coefficient) are calculated by the following statistical method. SY = (100-YM) 2 + (200-YM) 2 + (300-YM) 2 = 50000 SXY = (100-YM) × (PX (0) -XM) + (200-YM) × (PX ( 1) -XM) + (300-YM) * (PX (2) -XM) + (400-YM) * (PX (3) -XM) =-150 * (PX (0) -XM) -50 * (PX (1) -XM) + 50 * (PX (2) -XM) + 150 * (PX (3) -XM) GMR = SXY / (SX * SY) < 1/2 > BB = SXY / SX.

【0030】ここで、GMR2 >0.9の時、回帰式は
次式のようになる。 Y=YM+BB×(X−XM) ………………………………(2) X={(Y−YM)/BB}+XM ………………………………(3) S3(歯先円位置の決定) 次に歯先円位置を決定するため、求めた回帰直線と平行
で歯先円位置と交わる直線を求める。図8において、回
帰直線が視野境界(Y=0〜447,X=0〜511)
と交わる位置〔LX1,LY1〕及び〔LX2,LY
2〕は、 LX1=XM−(YM/BB) ………………………………(4) LY1=0 ………………………………(5) もし、LX1<0又はLX1>511ならば、 LX1=0 LY1=YM−BBT×XM LX2={(447−YM)/BB}+XM …………………(6) LY2=447 …………………(7) もし、LX2<0又はLX2>511ならば、 LX2=511 LY2=YM+{BB×(511−XM) ただし、稜線はY軸に平行で、視野中心となるように機
械寸法が調整されているので、通常は(4),(5)及
び(6),(7)を採用する。
Here, when GMR 2 > 0.9, the regression equation is as follows. Y = YM + BB × (X−XM) ……………………………… (2) X = {(Y-YM) / BB} + XM ………………………… (3 ) S3 (Determination of tip circle position) Next, in order to determine the tip circle position, a straight line that is parallel to the obtained regression line and intersects the tip circle position is obtained. In FIG. 8, the regression line is the visual field boundary (Y = 0 to 447, X = 0 to 511).
Positions [LX1, LY1] and [LX2, LY] that intersect with
2] is LX1 = XM- (YM / BB) ………………………… (4) LY1 = 0 ………………………… (5) If LX1 < If 0 or LX1> 511, LX1 = 0 LY1 = YM-BBT × XM LX2 = {(447-YM) / BB} + XM (6) LY2 = 447 …………………… (7) If LX2 <0 or LX2> 511, LX2 = 511 LY2 = YM + {BB × (511-XM) However, the ridge line is parallel to the Y axis and the machine size is adjusted so that it becomes the center of the visual field. Therefore, (4), (5) and (6), (7) are usually adopted.

【0031】続いて、稜線抽出で使用した2値画像に対
して、点〔LX1−50,LY1〕及び(LX2−5
0,LY2)を通る直線(回帰直線を横軸方向に「−5
0」だけ平行移動した直線)上の画素値分布を求める。
これは、当該直線が2値画像のY軸方向両端、即ち確実
に歯先円を通るようにするためであり、X軸方向に平行
移動する量50は機械的寸法より予め定める。
Then, points [LX1-50, LY1] and (LX2-5) are added to the binary image used for the edge extraction.
0, LY2) (regression line in the horizontal axis is "-5
A pixel value distribution on a straight line that is translated by "0") is obtained.
This is to ensure that the straight line passes through both ends of the binary image in the Y-axis direction, that is, the tip circles, and the amount 50 of parallel translation in the X-axis direction is determined in advance from mechanical dimensions.

【0032】図9(A)、(B)に示すように、図9
(A)の画素値分布が「1」から「0」に変化する点E
のY軸座標値が歯先円位置である。 S4(基準線の設定) 次に図10に示すように、歯先円位置からピッチ円を表
す直線関数を以下の手順で算出する。図10において、
歯先円位置からピッチ円までの距離T0FTは機械的寸
法より予め明らかであるため、集光レンズ8の倍率に基
づいて座標値に換算できる。また、X軸と平行の視野境
界から歯先円位置までの距離LCTも同様にして座標値
に換算できる。故に、X軸と平行の視野境界からピッチ
円までの距離LCTPは、 LCTP=LCT+T0FT ……………………(8) より算出することができる。
As shown in FIGS. 9A and 9B, FIG.
Point E at which the pixel value distribution in (A) changes from "1" to "0"
The Y-axis coordinate value of is the tip circle position. S4 (Setting of Reference Line) Next, as shown in FIG. 10, a linear function representing the pitch circle is calculated from the tip circle position by the following procedure. In FIG.
Since the distance T0FT from the tip circle position to the pitch circle is clear from the mechanical dimension in advance, it can be converted into coordinate values based on the magnification of the condenser lens 8. Further, the distance LCT from the visual field boundary parallel to the X axis to the position of the tip circle can be similarly converted into coordinate values. Therefore, the distance LCTP from the visual field boundary parallel to the X axis to the pitch circle can be calculated by LCTP = LCT + T0FT (8).

