JPH09229559A - Electrical melting furnace - Google Patents

Electrical melting furnace

Info

Publication number
JPH09229559A
JPH09229559A JP8035304A JP3530496A JPH09229559A JP H09229559 A JPH09229559 A JP H09229559A JP 8035304 A JP8035304 A JP 8035304A JP 3530496 A JP3530496 A JP 3530496A JP H09229559 A JPH09229559 A JP H09229559A
Authority
JP
Japan
Prior art keywords
furnace
material layer
molten metal
refractory material
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8035304A
Other languages
Japanese (ja)
Other versions
JP3393002B2 (en
Inventor
Ryoji Samejima
良二 鮫島
Koutarou Katou
考太郎 加藤
Takahiro Yoshii
隆弘 吉井
Tomonobu Aso
知宣 麻生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takuma Co Ltd
Original Assignee
Takuma Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takuma Co Ltd filed Critical Takuma Co Ltd
Priority to JP03530496A priority Critical patent/JP3393002B2/en
Publication of JPH09229559A publication Critical patent/JPH09229559A/en
Application granted granted Critical
Publication of JP3393002B2 publication Critical patent/JP3393002B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Gasification And Melting Of Waste (AREA)
  • Processing Of Solid Wastes (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve durability of a furnace bottom electrode and a furnace bottom without eroding and damaging them owing to molten metal, and improve heat efficiency of the furnace. SOLUTION: The entire of a bottom wall of a DC arc furnace 1 is constructed into a furnace bottom electrode 5 which comprises a heat insulating material layer 16 formed on a collector plate 15, a conductive refractory material layer 17 formed on the heat insulating material layer 16 and being excellent in a conductive property and corrosion resistance against molten metal 8, and a metal conductor 18 buried in the heat insulating material layer 16 and connecting the conductive refractory material layer 17 and the collector plate 15 so as to be able to supply electric power thereto.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】都市ごみや産業廃棄物は、焼
却処理によって無害化及び減容化した上、その焼却残滓
を埋立投棄することにより処理されているが、焼却残滓
や燃焼排ガスから集塵,除去された煤塵等には、重金属
やダイオキシン等の有害物質が含まれているため、埋立
投棄後に環境汚染を生じる虞れがある上、埋立地の確保
も困難になりつつあり、実務上様々な問題を生じてい
る。そこで、近時においては、焼却残滓や煤塵等を溶融
固化することにより、その無害化と一層の減容化を図る
方策が取られている。本発明は、このような焼却残滓や
煤塵等を溶融処理するためのアーク炉等の電気溶融炉に
関するものである。
BACKGROUND OF THE INVENTION Municipal solid waste and industrial waste are detoxified and reduced in volume by incineration, and the incineration residue is disposed of by landfill. However, dust is collected from the incineration residue and combustion exhaust gas. , Since the soot and dust that have been removed contain harmful substances such as heavy metals and dioxins, there is a risk that environmental pollution will occur after landfill disposal, and securing landfill sites is becoming difficult. Is causing problems. Therefore, in recent years, measures have been taken to make the incineration residue, soot dust, etc., harmless and further reduce their volume by melting and solidifying them. The present invention relates to an electric melting furnace such as an arc furnace for melting such incineration residue and soot dust.

【0002】[0002]

【従来の技術】従来のこの種の電気溶融炉においては、
一般に、図3又は図4に示す如く、炉の天井壁21に貫
通支持させた主電極23と炉の底壁22a,22bに設
けた炉底電極25a,25bとの間で溶湯24を介して
アークを発生させることによって、焼却残滓や燃焼排ガ
スから集塵,除去された煤塵等の被溶融物を溶融処理す
るように構成されている。
2. Description of the Related Art In a conventional electric melting furnace of this type,
Generally, as shown in FIG. 3 or 4, a molten metal 24 is interposed between a main electrode 23 penetratingly supported by a furnace ceiling wall 21 and furnace bottom electrodes 25a, 25b provided on furnace bottom walls 22a, 22b. By generating an arc, it is configured to melt and process a substance to be melted such as dust collected and removed from incineration residues and combustion exhaust gas.

【0003】而して、図3に示す第1従来炉では、炉底
電極25aが非導電性耐火材で構成される底壁22aに
貫通保持させた金属製のピンや丸棒等で構成されてお
り、図4に示す第2従来炉では、炉底電極25bが底壁
22bで構成されている。すなわち、図4に示す如く、
底壁22bを集電板26と導電性耐火材層27と耐食性
耐火材層28とからなる3層構造となすと共に、耐食性
耐火材層28にこれを貫通して導電性耐火材層27に接
触する多数の導電部材(金属製のピンや丸棒等からな
る)29…を埋設して、これらが全体として炉底電極2
5bを構成するように工夫してある。
Thus, in the first conventional furnace shown in FIG. 3, the furnace bottom electrode 25a is composed of a metal pin, a round bar or the like held through the bottom wall 22a made of a non-conductive refractory material. In the second conventional furnace shown in FIG. 4, the furnace bottom electrode 25b is composed of the bottom wall 22b. That is, as shown in FIG.
The bottom wall 22b has a three-layer structure including a current collector plate 26, a conductive refractory material layer 27 and a corrosion resistant refractory material layer 28, and penetrates the corrosion resistant refractory material layer 28 to contact the conductive refractory material layer 27. A large number of conductive members (made of metal pins, round bars, etc.) 29 ...
It is devised so as to form 5b.