【0033】続いて、図11に示すように推定稜線の回
帰直線と直交する基準線の直線関数を求めるため、先
ず、回帰直線上の点〔LX1,LY1〕から同回帰直線
上で距離LCTPだけ離れた点、即ち求めようとする基
準線と回帰直線との交点〔LCY,LCX〕を、距離L
CTPを斜辺の長さとする直角三角形の幾何学的演算に
より求める。
Subsequently, as shown in FIG. 11, in order to obtain the linear function of the reference line orthogonal to the regression line of the estimated ridge line, first, only the distance LCTP from the point [LX1, LY1] on the regression line on the regression line. A distant point, that is, an intersection [LCY, LCX] between the reference line to be obtained and the regression line is a distance L
It is obtained by a geometric operation of a right triangle having CTP as the length of the hypotenuse.

【0034】回帰直線の傾きBBは上記直角三角形の垂
線と底辺の比であるので、交点〔LCY,LCX〕は、
BB>0である時、 LCX={LCTP/(BB2 +1)}1/2 +LX1 …………(9) LCY=(LCX−LX1)×BB+LY1 ……………(10) BB<0である時、 LCX=−{LCTP/(BB2 +1)}1/2 +LX1 …………(11) LCY=(LCX−LX1)×BB+LY1 ………………(12) となる。
Since the slope BB of the regression line is the ratio between the perpendicular and the base of the right triangle, the intersection [LCY, LCX] is
When BB> 0, LCX = {LCTP / (BB 2 +1)} 1/2 + LX1 ………… (9) LCY = (LCX-LX1) × BB + LY1 ………… (10) BB <0 At some time, LCX = − {LCTP / (BB 2 +1)} 1/2 + LX1 (11) LCY = (LCX-LX1) × BB + LY1 (12)

【0035】次に基準線がY軸方向の視野境界と交わる
座標〔LSX1,LSY1〕と〔LSX2,LSY2〕
は、 LSX1=BB×LCY+LCX …………………(13) LSY1=0 …………………(14) もし、LSX1<0又はLSX1>511ならば、 LSX1=0 …………………(13)′ LSY1=LCX/BB+LCY …………………(14)′ となり、 LSX2=−BB×(447−LCY)+LCX ………………(15) LSY2=447 ………………(16) もし、LSX2<0又はLSX2>511ならば、 LSX2=0 ………………(15)′ LSY2=(−511+LCX)/BB+LCY ………………(16)′ ただし、稜線はY軸に平行で視野中心となるように機械
的寸法が設定されているので、通常は(13)′,(1
4)′、(15)′,(16)′を採用する。
Next, the coordinates [LSX1, LSY1] and [LSX2, LSY2] at which the reference line intersects the visual field boundary in the Y-axis direction.
Is LSX1 = BB × LCY + LCX (13) LSY1 = 0 ... (14) If LSX1 <0 or LSX1> 511, LSX1 = 0 .... (13) 'LSY1 = LCX / BB + LCY (14)' and LSX2 = -BB * (447-LCY) + LCX (15) LSY2 = 447 .... (16) If LSX2 <0 or LSX2> 511, then LSX2 = 0 ... (15) 'LSY2 = (-511 + LCX) / BB + LCY ... (16)' However, , The ridge is parallel to the Y-axis and the mechanical dimensions are set so as to be the center of the field of view, so (13) ′, (1
4) ′, (15) ′, and (16) ′ are adopted.

【0036】こうして、座標〔LSX1,LSY1〕と
〔LSX2,LSY2〕を結んだ直線が基準線として求
まる。 S5(稜線位置と左右歯面輪郭位置の決定) 次に上記基準線上を通過する稜線位置を図9(B)の2
値画像(片面画像)より決定する。
In this way, a straight line connecting the coordinates [LSX1, LSY1] and [LSX2, LSY2] is obtained as the reference line. S5 (determination of ridge line position and left and right tooth flank contour positions) Next, the ridge line position passing on the reference line is indicated by 2 in FIG. 9 (B).
Determined from the value image (single-sided image).

【0037】これは、図12(A)に示すように、基準
線に沿って片面画像をサンプリングして、図12(B)
に示すような画素値分布を求める。そして、得られた画
素値分布で、画素値が「0」から「1」に変化する位置
を、稜線位置CPCLとする。更に、ステップS12で
処理した平滑化した多階調の濃淡画像に対して、基準線
上の画素値分布を求める(図13(A),(B))。
As shown in FIG. 12A, this is performed by sampling a one-sided image along the reference line and
A pixel value distribution as shown in is obtained. Then, the position where the pixel value changes from “0” to “1” in the obtained pixel value distribution is set as the ridge line position CPCL. Further, the pixel value distribution on the reference line is obtained for the smoothed multi-tone grayscale image processed in step S12 (FIGS. 13A and 13B).

【0038】得られた画素値分布に対して、図13
(B)に示すように、〔0,CPCL〕の範囲で最小の
画素値をVL1とし、〔CPCL,511〕の範囲の画
素値をVL2とする。更にVL1とVL2のうち、大き
な値の方にオフセット値「30」を加算して、しきい値
VLを生成する。
The obtained pixel value distribution is shown in FIG.
As shown in (B), the minimum pixel value in the range [0, CPCL] is VL1, and the pixel value in the range [CPCL, 511] is VL2. Further, the offset value "30" is added to the larger one of VL1 and VL2 to generate the threshold value VL.

【0039】 VL=max(VL1,VL2)+30 ……………………(17) オフセット値「30」は経験値である。次に上記VLを
しきい値として図13(A)の多階調の濃淡画像を2値
化変換した画像、即ち、図14図(A)に示す両面取り
面を表示する2値画像を生成する。この両面取り面の2
値画像に対して基準線上の画素値分布を求め(図14
(B)、該画素値が「1」から「0」に変化する位置を
左歯面輪郭位置CPLとし、「0」から「1」に変化す
る位置を右歯面輪郭位置CPRとする。
VL = max (VL1, VL2) +30 (17) The offset value “30” is an empirical value. Next, using the above VL as a threshold value, an image obtained by binarizing the multi-gradation grayscale image of FIG. 13A, that is, a binary image displaying the double-sided surface shown in FIG. 14A is generated. To do. 2 of this double-sided surface
The pixel value distribution on the reference line is calculated for the value image (see FIG. 14).
(B) The position where the pixel value changes from "1" to "0" is the left tooth flank contour position CPL, and the position where the pixel value changes from "0" to "1" is the right tooth flank contour position CPR.

【0040】S6(振分け量の演算) 振分け量RATMATは次式で演算する。 RATMAT=(CPR−CPCL)/(CPCL−CLP)………(18) ただし、CPL<CPCL<CPRとする。 S7(振分け量判定) 演算した振分け量を次の手順で合否判定する。S6 (Calculation of distribution amount) The distribution amount RATMAT is calculated by the following equation. RATEMAT = (CPR-CPCL) / (CPCL-CLP) ... (18) However, CPL <CPCL <CPR. S7 (Distribution Amount Judgment) The calculated distribution amount is passed or rejected according to the following procedure.

【0041】a=CPR−CPCL、b=CPCL−C
LPとすると、図面公差tと、a,bは次の関係が成立
する。 b=a−t ただし、a<bの時、t>0.0、 a>bの時、t<
0.0である。振分け量の式をa、b及びtで表すと、 RATMAT=a/b=1/b×(b+t)=1+t/b ……(19) ここで、実測値t=0.2〔mm〕、b=1.83〔m
m〕を代入すると、t/b=0.109≒0.11とな
ることから、0.89<RATMAT<1.11が成立
すれば、振分け量に異常(NG)があると判定する。
A = CPR-CPCL, b = CPCL-C
Assuming LP, the following relationship holds between the drawing tolerance t and a and b. b = a−t However, when a <b, t> 0.0, and when a> b, t <
0.0. When the distribution amount formula is expressed by a, b and t, RATEMAT = a / b = 1 / b × (b + t) = 1 + t / b (19) Here, the measured value t = 0.2 [mm], b = 1.83 [m
m] is substituted, t / b = 0.109≈0.11. Therefore, if 0.89 <RATMAT <1.11 holds, it is determined that the distribution amount is abnormal (NG).