【0004】[0004]

【発明が解決しようとする課題】ところで、廃棄灰を溶
融して得られる溶湯24は、SiO2 ,Al2 3 ,C
aO,Fe2 3 等のスラグ成分を含む他、Na,K,
Ca,Cl,SO4 ,CO3 等の塩成分やPb,Zn,
Cd,Hg等の重金属等を含んでおり、極めて強い侵食
性を有する。
The molten metal 24 obtained by melting waste ash is SiO 2 , Al 2 O 3 , C.
In addition to containing slag components such as aO and Fe 2 O 3 , Na, K,
Ca, Cl, SO 4 , CO 3 and other salt components, Pb, Zn,
It contains heavy metals such as Cd and Hg and has extremely strong erosion.

【0005】したがって、第1従来炉では、炉底電極2
5aが、溶湯24に接触する耐火材層22aに、その表
面に露出する状態で貫通されているため、両者22a,
25a間の隙間から溶湯24(特に、溶湯24に含まれ
るPb等の低粘性低融点金属)が滲入する虞れがあり、
電極25a及び耐火材層22aを侵食,損傷させたり、
極端な場合には、炉底22aからの脱湯や電極25aの
脱落を生じる虞れがある。さらに、非導電性耐火材層2
2aにひびがはいると、これに溶湯24中の導電性金属
が侵入して、電極25aとの間に絶縁不良を生じる等、
炉運転上からも種々の問題が生じる。
Therefore, in the first conventional furnace, the bottom electrode 2
5a is penetrated by the refractory material layer 22a which is in contact with the molten metal 24 in a state of being exposed on the surface thereof.
There is a risk that the molten metal 24 (particularly, a low-viscosity low-melting point metal such as Pb contained in the molten metal 24) may infiltrate through the gap between the 25a,
Erodes and damages the electrode 25a and the refractory layer 22a,
In an extreme case, there is a possibility that hot water may be removed from the furnace bottom 22a or the electrode 25a may be removed. Furthermore, the non-conductive refractory material layer 2
If 2a is cracked, the conductive metal in the molten metal 24 will penetrate into it and cause insulation failure with the electrode 25a.
Various problems also occur in the operation of the furnace.

【0006】一方、第2従来炉では、溶湯24に直接接
触する底壁上面部分28を耐食性耐火材で構成している
ことから、溶湯24による底壁侵食を防止でき、底壁全
体を電極25bに構成していることとも相俟って、上記
した問題を生じない。しかし、導電性に優れた耐火材は
同時に熱伝導率の高いものでもあることから、底壁22
bを熱伝導率の高い導電性耐火材層27を含む積層構造
としている以上、どうしても底壁22bからの放熱量が
多くなり、炉の熱効率が頗る悪くなる。また、底壁22
b上に沈降する溶融金属が、底壁22bからの放熱によ
る冷却効果により、固化する虞れがある。勿論、第1従
来炉と同様に、耐火材以外の異物である導電部材29…
が、溶湯24が接触する耐火材層28に、その表面に露
出した状態で埋設されているから、溶湯24が滲入して
炉材28や導電部材29…を損傷させる虞れがある。
On the other hand, in the second conventional furnace, since the bottom wall upper surface portion 28 which is in direct contact with the molten metal 24 is made of the corrosion resistant refractory material, the corrosion of the bottom wall by the molten metal 24 can be prevented and the entire bottom wall is covered with the electrode 25b. In combination with the configuration, the above problems do not occur. However, since the refractory material having excellent conductivity is also one having high thermal conductivity, the bottom wall 22
As long as b has a laminated structure including the conductive refractory material layer 27 having a high thermal conductivity, the amount of heat radiated from the bottom wall 22b inevitably increases, and the thermal efficiency of the furnace becomes extremely poor. Also, the bottom wall 22
The molten metal settled on b may be solidified due to the cooling effect of heat radiation from the bottom wall 22b. Of course, similar to the first conventional furnace, the conductive member 29, which is a foreign substance other than the refractory material, ...
However, since it is buried in the refractory material layer 28 with which the molten metal 24 is in contact with the refractory material layer 28 exposed on the surface thereof, the molten metal 24 may infiltrate and damage the furnace material 28 and the conductive members 29.

【0007】本発明は、上記した問題をすべて解決し
て、長期に亘って良好な溶融処理を行いうる電気溶融炉
を提供することを目的とする。
An object of the present invention is to provide an electric melting furnace which solves all the above-mentioned problems and can perform a good melting process for a long period of time.

【0008】[0008]

【課題を解決するための手段】本発明の電気溶融炉にあ
っては、上記の目的を達成すべく、特に、炉の底壁全体
を、集電板上に形成した断熱材層と、断熱材層上に形成
された、導電性及び溶湯に対する耐侵食性に優れた導電
性耐火材層と、断熱材層に埋設されて、導電性耐火材層
と集電板とを通電可能に接続する金属製の導電体と、か
らなる炉底電極に構成しておくことを提案する。
In the electric melting furnace of the present invention, in order to achieve the above-mentioned object, in particular, the entire bottom wall of the furnace is provided with a heat insulating material layer formed on a current collector and a heat insulating material. A conductive refractory layer formed on the material layer and having excellent conductivity and corrosion resistance against molten metal, and a conductive refractory layer embedded in the heat insulating material layer and electrically connected to the current collector plate It is proposed that the furnace bottom electrode is composed of a metal conductor.

【0009】而して、炉底電極の上面部分は、侵食性の
強い高温の溶湯と接触するものの、耐侵食性に優れた導
電性耐火材層で構成されており、しかも導電性耐火材層
には第1及び第2従来炉における如き耐火材以外の異物
やこれを保持しておくための穴が全く存在しないことか
ら、溶湯中の低粘性で低融点の溶融金属が滲入するよう
なことがなく、炉底電極ないし底壁が溶湯滲入により侵
食,損傷される等の問題は生じない。
Although the upper surface of the furnace bottom electrode is in contact with the high-temperature molten metal having strong erosion resistance, it is formed of a conductive refractory material layer excellent in erosion resistance, and further, the conductive refractory material layer. Since there are no foreign matters other than refractory materials and holes for holding them, as in the first and second conventional furnaces, the molten metal of low viscosity and low melting point in the molten metal may infiltrate. Therefore, there is no problem that the bottom electrode or bottom wall is eroded or damaged by the infiltration of the molten metal.

【0010】しかも、炉底電極を構成する底壁が上下2
層構造をなし、その上層部分は熱伝導性の高い導電性耐
火材層で構成されているものの、その下層部分は断熱材
層で構成されていることから、底壁全体としての放熱
は、これを必要以上に厚くせずとも、効果的に抑制され
ることなる。
In addition, the bottom wall constituting the furnace bottom electrode has two upper and lower walls.
Although it has a layered structure, the upper part of which is composed of a conductive refractory layer having high thermal conductivity, but the lower part of which is composed of a heat insulating material layer, the heat dissipation of the entire bottom wall is Even if it is not made thicker than necessary, it will be effectively suppressed.

【0011】[0011]

【発明の実施の形態】以下、本発明の実施の形態を図1
及び図2に基づいて具体的に説明する。
FIG. 1 is a block diagram showing an embodiment of the present invention.
This will be specifically described with reference to FIG.

【0012】図1に示す電気溶融炉である直流アーク炉
1において、2は炉壁、3は主電極、4はスタート電
極、5は炉底電極である。
In a DC arc furnace 1 which is an electric melting furnace shown in FIG. 1, 2 is a furnace wall, 3 is a main electrode, 4 is a start electrode, and 5 is a furnace bottom electrode.

【0013】炉壁2は、図1に示す如く、円筒状の周壁
6と天井壁7と後述する如く炉底電極に構成された底壁
5とからなる。周壁6には、焼却残滓等の被溶融物8a
の供給口9と、炉1の直径方向において被溶融物供給口
9と直対向する位置に位置する溶湯8の排出口10と、
底壁5の上面近傍位に位置するタップホール11と、が
穿設されている。供給口9は被溶融物8aの供給源(図
示せず)に接続されていて、被溶融物8aを適宜の定量
供給装置12により炉1内に定量的に連続供給させうる
ようになっている。排出口10は、炉1内の溶湯8を溢
流排出させると共に炉1内の排ガス8bを排出させるた
めのもので、水砕スラグ生成用冷却水槽等のスラグ処理
系13a及び二次燃焼室等の排ガス処理系13bに接続
されている。タップホール11は、必要に応じて、底壁
5上に沈降する溶融金属を取り出すべく開口できるよう
になっている。すなわち、炉1内での溶融処理の進行に
伴い溶湯8は比重差により上下2層に分離される(比重
の軽いスラグ層と比重の重い溶融金属層とに分離され
る)が、タップホール11を開口させることにより、溶
融金属のみを取り出しうるようになっている。なお、周
壁6及び天井壁7は、溶湯8に対する耐食性,耐熱性,
断熱性に優れた非導電性の耐火材で構成されている。
As shown in FIG. 1, the furnace wall 2 is composed of a cylindrical peripheral wall 6, a ceiling wall 7 and a bottom wall 5 which constitutes a furnace bottom electrode as described later. The peripheral wall 6 has a melted material 8a such as incineration residue.
Supply port 9 of the molten metal 8 and a discharge port 10 of the molten metal 8 located directly opposite the melted material supply port 9 in the diameter direction of the furnace 1.
A tap hole 11 located near the upper surface of the bottom wall 5 is provided. The supply port 9 is connected to a supply source (not shown) of the material to be melted 8a so that the material to be melted 8a can be quantitatively continuously supplied into the furnace 1 by an appropriate quantitative supply device 12. . The discharge port 10 is for discharging the molten metal 8 in the furnace 1 to overflow and discharging the exhaust gas 8b in the furnace 1. The discharge port 10 is a slag processing system 13a such as a cooling water tank for producing water granulated slag and a secondary combustion chamber. Is connected to the exhaust gas treatment system 13b. The tap hole 11 can be opened to take out the molten metal settling on the bottom wall 5 as needed. That is, as the melting process proceeds in the furnace 1, the molten metal 8 is separated into upper and lower layers due to the difference in specific gravity (separated into a slag layer having a low specific gravity and a molten metal layer having a high specific gravity), but the tap hole 11 By opening the hole, only the molten metal can be taken out. The peripheral wall 6 and the ceiling wall 7 have corrosion resistance, heat resistance, and
It is composed of non-conductive refractory material with excellent heat insulation.