【0042】上記判定は、1つのピース全歯について行
い、不良品を正確に選別することができる。このように
本発明の一実施形態においては、両面取り面のうち片側
面取り面をライトアップしてその片面画像を正確明瞭に
抽出し、この片面画像より稜線を推定した回帰直線を求
め、この正確な回帰直線より左右歯面輪郭位置を決定し
ているので、振分け量を極めて正しく算出でき、振分け
量判定の合否の正確性が向上するものである。
The above determination is performed for all teeth of one piece, and defective products can be accurately sorted. As described above, in one embodiment of the present invention, one of the double-sided surfaces is lit up and the single-sided image is extracted accurately and clearly, and a regression line that estimates a ridge line from the single-sided image is obtained. Since the left and right tooth flank contour positions are determined from the regression line, the distribution amount can be calculated extremely accurately, and the accuracy of the success or failure of the distribution amount determination is improved.

【0043】以上説明した実施形態は一例であり、本発
明は特許請求の範囲の精神を逸脱しない範囲で種々の変
形が可能である。即ち、両面取り面の明るさが均等であ
っても、片面画像を抽出する画像処理は可能である。ま
た、回帰直線と直交する基準線として、実施形態ではピ
ッチ円を採用したが、これに限定するものではなく、基
準線は、歯先円位置より歯の内側で稜線と交わるもので
あればいずれの位置に設定した線でもよい。従って、図
10に示す距離T0FTは、歯丈以内の任意値に設定で
きる。
The embodiment described above is an example, and the present invention can be variously modified without departing from the spirit of the claims. That is, even if the brightness of the double-sided surface is uniform, the image processing for extracting the single-sided image is possible. Further, as the reference line orthogonal to the regression line, the pitch circle is adopted in the embodiment, but the present invention is not limited to this, and the reference line is any if it intersects with the ridge line inside the tooth from the tip circle position. It may be a line set at the position. Therefore, the distance T0FT shown in FIG. 10 can be set to any value within the tooth height.

【0044】また、歯先円位置決定手段は、歯先円位置
を稜線抽出で使用した2値画像に基づいて、即ち、回帰
直線を横軸方向に「−50」だけ平行移動した直線に沿
って上記2値画像をサンプリングし、これによる画素値
分布より歯先円位置を求めているが、このような平行移
動した直線を用いることなく、回帰直線に沿って撮像画
像をサンプリングし、これによる画素値分布より歯先円
位置を求めても合否判定の正確さに影響はない。
Further, the tip circle position determining means is based on the binary image used for extracting the tip circle position in the ridge line extraction, that is, along the straight line obtained by translating the regression line by "-50" in the horizontal axis direction. The above binary image is sampled and the tip circle position is obtained from the pixel value distribution based on the sampled image. However, the captured image is sampled along the regression line without using such a parallel-moved straight line, Obtaining the tip circle position from the pixel value distribution does not affect the accuracy of the pass / fail judgment.

【図面の簡単な説明】[Brief description of drawings]

【図1】請求項1に係る発明を表したフローチャートで
ある。
FIG. 1 is a flow chart showing an invention according to claim 1.

【図2】本発明の一実施形態に係るギヤの面取り面計測
装置及び面取り面照明方法を説明するための説明図であ
る。
FIG. 2 is an explanatory diagram illustrating a chamfered surface measuring device for a gear and a chamfered surface illumination method according to an embodiment of the present invention.

【図3】本発明の一実施形態の作用を示すフローチャー
トである。
FIG. 3 is a flowchart showing the operation of the embodiment of the present invention.

【図4】明るさに差異をもつように照明して得られる一
歯の撮像画像を示す画面図(A)及びその画素値分布図
(B)である。
FIG. 4 is a screen view (A) and a pixel value distribution view (B) thereof showing a picked-up image of one tooth obtained by illuminating with different brightness.

【図5】撮像画像を2値化した画像を示す画面図であ
る。
FIG. 5 is a screen view showing a binarized image of a captured image.

【図6】図5の2値画像より面積が最大の領域を抽出し
て得られる画面図である。
6 is a screen view obtained by extracting a region having the largest area from the binary image of FIG.

【図7】推定稜線の回帰式を算出する過程を示す説明図
である。
FIG. 7 is an explanatory diagram showing a process of calculating a regression equation of an estimated edge line.

【図8】推定稜線の回帰直線を示す説明図である。FIG. 8 is an explanatory diagram showing a regression line of an estimated edge line.

【図9】歯先円位置を決定する過程を示す説明図であ
る。
FIG. 9 is an explanatory diagram showing a process of determining the tip circle position.

【図10】歯先円位置に対する基準線の関係を示す説明
図である。
FIG. 10 is an explanatory diagram showing a relationship of a reference line with respect to a tip circle position.

【図11】回帰直線と直交する基準線の求め方を示す説
明図である。
FIG. 11 is an explanatory diagram showing how to obtain a reference line orthogonal to a regression line.

【図12】片面画像に対し基準線でサンプリングし、得
られる画素値分布より稜線位置を決定する過程を示す説
明図である。
FIG. 12 is an explanatory diagram showing a process of sampling a single-sided image with a reference line and determining a ridge line position from the obtained pixel value distribution.

【図13】左右歯面位置の決定の前段階として両面取り
面の画像を2値化する様子を示す説明図である。
FIG. 13 is an explanatory diagram showing a manner in which an image of a double-sided surface is binarized as a pre-stage of determination of left and right tooth flank positions.

【図14】図13の処理で得られた両面取り面の2値画
像より左右歯面位置を決定する過程を示す説明図であ
る。
14 is an explanatory diagram showing a process of determining left and right tooth flank positions from a binary image of a double-sided surface obtained by the process of FIG.

【図15】シンクロナイザリングとスリーブの作用を示
す説明図である。
FIG. 15 is an explanatory view showing the operation of the synchronizer ring and the sleeve.

【図16】両面取り面が加工されたギヤピースを示す斜
視図である。
FIG. 16 is a perspective view showing a gear piece having a double-faced surface.

【図17】両面取り面の振分け量を説明する説明図であ
る。
FIG. 17 is an explanatory diagram illustrating a distribution amount of a double-sided surface.

【符号の説明】[Explanation of symbols]

1は被検査ギヤピース、2は密閉箱、3は治具、4は照
明手段、5は撮像手段、8は集光レンズ、10は画像処
理装置、11はホストコンピュータ、12は通信制御装
置である。
1 is a gear piece to be inspected, 2 is a closed box, 3 is a jig, 4 is illumination means, 5 is imaging means, 8 is a condenser lens, 10 is an image processing device, 11 is a host computer, and 12 is a communication control device. .