【0014】主電極3は、図1に示す如く、炉1の中心
部に配して天井壁7に貫通支持されている。この主電極
3は、従来炉におけると同様に、炉1内の液位(溶湯8
の液面位置)に応じて昇降操作されるようになってい
る。なお、主電極3は、直流電源(図示せず)の陰極に
接続されている。
As shown in FIG. 1, the main electrode 3 is disposed at the center of the furnace 1 and is supported by the ceiling wall 7 so as to penetrate therethrough. This main electrode 3 has a liquid level (molten metal 8) in the furnace 1 as in the conventional furnace.
The liquid level position of (1) is raised and lowered. The main electrode 3 is connected to the cathode of a DC power supply (not shown).

【0015】スタート電極4は、図1に示す如く、天井
壁7に傾斜状に貫通支持されており、先端部を炉1内に
突出させない待機位置(図1実線位置)と先端部を主電
極3の先端部に近接させた状態で炉1内に垂下突出する
スタート位置(図1鎖線位置)とに亘って昇降操作され
るようになっている。なお、スタート電極4は、前記直
流電源の陽極に接続されている。また、主電極3及びス
タート電極4は中空軸状のものとされていて、その中空
部から窒素ガスを供給して、炉1内を還元雰囲気に保持
するように工夫されている。
As shown in FIG. 1, the start electrode 4 is supported through the ceiling wall 7 in an inclined manner, and has a standby position (solid line position in FIG. 1) where the tip portion does not project into the furnace 1 and the tip portion is the main electrode. 3 is moved up and down to a start position (indicated by a chain line in FIG. 1) protruding downward into the furnace 1 in a state of being brought close to the tip end portion of 3. The start electrode 4 is connected to the anode of the DC power supply. Further, the main electrode 3 and the start electrode 4 are hollow shaft-shaped, and are devised so that nitrogen gas is supplied from the hollow portion to maintain the furnace 1 in a reducing atmosphere.

【0016】炉底電極5は、図1に示す如く、炉1の底
壁全体で構成されており、集電板15上に形成した断熱
材層16と、断熱材層16上に形成された導電性耐火材
17と、断熱材層16に埋設された導電体18とからな
る。
As shown in FIG. 1, the furnace bottom electrode 5 is composed of the entire bottom wall of the furnace 1, and is formed on the heat insulating material layer 16 formed on the current collector plate 15 and the heat insulating material layer 16. It is composed of a conductive refractory material 17 and a conductor 18 embedded in the heat insulating material layer 16.

【0017】集電板15は、図1に示す如く、炉壁2の
下面部に設けられた金属円板であり、前記直流電源の陽
極に接続されている。
As shown in FIG. 1, the collector plate 15 is a metal disk provided on the lower surface of the furnace wall 2 and is connected to the anode of the DC power source.

【0018】断熱材層16は、断熱性に優れた耐火材で
構成されている。一般には、例えばハイアルミナ系の耐
火材で構成しておくことが好ましい。
The heat insulating material layer 16 is made of a refractory material having excellent heat insulating properties. Generally, it is preferable to use, for example, a high alumina refractory material.

【0019】導電性耐火材層17は、導電性及び溶湯8
に対する耐侵食性に優れた耐火材で構成されている。特
に、耐侵食性については、溶湯8つまり被溶融物8aの
性状を考慮することが必要である。導電性耐火材層17
の構成材としては、このような導電性及び耐侵食性に優
れたものであれば、これを任意に選定することができる
が、一般には、カーボン系耐火材(カーボン煉瓦,カー
ボンペースト)を使用することが好ましい。
The conductive refractory material layer 17 is made of conductive material and molten metal 8
It is composed of a refractory material with excellent erosion resistance to. In particular, regarding the erosion resistance, it is necessary to consider the properties of the molten metal 8, that is, the material to be melted 8a. Conductive refractory material layer 17
As a constituent material of the above, any material having excellent conductivity and erosion resistance can be arbitrarily selected, but generally, a carbon-based refractory material (carbon brick, carbon paste) is used. Preferably.