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】ギヤの各歯の端面においてピッチ円の法線
方向に稜線が形成されるように両面取り面が加工され、
該加工された前記両面取り面の稜線位置を計測して前記
両面取り面の振分け量を計測するギヤの面取り面計測装
置であって、 前記両面取り面を撮像する撮像手段と、 該撮像手段より得られる撮像画像のうち片側面取り面を
表す片面画像を抽出する片側面取り面抽出手段と、 前記片面画像の複数の平行な一軸方向画素値分布に基づ
きほぼ前記一軸と直交する方向に推定される推定稜線の
回帰式を求める回帰式設定手段と、 前記回帰式より定義される回帰直線に基づき歯先円位置
を求める歯先円位置決定手段と、 該歯先円位置決定手段によって決定された歯先円位置よ
り所定距離だけ内方向に前記回帰直線と直交する基準線
を設定する基準線設定手段と、 該基準線設定手段によって設定された前記基準線の方向
に前記撮像画像の画素値分布を求め、該画素値分布より
稜線位置を表す画素値変化点及び左右歯面輪郭位置を表
す二つの画素値変化点を決定する振分け量判定点算出手
段と、 該振分け量判定点算出手段で決定した前記各画素値変化
点より振分け量を演算する演算手段と、 該演算手段の結果に基づき両面取り面が加工され前記ギ
ヤの良否を判定する判定手段とを具備したことを特徴と
するギヤの面取り面計測装置。
1. A double-sided chamfer is processed so that a ridgeline is formed in a direction normal to a pitch circle on an end surface of each tooth of a gear,
A chamfered surface measuring device for a gear, which measures a ridgeline position of the processed double-sided surface to measure a distribution amount of the double-sided surface, comprising: an image pickup means for picking up the double-sided surface; A single-sided chamfer extraction means for extracting a single-sided image representing a single-sided chamfer from the obtained captured image, and an estimation estimated in a direction substantially orthogonal to the single-axis based on a plurality of parallel uniaxial pixel value distributions of the single-sided image Regression formula setting means for obtaining the regression formula of the ridge line, addendum circle position determining means for obtaining the addendum circle position based on the regression line defined by the regression formula, and addendum determined by the addendum circle position determining means A reference line setting unit that sets a reference line orthogonal to the regression line inward by a predetermined distance from a circle position, and a pixel value distribution of the captured image in the direction of the reference line set by the reference line setting unit. Therefore, the distribution amount determination point calculation means for determining the pixel value change point representing the ridge line position and the two pixel value change points representing the left and right tooth flank contour positions from the pixel value distribution, and the distribution amount determination point calculation means. Chamfering of gears, comprising: computing means for computing the distribution amount from the respective pixel value change points; and determining means for deciding the quality of the gear by processing the chamfered surface based on the result of the computing means. Surface measuring device.
【請求項2】前記片側面取り面抽出手段は、前記撮像手
段により得られる背景部を除いた撮像画像の同一画素値
の最大面積領域と他の領域とを濃淡に分けた2値画像と
して前記片面画像を抽出する最大領域抽出手段であるこ
とを特徴とする請求項1記載のギヤの面取り面計測装
置。
2. The one-side chamfered surface extracting means is the one-sided image as a binary image in which a maximum area area of the same pixel value of the captured image excluding the background portion obtained by the image capturing means and another area are divided into shades. The chamfered chamfering device for gears according to claim 1, wherein the chamfered surface measuring device is a maximum area extracting means for extracting an image.
【請求項3】ギヤの各歯の端面においてピッチ円の法線
方向に稜線が形成されるように両面取り面が加工され、
該加工された前記両面取り面の稜線位置を計測して前記
両面取り面の振分け量を計測するにあたり、前記両面取
り面を照明するギヤの面取り面照明方法であって、 前記両面取り面を撮像する撮像手段と、 該撮像手段より得られる撮像画像のうち片側面取り面を
表す片面画像を抽出すべく前記撮像手段により得られる
撮像画像の同一画素値の最大面積の領域と他の領域とを
濃淡に分けた2値画像として前記片面画像を抽出する片
側面取り面抽出手段と、 前記片面画像の複数の平行な一軸方向画素値分布に基づ
きほぼ前記一軸と直交する方向に推定される推定稜線の
回帰式を求める回帰式設定手段と、 前記回帰式より定義される回帰直線に基づき歯先円位置
を求める歯先円位置決定手段と、 該歯先円位置決定手段によって決定された歯先円位置よ
り所定距離だけ内方向に前記回帰直線と直交する基準線
を設定する基準線設定手段と、 該基準線設定手段によって設定された前記基準線の方向
に前記撮像画像の画素値分布を求め、該画素値分布より
稜線位置を表す画素値変化点及び両輪郭位置を表す二つ
の画素値変化点を決定する振分け量判定点算出手段と、 該振分け量判定点算出手段で決定した前記各画素値変化
点より振分け量を演算する演算手段と該演算手段の結果
に基づき両面取り面が加工され前記ギヤの良否を判定す
る判定手段とを具備したギヤの面取り面計測装置を用
い、 前記両面取り面の明るさに差が生じるように照明するこ
とを特徴とするギヤの面取り面照明方法。
3. A double-sided chamfer is processed so that a ridgeline is formed in a direction normal to a pitch circle on an end face of each tooth of a gear,
A chamfered surface illumination method of a gear that illuminates the double-sided surface when measuring the ridgeline position of the processed double-sided surface to measure the distribution amount of the double-sided surface, and capturing the double-sided surface. Image pickup means, and a region having the maximum area of the same pixel value of the imaged image obtained by the image pickup device and another region are shaded in order to extract a single-sided image showing a single chamfered surface from the imaged image obtained by the image pickup device. A single-sided chamfer extraction means for extracting the single-sided image as a binary image divided into two, and regression of an estimated ridge line estimated in a direction substantially orthogonal to the single-axis based on a plurality of parallel uniaxial pixel value distributions of the single-sided image. Regression formula setting means for obtaining a formula, addendum circle position determining means for obtaining addendum circle position based on a regression line defined by the regression formula, and addendum circle position determined by the addendum circle position determining means A reference line setting means for setting a reference line orthogonal to the regression line inward by a predetermined distance, and a pixel value distribution of the captured image in the direction of the reference line set by the reference line setting means, Distribution amount determination point calculation means for determining a pixel value change point representing a ridge line position and two pixel value change points representing both contour positions from the pixel value distribution, and each pixel value change determined by the distribution amount determination point calculation means Using a chamfered surface measuring device for a gear, which comprises a calculating means for calculating the distribution amount from a point and a judging means for judging whether the gear is good or bad on the basis of the result of the calculating means, A method for illuminating a chamfered surface of a gear, which comprises illuminating so as to cause a difference in brightness.
JP3657296A 1996-02-23 1996-02-23 Gear chamfer face measuring device and chamfer face irradiating method Pending JPH09229645A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3657296A JPH09229645A (en) 1996-02-23 1996-02-23 Gear chamfer face measuring device and chamfer face irradiating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3657296A JPH09229645A (en) 1996-02-23 1996-02-23 Gear chamfer face measuring device and chamfer face irradiating method

Publications (1)

Publication Number Publication Date
JPH09229645A true JPH09229645A (en) 1997-09-05

Family

ID=12473493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3657296A Pending JPH09229645A (en) 1996-02-23 1996-02-23 Gear chamfer face measuring device and chamfer face irradiating method

Country Status (1)

Country Link
JP (1) JPH09229645A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107014341A (en) * 2016-01-27 2017-08-04 浙江东风齿轮有限公司 The measuring method of gear internal keyway and teeth portion alignment degree
CN110930359A (en) * 2019-10-21 2020-03-27 浙江科技学院 Method and system for detecting automobile shifting fork
CN116758825A (en) * 2023-08-18 2023-09-15 长春希达电子技术有限公司 Processing method of small-space spherical display screen module and display device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107014341A (en) * 2016-01-27 2017-08-04 浙江东风齿轮有限公司 The measuring method of gear internal keyway and teeth portion alignment degree
CN110930359A (en) * 2019-10-21 2020-03-27 浙江科技学院 Method and system for detecting automobile shifting fork
CN116758825A (en) * 2023-08-18 2023-09-15 长春希达电子技术有限公司 Processing method of small-space spherical display screen module and display device
CN116758825B (en) * 2023-08-18 2023-12-12 长春希达电子技术有限公司 Processing method of small-space spherical display screen module and display device

Similar Documents

Publication Publication Date Title
JP4150390B2 (en) Appearance inspection method and appearance inspection apparatus
JP4707605B2 (en) Image inspection method and image inspection apparatus using the method
JP5564348B2 (en) Image processing apparatus and appearance inspection method
US6531707B1 (en) Machine vision method for the inspection of a material for defects
JP2009139248A (en) Defect detecting optical system and surface defect inspecting device for mounting defect detecting image processing
JP4680640B2 (en) Image input apparatus and image input method
US6765224B1 (en) Machine vision method and system for the inspection of a material
JP5732605B2 (en) Appearance inspection device
JP2009281759A (en) Color filter defect inspection method, inspection apparatus, and color filter manufacturing method using it
JPH09229645A (en) Gear chamfer face measuring device and chamfer face irradiating method
JPH0921628A (en) Method for detecting projecting/recessed defect of surface of cylindrical object
JPH109836A (en) Method for evaluating surface properties of object, surface roughness of glass and glass molding
JP2003156451A (en) Defect detecting device
JPH06281595A (en) Apparatus for detecting flaw on surface of object
JP2007003332A (en) Method and detector for detecting defect on planar body side face
JP4967132B2 (en) Defect inspection method for object surface
JP5402182B2 (en) Appearance inspection method and appearance inspection apparatus
JPH11316179A (en) Method and device for testing crushing of glass plate image pickup method for glass test, and image signal processing method used the method
CN111183351A (en) Image sensor surface defect detection method and detection system
JP2000258348A (en) Defect inspection apparatus
JP2000046748A (en) Method and apparatus for inspecting conductor pattern and production of multilayered substrate
JPH0781962B2 (en) Foreign object detection method
JPS63229311A (en) Detection of cross-sectional shape
JPH06229737A (en) Method for inspecting surface defect of periodic pattern
JP3755370B2 (en) Solder fillet inspection method