【0020】導電体18は、図1に示す如く、断熱材層
16に埋設されていて、集電板15と導電性耐火材層1
7とを通電可能に接続する金属体である。具体的には、
導電体18は、図1及び図2(A)に示す如く、複数の
金属製(例えば鉄製)のコ字形部材181 …を並列状に
連結してなり、該部材181 …の上下片で構成される一
連の上下面部18a,18bが導電性耐火材層17の下
面及び集電板15の上面に全面的ないし略全面的に接触
されている。なお、導電体18の構成は任意であり、上
記したものの他、図2(B)〜(D)に例示するものが
考えられる。すなわち、図2(B)に示す導電体18
は、金属製のI字形部材182 …を並列状に連結して、
該部材182 …の上下片で構成される一連の上下面部1
8a,18bが導電性耐火材層17の下面及び集電板1
5の上面に全面的ないし略全面的に接触するようになっ
ている。また、図2(C)に示す導電材18は、金属製
のL字形部材183 …を並列状に連結して、部材183
…の下片で構成される一連の下面部18bが集電板15
の上面に全面的ないし略全面的に接触すると共に、部材
183 …の下端部が導電性耐火材層17の下面に部分的
に接触するようになっている。また、図2(D)に示す
導電材18は、図2(C)に示すものを上下逆にして使
用したもので、金属製の倒立L字形部材184 …の上片
で構成される一連の上面部18aが導電性耐火材層17
の下面に全面的ないし略全面的に接触すると共に、部材
183 …の下端部が集電板15の上面に部分的に接触す
るようになっている。このように、導電体18の上下部
は、導電性耐火材層17ないし集電板15に全面的ない
し略全面的に接触させておいても(図2(A)(B)参
照)、部分的に接触させておいても(図2(C)(D)
参照)、何れでもよく、要は、導電体18により集電板
15と導電性耐火材層17とが電気的に接続されればよ
いのである。したがって、両者15,17間を電気的に
接続できる限りにおいて、導電体18ないしその構成部
材181 ,182 ,183 ,184 の形状は任意であ
り、上記以外にも種々のものを使用することができる。
特に、導電体18は、同一形状の部材181 ,182
183 ,184 を連結したものとせず、異形部材を組み
合わせて構成したものでもよい。但し、導電体18を、
導電性耐火材層17ないし集電板15に全面的ないし略
全面的に接触する一連の上下面部18a,18bを有す
るものとしておけば、導電性耐火材層17ないし集電板
15との間に一部隙間が生じている場合にも、両者1
5,17間の通電性が充分に確保されることになる。換
言すれば、炉底電極5としての機能上、導電体18と導
電性耐火材層17ないし集電板15との間に部分的な隙
間があっても何らの支障がなく、それだけ底壁5の施工
を容易に行いうることになる。
As shown in FIG. 1, the conductor 18 is embedded in the heat insulating material layer 16, and the current collector plate 15 and the conductive refractory material layer 1 are provided.
It is a metal body that connects 7 and 7 so as to be able to conduct electricity. In particular,
Conductor 18, as shown in FIGS. 1 and FIG. 2 (A), the result was ligated made more metals (e.g., iron) a U-shaped member 18 1 ... of the parallel form, in the member 18 1 ... vertical piece A series of upper and lower surface portions 18a and 18b configured are in contact with the lower surface of the conductive refractory material layer 17 and the upper surface of the current collector plate 15 entirely or substantially entirely. The structure of the conductor 18 is arbitrary, and in addition to the above, the structures illustrated in FIGS. 2B to 2D can be considered. That is, the conductor 18 shown in FIG.
Is a metal I-shaped member 18 2 ...
A series of upper and lower surfaces 1 composed of upper and lower pieces of the member 18 2 .
8a and 18b are the lower surface of the conductive refractory material layer 17 and the collector plate 1
The upper surface of 5 is contacted with the entire surface or substantially the entire surface. Further, the conductive material 18 shown in FIG. 2 (C), by connecting the metal L-shaped member 18 3 ... in parallel form, member 18 3
... A series of lower surface portions 18b composed of lower pieces are collector plates 15
The entire lower surface of the member 18 3 comes into contact with the lower surface of the conductive refractory material layer 17, while the lower surface of the member 18 3 contacts with the upper surface thereof. Further, the conductive material 18 shown in FIG. 2 (D) is the same as that shown in FIG. 2 (C) and is used upside down, and is made up of a metal inverted L-shaped member 18 4 ... The upper surface portion 18a of the conductive refractory material layer 17
The entire lower surface of the member 18 3 comes into contact with the upper surface of the current collector plate 15 while the lower end of the member 18 3 comes into partial contact with the upper surface of the current collector plate 15. Thus, even if the upper and lower portions of the conductor 18 are brought into contact with the conductive refractory material layer 17 or the current collector plate 15 over the entire surface or substantially the entire area (see FIGS. 2A and 2B), Contact (Figs. 2 (C) and (D))
Any of them may be used, as long as the current collector plate 15 and the conductive refractory material layer 17 are electrically connected by the conductor 18. Therefore, as long as the two members 15 and 17 can be electrically connected, the conductor 18 or its constituent members 18 1 , 18 2 , 18 3 and 18 4 may have any shape. can do.
In particular, the conductor 18 is made up of members 18 1 , 18 2 having the same shape,
Instead of connecting 18 3 and 18 4 , the deformed members may be combined. However, the conductor 18 is
If the conductive refractory material layer 17 or the current collector plate 15 is provided with a series of upper and lower surfaces 18a and 18b that are in contact with the conductive refractory material layer 17 or the current collector plate 15, the space between the conductive refractory material layer 17 and the current collector plate 15 is large. Even if there is a gap, both 1
Sufficient electrical conductivity between 5 and 17 will be secured. In other words, in view of the function of the furnace bottom electrode 5, even if there is a partial gap between the conductor 18 and the conductive refractory material layer 17 or the current collector plate 15, there is no problem, and the bottom wall 5 is as much as that. The construction of can be performed easily.

【0021】以上のように構成された直流アーク炉1に
あっては、溶融処理を開始するに当たっては、まず、主
電極3とスタート位置に下降させたスタート電極4とに
通電させて両電極3,4間にアークを発生させ、これに
より炉1内の被溶融物8aを溶融させる(図1鎖線参
照)。これは、主電極3と炉底電極5との間に導電性の
溶湯8が介在せず、非導電性の被溶融物8aが介在する
にすぎない運転開始状態においては、両電極3,5間に
アークを発生させ得ないからである。
In the DC arc furnace 1 having the above-described structure, when starting the melting process, first, the main electrode 3 and the start electrode 4 lowered to the start position are energized so that both electrodes 3 are connected. , 4 an arc is generated, which melts the melted object 8a in the furnace 1 (see the chain line in FIG. 1). This is because the conductive molten metal 8 does not exist between the main electrode 3 and the furnace bottom electrode 5, and only the non-conductive melted material 8a intervenes. This is because an arc cannot be generated between them.

【0022】しかる後、炉1内に溶湯8が生じると、ス
タート電極4を待機位置に上昇させた上、主電極3と炉
底電極5とに所定の電圧を印加させて両電極3,5間に
アーク(プラズマ放電)を発生させた状態で、被溶融物
8aを定量供給装置12により炉1内に連続供給させつ
つ、被溶融物8aの溶融処理を開始する(図1実線参
照)。
After that, when the molten metal 8 is generated in the furnace 1, the start electrode 4 is raised to the standby position, and then a predetermined voltage is applied to the main electrode 3 and the furnace bottom electrode 5, so that both electrodes 3, 5 are formed. While the arc (plasma discharge) is being generated, the melted material 8a is continuously supplied into the furnace 1 by the constant quantity supply device 12, and the melting process of the melted material 8a is started (see the solid line in FIG. 1).

【0023】そして、主電極3と炉底電極5との間に発
生するアークによる加熱により被溶融物8aが溶融され
るに従って、溶湯8が排出口10からスラグ処理系13
aへと順次溢流排出されていくと共に、炉1内の排ガス
8bも排出口10から排ガス処理系13bへと排出され
ていく。
Then, as the material 8a to be melted is melted by the heating by the arc generated between the main electrode 3 and the furnace bottom electrode 5, the molten metal 8 is discharged from the discharge port 10 to the slag treatment system 13
The exhaust gas 8b in the furnace 1 is exhausted to the exhaust gas processing system 13b through the exhaust port 10 as well as being sequentially overflowed and discharged to a.

【0024】このとき、炉1の底壁5の上面部分が全面
的に導電性耐火材層17で構成されており、この導電性
耐火材層17が導電体18を介して集電板15に電気的
に接続されていることから、底壁をなす炉底電極5と主
電極3との間には良好にアークが発生されることにな
り、被溶融物8aの溶融処理が効果的に行われることに
なる。なお、被溶融物8aの溶融は、一般に、直流電源
から600〜1000KW(被溶融物1トン当たり)を
供給して、これによるアーク熱により被溶融物8aを1
400〜1800℃に加熱することによって行なわれ
る。
At this time, the upper surface of the bottom wall 5 of the furnace 1 is entirely constituted by the conductive refractory material layer 17, and the conductive refractory material layer 17 is applied to the collector plate 15 via the conductor 18. Since they are electrically connected, an arc is satisfactorily generated between the furnace bottom electrode 5 forming the bottom wall and the main electrode 3, so that the melted material 8a can be effectively melted. Will be seen. For melting the melted material 8a, generally, 600 to 1000 KW (per ton of melted material) is supplied from a DC power source, and the arc heat generated thereby melts the melted material 8a to 1
It is carried out by heating to 400 to 1800 ° C.

【0025】そして、炉底電極5の上面部分は、侵食性
の強い高温の溶湯8と接触するものの、耐侵食性に優れ
た導電性耐火材層17で構成されており、しかも導電性
耐火材層17には第1及び第2従来炉における如き耐火
材以外の異物やこれを保持しておくための穴が全く存在
しないことから、溶湯8中の低粘性で低融点の溶融金属
が滲入するようなことがなく、炉底電極5ないし底壁が
溶湯滲入により侵食,損傷される等の問題は生じない。
したがって、炉底電極5ないし炉底(底壁)を含めた炉
1の耐久性を大幅に向上させることができる。
The upper surface of the furnace bottom electrode 5 is in contact with the high-temperature molten metal 8 having strong erosion, but is formed of the conductive refractory material layer 17 having excellent erosion resistance. Since the layer 17 has no foreign matter other than the refractory material in the first and second conventional furnaces and no holes for holding the foreign matter, the low-viscosity and low-melting molten metal in the molten metal 8 permeates. Therefore, there is no problem that the furnace bottom electrode 5 or the bottom wall is corroded or damaged by the infiltration of the molten metal.
Therefore, the durability of the furnace 1 including the furnace bottom electrode 5 or the furnace bottom (bottom wall) can be significantly improved.

【0026】しかも、炉底電極5を構成する底壁が上下
2層構造をなし、その上層部分は熱伝導性の高い導電性
耐火材層17で構成されているものの、その下層部分は
断熱材層16で構成されていることから、底壁全体とし
ての放熱は、これを必要以上に厚くせずとも、効果的に
抑制されることなる。したがって、第2従来炉とは炉1
の底壁全体を炉底電極5に構成している点で共通するに
も拘わらず、第2従来炉における問題(放熱による熱効
率低下,溶融金属の冷却固化等)は全く生じない。勿
論、底壁5を必要以上に厚くしておく必要がないことか
ら、炉1全体の重量化も可及的に回避することができ
る。
Moreover, the bottom wall constituting the furnace bottom electrode 5 has a two-layer structure of upper and lower sides, and the upper layer portion thereof is formed of the conductive refractory material layer 17 having high thermal conductivity, but the lower layer portion thereof is the heat insulating material. Since it is composed of the layer 16, the heat radiation of the entire bottom wall is effectively suppressed without increasing the thickness more than necessary. Therefore, the second conventional furnace is the furnace 1
Despite being common in that the entire bottom wall of the above is configured as the furnace bottom electrode 5, the problems in the second conventional furnace (reduction of thermal efficiency due to heat radiation, cooling and solidification of molten metal, etc.) do not occur at all. Of course, since it is not necessary to make the bottom wall 5 thicker than necessary, it is possible to avoid weighting the entire furnace 1 as much as possible.

【0027】なお、本発明は上記した形態に限定される
ものではなく、本発明の基本原理を逸脱しない範囲にお
いて適宜に改良,変更することができる。例えば、炉壁
2は一般に1600〜1800℃の高温に耐え得る耐火
材で構成されており、且つその外周面は適宜の断熱材カ
バーで被覆されているが、必要に応じて、その断熱材カ
バーを更に水冷ジャケットで囲繞するようにしてもよ
い。また、炉底電極5を冷却ファン等により空冷させる
ようにすることも可能であるが、炉底電極5が上述した
如く放熱抑制構造とされているため、かかる空冷手段を
設けることは必ずしも必要ない。
The present invention is not limited to the above-mentioned embodiment, and can be appropriately improved and changed without departing from the basic principle of the present invention. For example, the furnace wall 2 is generally made of a refractory material capable of withstanding a high temperature of 1600 to 1800 ° C., and the outer peripheral surface thereof is covered with an appropriate heat insulating material cover. May be further surrounded by a water cooling jacket. It is also possible to cool the furnace bottom electrode 5 with a cooling fan or the like. However, since the furnace bottom electrode 5 has the heat dissipation suppressing structure as described above, it is not always necessary to provide such an air cooling means. .

【0028】[0028]

【発明の効果】以上の説明からも明らかなように、本発
明の電気溶融炉にあっては、炉底電極ないし炉底が溶湯
により侵食されたり損傷されたりすることなく、その耐
久性を大幅に向上させることができる。しかも、炉底か
らの脱湯を生じず、炉底からの放熱を可及的に抑制,防
止し得て、溶融金属の固化等の問題を生じることなく、
炉の熱効率を大幅に向上させることができる。したがっ
て、本発明によれば、冒頭で述べた如き従来炉における
問題をすべて解決することができ、焼却残滓等の被溶融
物の溶融処理を、長期に亘って効率良く効果的に行なう
ことができる。
As is apparent from the above description, in the electric melting furnace of the present invention, the durability of the furnace bottom electrode or the furnace bottom is greatly improved without being eroded or damaged by the molten metal. Can be improved. Moreover, without removing water from the furnace bottom, it is possible to suppress and prevent heat radiation from the furnace bottom as much as possible, without causing problems such as solidification of molten metal.
The thermal efficiency of the furnace can be greatly improved. Therefore, according to the present invention, all the problems in the conventional furnace as described at the beginning can be solved, and the melting treatment of the material to be melted such as incineration residue can be efficiently and effectively performed for a long period of time. .

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る電気溶融炉の一例を示す縦断側面
図である。
FIG. 1 is a vertical side view showing an example of an electric melting furnace according to the present invention.

【図2】導電体を示す要部の斜視図である。FIG. 2 is a perspective view of a main part showing a conductor.

【図3】第1従来炉を示す縦断側面図である。FIG. 3 is a vertical sectional side view showing a first conventional furnace.

【図4】第2従来炉を示す縦断側面図である。FIG. 4 is a vertical sectional side view showing a second conventional furnace.

【符号の説明】[Explanation of symbols]

1…直流アーク炉(電気溶融炉)、2…炉壁、3…主電
極、5…炉底電極(炉の底壁)、8…溶湯、8a…被溶
融物、15…集電板、16…断熱材層、17…導電性耐
火材層、18…導電体。
DESCRIPTION OF SYMBOLS 1 ... DC arc furnace (electric melting furnace), 2 ... Furnace wall, 3 ... Main electrode, 5 ... Furnace bottom electrode (furnace bottom wall), 8 ... Molten metal, 8a ... Molten material, 15 ... Current collector plate, 16 ... Insulating material layer, 17 ... Conductive refractory material layer, 18 ... Conductor.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 // B09B 3/00 B09B 3/00 303L (72)発明者 麻生 知宣 兵庫県尼崎市金楽寺町2丁目2番33号 株 式会社タクマ内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Reference number within the agency FI Technical display location // B09B 3/00 B09B 3/00 303L (72) Inventor Tomonori Aso Kinrakuji Town, Amagasaki City, Hyogo Prefecture 2-chome 2 chome In Takuma Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 炉の底壁全体を、集電板上に形成した断
熱材層と、断熱材層上に形成された、導電性及び溶湯に
対する耐侵食性に優れた導電性耐火材層と、断熱材層に
埋設されて、導電性耐火材層と集電板とを通電可能に接
続する金属製の導電体と、からなる炉底電極に構成して
あることを特徴とする電気溶融炉。
1. A heat insulating material layer formed on a current collector plate over the entire bottom wall of the furnace, and a conductive fire resistant material layer formed on the heat insulating material layer and having excellent conductivity and corrosion resistance against molten metal. , An electric melting furnace, which is embedded in a heat insulating material layer and is composed of a metal conductor that electrically connects the conductive refractory material layer and a current collector plate, and a furnace bottom electrode. .
JP03530496A 1996-02-23 1996-02-23 Electric melting furnace Expired - Fee Related JP3393002B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03530496A JP3393002B2 (en) 1996-02-23 1996-02-23 Electric melting furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03530496A JP3393002B2 (en) 1996-02-23 1996-02-23 Electric melting furnace

Publications (2)

Publication Number Publication Date
JPH09229559A true JPH09229559A (en) 1997-09-05
JP3393002B2 JP3393002B2 (en) 2003-04-07

Family

ID=12438055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03530496A Expired - Fee Related JP3393002B2 (en) 1996-02-23 1996-02-23 Electric melting furnace

Country Status (1)

Country Link
JP (1) JP3393002B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004340414A (en) * 2003-05-13 2004-12-02 Ebara Corp Melting furnace, plasma arc re-igniting method, and re-igniting bar inserting mechanism
JP2007292350A (en) * 2006-04-24 2007-11-08 Takuma Co Ltd Operation control method of electric melting furnace

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004340414A (en) * 2003-05-13 2004-12-02 Ebara Corp Melting furnace, plasma arc re-igniting method, and re-igniting bar inserting mechanism
JP2007292350A (en) * 2006-04-24 2007-11-08 Takuma Co Ltd Operation control method of electric melting furnace

Also Published As

Publication number Publication date
JP3393002B2 (en) 2003-04-07

Similar Documents

Publication Publication Date Title
JP3377906B2 (en) Method for preventing decrease in fluidity of molten slag in plasma melting furnace
JP3393002B2 (en) Electric melting furnace
JP3535571B2 (en) DC arc furnace
JP3390648B2 (en) Furnace wall structure of electric melting furnace and furnace body cooling method
JP2001263620A (en) Plasma arc melting furnace
JP3590243B2 (en) Furnace wall cooling structure of electric melting furnace
JP2007071509A (en) Bottom electrode structure for electric melting furnace
JPS6056963B2 (en) Melting treatment method and melting furnace for municipal waste incineration ash, sewage sludge, etc.
JP3781326B2 (en) Detection method of furnace wall damage in plasma melting furnace
JP3280265B2 (en) Apparatus and method for melting incineration residue and fly ash
JP2002295979A (en) Structure of furnace wall of electric melting furnace and method for suppressing wear of fireproof material of furnace wall
JP3370297B2 (en) Polychlorinated biphenyl detoxification equipment
JP3542263B2 (en) Furnace wall structure of electric melting furnace
JP3764624B2 (en) Operation method of electric melting furnace
JPH11108330A (en) Melting furnace
JP3575570B2 (en) Ash melting furnace
JP3504979B2 (en) Electrode melting furnace bottom electrode structure
JPH0210342B2 (en)
JP2002031486A (en) Starting method for plasma melting furnace
JPH07282822A (en) Fuel cell and its repairing method
JP2747983B2 (en) Method and apparatus for melting municipal solid waste incineration ash
JP3757409B2 (en) Ash melting furnace and method for forming bottom electrode of ash melting furnace
JP2992257B2 (en) Plasma melting method and apparatus
JPS637835B2 (en)
JP2000320826A (en) Structure of slag gate of blast furnace

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080124

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090124

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090124

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100124

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110124

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110124

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120124

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees