JPH0922820A - Method for adjusting electromagnetic relay - Google Patents

Method for adjusting electromagnetic relay

Info

Publication number
JPH0922820A
JPH0922820A JP16899895A JP16899895A JPH0922820A JP H0922820 A JPH0922820 A JP H0922820A JP 16899895 A JP16899895 A JP 16899895A JP 16899895 A JP16899895 A JP 16899895A JP H0922820 A JPH0922820 A JP H0922820A
Authority
JP
Japan
Prior art keywords
magnetic
electromagnetic relay
adjusting
magnetic pole
magnetic shield
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16899895A
Other languages
Japanese (ja)
Inventor
Masaaki Yamamoto
政昭 山元
Hiroyuki Sagawa
広幸 佐川
Seiji Inoue
清司 井上
Jiyun Uesasa
純 上笹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp, Omron Tateisi Electronics Co filed Critical Omron Corp
Priority to JP16899895A priority Critical patent/JPH0922820A/en
Publication of JPH0922820A publication Critical patent/JPH0922820A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electromagnets (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for adjusting an electromagnetic relay which can be easily and accurately adjusted without deteriorating switching perfor mance. SOLUTION: A magnet-screening plate 34a is provided on the lower surfaces of magnetic pole parts 31a and 31b of a movable iron piece 31 which alternately contacts or leaves magnetic pole parts 21a and 21b of a core 21. Then, laser 51 is applied to a magnet-screening plate 34a and permeability is adjusted.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、電磁継電器の調整
方法、特に、磁極部に設けた遮磁板にレーザ等を照射す
ることにより、透磁率を変化させて動作特性を調整する
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of adjusting an electromagnetic relay, and more particularly to a method of irradiating a magnetic shield plate provided on a magnetic pole portion with a laser or the like to change magnetic permeability and adjust operating characteristics.

【0002】[0002]

【従来の技術と発明が解決しようとする課題】従来、電
磁継電器としては、例えば、鉄芯にコイルを巻回して形
成した電磁石ブロックの励磁,消磁に基づき、前記鉄芯
の磁極部に吸着,離反する可動鉄片を組み込んだ可動ブ
ロックを介して可動接触片を駆動し、接点を開閉するも
のがある。そして、このような電磁継電器の動作特性を
調整するため、例えば、内部構成部品をすべて組み付け
た後、前記可動ブロツクおよび可動接点の動作特性を測
定し、その測定結果から前記可動接触片に対する調整量
を演算し、この演算結果に基づいて自動曲げ加工機で可
動接触片を板厚方向に屈曲することにより、可動接触片
のバネ負荷を調整していた。
2. Description of the Related Art Conventionally, as an electromagnetic relay, for example, based on the excitation and demagnetization of an electromagnet block formed by winding a coil around an iron core, the magnetic pole portion of the iron core is attracted, There is one that drives a movable contact piece through a movable block incorporating a movable iron piece that separates to open and close a contact. Then, in order to adjust the operation characteristics of such an electromagnetic relay, for example, after assembling all the internal components, the operation characteristics of the movable block and the movable contact are measured, and the adjustment amount for the movable contact piece is measured from the measurement result. Was calculated, and the spring load of the movable contact piece was adjusted by bending the movable contact piece in the plate thickness direction with an automatic bending machine based on the calculation result.

【0003】しかしながら、前述の調整方法では、可動
接触片を板厚方向に屈曲するので、開閉性能が低下する
だけでなく、前記可動接触片の材質,板厚の相違や材質
のバラツキにより、可動接触片のバネ負荷を高精度に調
整することが困難であった。特に、電磁継電器の小型化
に伴い、自動曲げ加工機の可動接触片に対する微妙な曲
げ加工が難しく、高精度の調整がより一層困難になると
いう問題点があった。
However, in the adjusting method described above, since the movable contact piece is bent in the plate thickness direction, not only the opening / closing performance is deteriorated, but also the movable contact piece is moved due to the material, the difference in the plate thickness and the variation in the material. It was difficult to adjust the spring load of the contact piece with high accuracy. In particular, with the downsizing of the electromagnetic relay, there has been a problem that it is difficult to perform delicate bending on the movable contact piece of the automatic bending machine, and it becomes more difficult to perform highly accurate adjustment.

【0004】本発明は、前記問題点に鑑み、開閉性能を
低下させることなく、高精度の調整が容易な電磁継電器
の調整方法を提供することを目的とする。
In view of the above problems, it is an object of the present invention to provide an adjusting method of an electromagnetic relay which can be easily adjusted with high accuracy without lowering the switching performance.

【0005】[0005]

【課題を解決するための手段】本発明は、前記目的を達
成するため、鉄芯にコイルを巻回して形成した電磁石ブ
ロックの励磁,消磁に基づき、前記鉄芯の磁極部に吸
着,離反する可動鉄片を介して接点を開閉する電磁継電
器において、相互に接離する前記鉄芯の磁極部および前
記可動鉄片の磁極部のうち、少なくともいずれか一方に
設けた遮磁板に加熱用ビームを照射して調整用凹部を形
成する工程からなるものである。したがって、可動鉄片
の磁極部に設けた遮磁板、または、鉄芯の磁極部の表裏
面の少なくともいずれか一方に設けた遮磁板に加熱用レ
ーザを照射して調整用凹部を形成してもよい。
In order to achieve the above object, the present invention attracts and separates from the magnetic pole portion of the iron core based on the excitation and demagnetization of an electromagnet block formed by winding a coil around the iron core. In an electromagnetic relay that opens and closes contacts via a movable iron piece, a heating beam is emitted to a magnetic shield plate provided on at least one of the magnetic pole portion of the iron core and the magnetic pole portion of the movable iron piece that are in contact with and separated from each other. Then, the step of forming the adjustment concave portion is performed. Therefore, the magnetic shield plate provided on the magnetic pole portion of the movable iron piece or the magnetic shield plate provided on at least one of the front and back surfaces of the magnetic pole portion of the iron core is irradiated with the heating laser to form the adjustment concave portion. Good.

【0006】また、前記調整用凹部は、遮磁板を貫通し
ない深さ寸法であってもよく、遮磁板の表面に形成した
少なくとも1本の調整用溝部であってもよい。さらに、
遮磁板の表面に設けた少なくとも3個の調整用凹部で多
角形を形成してもよい。
The adjusting recess may have a depth dimension that does not penetrate the magnetic shield, or may be at least one adjusting groove formed on the surface of the magnetic shield. further,
The polygon may be formed by at least three adjusting recesses provided on the surface of the magnetic shield.

【0007】さらに、遮磁板は、SUS,Ni等の高融
点材料からなるものであってもよく、表層から下層に向
けて融点が順次高い材料からなる多層構造であってもよ
い。
Further, the magnetic shield may be made of a high melting point material such as SUS or Ni, or may have a multi-layer structure made of a material having a higher melting point from the surface layer to the lower layer.

【0008】[0008]

【作用】したがって、本発明の調整方法によれば、加熱
用ビームの照射により、磁極部に設けた遮磁板の一部が
除去され、磁束が通り易くなり、透磁率が変化する。
Therefore, according to the adjusting method of the present invention, by irradiating the heating beam, a part of the magnetic shield plate provided on the magnetic pole portion is removed, the magnetic flux easily passes, and the magnetic permeability changes.

【0009】[0009]

【発明の実施の形態】次に、本発明にかかる実施例を図
1ないし図7の添付図面に従って説明する。第1実施例
にかかる電磁継電器は、図1(a)に示すように、大
略、断面略コ字形の箱形ベース10と、電磁石ブロック
20と、接極子ブロック30と、ケース40とからなる
ものである。なお、説明の便宜上、自己復帰型の電磁継
電器について説明した後、自己保持型の電磁継電器につ
いて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, an embodiment according to the present invention will be described with reference to the accompanying drawings of FIGS. As shown in FIG. 1A, the electromagnetic relay according to the first embodiment includes a box-shaped base 10 having a substantially U-shaped cross section, an electromagnet block 20, an armature block 30, and a case 40. Is. For convenience of description, a self-reset type electromagnetic relay will be described first, and then a self-holding type electromagnetic relay will be described.

【0010】箱形ベース10は、ベース本体11に共通
端子12、接点端子13,14、コイル端子15,15
をインサート成形したもので、その開口縁部から前記共
通端子12の上端部に位置する接続受け部12aが露出
している一方、接点端子13,14の固定接点13a,
14a(図1(a)中、ベース本体11の手前側に位置
する固定接点は図示せず)がベース本体11の内側隅部
から露出している。また、コイル端子15の接続受け部
15a(図1(a)中、ベース本体11の奥側に位置す
る接続受け部15aだけを図示する)がベース本体11
の内側面から露出している。
The box-shaped base 10 has a base body 11 having a common terminal 12, contact terminals 13 and 14, coil terminals 15 and 15.
Is insert-molded, the connection receiving portion 12a located at the upper end of the common terminal 12 is exposed from the opening edge portion thereof, while the fixed contacts 13a of the contact terminals 13 and 14,
14a (the fixed contact located on the front side of the base body 11 in FIG. 1A is not shown) is exposed from the inner corner of the base body 11. Further, the connection receiving portion 15a of the coil terminal 15 (in FIG. 1A, only the connection receiving portion 15a located on the far side of the base body 11 is shown) is the base body 11.
It is exposed from the inner surface of the.

【0011】電磁石ブロック20は、断面略コ字形の鉄
芯21の中央部に永久磁石22を略E字形となるように
配してスプール23にインサート成形し、このスプール
23から露出する前記鉄芯21の上端面を磁極部21
a,21bとしてある。さらに、前記スプール23にコ
イル24を巻回し、その引き出し線をスプール23にイ
ンサート成形した中継端子25(図1(a)中、奥側に
位置する中継端子は図示せず)のからげ部25aにから
げてハンダ付けしてある。そして、電磁石ブロック20
は、前記箱形ベース10に収納し、かつ、中継端子25
をコイル端子15の接続受け部15aに載置して溶着一
体化することにより、組み付けられる。
In the electromagnet block 20, a permanent magnet 22 is disposed in a central portion of an iron core 21 having a substantially U-shaped cross section so as to be substantially E-shaped and insert-molded on a spool 23, and the iron core exposed from the spool 23. The upper end surface of the magnetic pole portion 21
a and 21b. Further, the coiled portion 25a of the relay terminal 25 (the relay terminal located on the far side in FIG. 1A is not shown in the figure) is formed by winding the coil 24 around the spool 23 and insert-drawing the lead wire into the spool 23. It is soldered in a squeeze. Then, the electromagnet block 20
Is stored in the box-shaped base 10 and the relay terminal 25
Is mounted on the connection receiving portion 15a of the coil terminal 15 and integrated by welding.

【0012】接極子ブロック30は、板状の可動鉄片3
1と、その両側に並設した可動接触片32,32とを支
持体33にアウトサート成形で一体化したものであり、
可動接触片32の両側端部を巾方向にそれぞれ2分割し
て形成された分割片の下面に可動接点32a,32bが
それぞれ設けられている。さらに、可動接触片32の略
中央部から平面略T字形の接続部32cが側方に延在
し、前記支持体33の側端面から突出している。また、
前記可動鉄片31の両端部に位置する磁極部31a,3
1bの下面には、図1(b)に示すように、遮磁板34
a,34b(磁極部31bの遮磁板34bは図示せず)
が設けられている。なお、遮磁板34aは、遮磁板34
bと同一材質であり、かつ、薄いので、遮磁板34bよ
りも透磁率が大きい。そして、接極子ブロック30は、
前記箱形ベース10に組み込まれた電磁石ブロック20
の永久磁石22に載置して位置決めした後、可動接触片
32の接続部32cを共通端子12の接続受け部12a
にそれぞれ溶着一体化して電気接続することにより、回
動可能に支持されるとともに、可動接点32a,32b
が固定接点13a,14aに交互に接離可能に対向す
る。
The armature block 30 is a plate-shaped movable iron piece 3.
1 and the movable contact pieces 32, 32 arranged in parallel on both sides thereof are integrated with the support body 33 by outsert molding.
Movable contacts 32a and 32b are provided on the lower surfaces of the divided pieces formed by dividing the both ends of the movable contact piece 32 in the width direction. Further, a plane substantially T-shaped connecting portion 32c extends laterally from the substantially central portion of the movable contact piece 32 and projects from the side end surface of the support body 33. Also,
Magnetic pole portions 31a, 3 located at both ends of the movable iron piece 31
As shown in FIG. 1B, the magnetic shield 34
a, 34b (the magnetic shield plate 34b of the magnetic pole portion 31b is not shown)
Is provided. In addition, the magnetic shield plate 34a is the magnetic shield plate 34a.
Since it is made of the same material as b and is thin, it has a larger magnetic permeability than the magnetic shield 34b. And the armature block 30 is
Electromagnet block 20 incorporated in the box-shaped base 10
After being mounted on the permanent magnet 22 and positioned, the connecting portion 32c of the movable contact piece 32 is connected to the connection receiving portion 12a of the common terminal 12.
And the movable contacts 32a and 32b are rotatably supported by being integrally welded and electrically connected to the movable contacts 32a and 32b.
Are opposed to the fixed contacts 13a and 14a alternately so as to be able to contact and separate.

【0013】なお、40は、電磁石ブロック20および
接極子ブロック30を組み込んだ箱形ベース10に嵌合
できるケースである。
Reference numeral 40 is a case that can be fitted to the box-shaped base 10 incorporating the electromagnet block 20 and the armature block 30.

【0014】次に、前述の構成部品を組み付けた電磁継
電器は、以下のように調整される。すなわち、箱形ベー
ス10に電磁石ブロック20および接極子ブロック30
を順次組み付けた後、接極子ブロック30の動作特性を
測定し、例えば、磁極部31aの透磁率が規定の数値よ
りも低い場合には、測定結果からレーザの照射箇所,照
射量,照射時間を演算し、この演算結果に基づいて可動
鉄片31の遮磁板34aにレーザ照射ノズル50でレー
ザ51を照射することにより(図1(b))、遮磁板3
4aの一部を溶融させて透磁率を高め、可動鉄片31の
磁極部31aに対する磁気吸引力を増大し、ばね負荷荷
重よりも大きくなるように調整する。そして、再度、動
作特性を測定し、所定の規格内に入っている場合には、
次の組立工程に搬送し、所定の規格から外れている場合
には、前述の調整工程を繰り返す。
Next, the electromagnetic relay assembled with the above-mentioned components is adjusted as follows. That is, the electromagnet block 20 and the armature block 30 are attached to the box-shaped base 10.
After sequentially assembling, the operating characteristics of the armature block 30 are measured. For example, when the magnetic permeability of the magnetic pole portion 31a is lower than a specified value, the laser irradiation location, irradiation amount, and irradiation time are determined from the measurement results. Calculation is performed, and based on the calculation result, the magnetic shield plate 34a of the movable iron piece 31 is irradiated with the laser 51 by the laser irradiation nozzle 50 (FIG. 1 (b)).
The magnetic permeability is increased by melting a part of 4a to increase the magnetic attraction force to the magnetic pole portion 31a of the movable iron piece 31, and is adjusted so as to be larger than the spring load. Then, the operating characteristics are measured again, and if it is within the specified standard,
It is conveyed to the next assembly step, and when it is out of the predetermined standard, the above adjustment step is repeated.

【0015】したがって、コイル24が無励磁である場
合、前述の調整により、可動鉄片31の両端部に位置す
る磁極部31a,31bにそれぞれ設けた遮磁板34
a,34bのうち、遮磁板34aの透磁率が遮磁板34
bのそれよりも大きいので、永久磁石22の磁力によ
り、可動鉄片31の磁極部31aが遮磁板34aを介し
て鉄芯21の磁極部21aに吸着し、可動接点32aが
固定接点13aに接触している。
Therefore, when the coil 24 is non-excited, the above-mentioned adjustment allows the magnetic shields 34 provided on the magnetic pole portions 31a and 31b located at both ends of the movable iron piece 31, respectively.
a and 34b, the magnetic permeability of the magnetic shield plate 34a is the same as that of the magnetic shield plate 34a.
Since it is larger than that of b, the magnetic force of the permanent magnet 22 causes the magnetic pole portion 31a of the movable iron piece 31 to be attracted to the magnetic pole portion 21a of the iron core 21 via the magnetic shield 34a, and the movable contact 32a to contact the fixed contact 13a. doing.

【0016】そして、永久磁石22の磁束を打ち消す方
向にコイル24に電圧を印加して励磁すると、永久磁石
22の磁力に抗して接続部32cに支持された可動鉄片
31が回動し、可動鉄片31の遮磁板34aが鉄芯21
の磁極部21aから開離し、可動接点32aが固定接点
13aから離れた後、可動接点32bが固定接点14a
に接触し、可動鉄片31の磁極部31bが遮磁板34b
を介して鉄芯21の磁極部21bに当接する。
When a voltage is applied to the coil 24 to excite the magnetic flux of the permanent magnet 22 to excite it, the movable iron piece 31 supported by the connecting portion 32c rotates and moves against the magnetic force of the permanent magnet 22. The magnetic shield 34a of the iron piece 31 is attached to the iron core 21.
Of the fixed contact 13a after the movable contact 32a is separated from the fixed contact 13a.
And the magnetic pole portion 31b of the movable iron piece 31 contacts the magnetic shield plate 34b.
It contacts the magnetic pole portion 21b of the iron core 21 via.

【0017】ついで、前記コイル24の励磁を解くと、
永久磁石22の磁力による磁気吸引力よりも可動接触片
32,32のバネ力による負荷荷重の方が大きいととも
に、可動鉄片31の遮磁板34aの透磁率が遮磁板34
bのそれよりも大きいので、可動鉄片31が自動的に反
転し、元の状態に復帰して接点が切り換わる。
Then, when the excitation of the coil 24 is released,
The load applied by the spring force of the movable contact pieces 32, 32 is larger than the magnetic attraction force by the magnetic force of the permanent magnet 22, and the magnetic permeability of the magnetic shield 34a of the movable iron piece 31 is large.
Since it is larger than that of b, the movable iron piece 31 is automatically inverted, returns to the original state, and the contacts are switched.

【0018】前述の実施例では自己復帰型の電磁継電器
について説明したが、必ずしもこれに限らず、前述と同
一の構成部品から自己保持型の電磁継電器を組み立てて
もよい。すなわち、前述の実施例と同一の構成部品で自
己復帰型の電磁継電器を構成した後、図1(b)で示し
た方法と同様の方法で、その磁極部31bの下面に設け
た遮磁板34bに加熱用レーザを照射し、遮磁板34b
の一部を溶融,除去して遮磁板34bの透磁率を大きく
することにより、磁極部31a,31bの透磁率を同等
とし、磁気吸引力をばね負荷荷重よりも大きくする。
Although the self-reset type electromagnetic relay has been described in the above embodiment, the present invention is not limited to this, and the self-holding type electromagnetic relay may be assembled from the same components as described above. That is, after constructing a self-reset type electromagnetic relay with the same components as those of the above-described embodiment, the magnetic shield plate provided on the lower surface of the magnetic pole portion 31b is formed by the same method as that shown in FIG. 1B. 34b is irradiated with a heating laser to shield the magnetic shield 34b.
Is partially melted and removed to increase the magnetic permeability of the magnetic shield plate 34b, thereby making the magnetic permeability of the magnetic pole portions 31a and 31b equal and making the magnetic attraction force larger than the spring load.

【0019】したがって、電磁石ブロック20が無励磁
の場合、可動鉄片31の磁極部31aが遮磁板34aを
介して鉄芯21の磁極部21aに吸着し、可動接点32
aが固定接点13aに接触している。
Therefore, when the electromagnet block 20 is not excited, the magnetic pole portion 31a of the movable iron piece 31 is attracted to the magnetic pole portion 21a of the iron core 21 via the magnetic shield plate 34a, and the movable contact 32 is moved.
a is in contact with the fixed contact 13a.

【0020】ついで、前記永久磁石22の磁束を打ち消
す方向に前記電磁石ブロック20のコイル24に電圧を
印加して励磁すると、接続部32cに支持された可動鉄
片31が回動し、可動鉄片31の遮磁板34aが鉄芯2
1の磁極部21aから開離し、可動接点32aが固定接
点13aから開離した後、可動接点32bが固定接点1
4aに接触し、可動鉄片31の磁極部31bが遮磁板3
4bを介して鉄芯21の磁極部21bに吸着する。
Then, when a voltage is applied to the coil 24 of the electromagnet block 20 to excite it in a direction of canceling the magnetic flux of the permanent magnet 22, the movable iron piece 31 supported by the connecting portion 32c is rotated to move the movable iron piece 31. The magnetic shield 34a is the iron core 2
1 is separated from the magnetic pole portion 21a and the movable contact 32a is separated from the fixed contact 13a, and then the movable contact 32b is separated from the fixed contact 1a.
4a and the magnetic pole portion 31b of the movable iron piece 31 is connected to the magnetic shield plate 3
It is attracted to the magnetic pole portion 21b of the iron core 21 via 4b.

【0021】さらに、前記電磁石ブロック20の励磁を
解いても、永久磁石22の磁力による磁気吸引力が可動
接触片32,32のバネ力によるバネ負荷荷重よりも大
きいので、可動鉄片31は回動せず、その状態が保持さ
れる。
Further, even when the excitation of the electromagnet block 20 is released, the magnetic attraction force by the magnetic force of the permanent magnet 22 is larger than the spring load load by the spring force of the movable contact pieces 32, 32, so that the movable iron piece 31 rotates. Instead, the state is retained.

【0022】そして、前記接極子ブロック30を元の状
態に復帰させる場合には、永久磁石22の磁束を打ち消
すべく、前述と逆方向の電圧をコイル24に印加する
と、可動鉄片31が反転して元の状態に復帰して接点が
切り換わり、励磁を解いても、その状態を保持する。
When the armature block 30 is returned to the original state, a voltage in the opposite direction to the above is applied to the coil 24 in order to cancel the magnetic flux of the permanent magnet 22, and the movable iron piece 31 is inverted. It returns to the original state, the contacts switch, and that state is maintained even if the excitation is released.

【0023】以上の説明から明らかなように、本願発明
によれば、動作特性を高精度に調整できるだけでなく、
同一の構成部品を利用して動作の全く異なる電磁継電器
を製造できるので、管理すべき部品点数が減少し、部品
管理が容易になる。特に、鉄芯および可動鉄片の磁極部
における磁気特性を変質させることなく微調整でき、ま
た、異なる動作特性の電磁継電器が得られるので、調整
作業,製造作業が容易である。また、前述のいずれの実
施例においても、接極子ブロック30を電磁石ブロック
20に取り付けたままの状態で動作特性を調整でき、異
なる動作の電磁継電器を製造できるので、生産性が高い
という利点がある。
As is clear from the above description, according to the present invention, not only can the operating characteristics be adjusted with high accuracy, but
Since electromagnetic relays having completely different operations can be manufactured by using the same component parts, the number of parts to be managed is reduced and the parts management is facilitated. In particular, since the magnetic characteristics of the iron core and the magnetic poles of the movable iron piece can be finely adjusted without changing the quality, and an electromagnetic relay having different operating characteristics can be obtained, the adjustment work and the manufacturing work are easy. Further, in any of the above-described embodiments, the operating characteristics can be adjusted while the armature block 30 is attached to the electromagnet block 20, and the electromagnetic relays having different operations can be manufactured, which is advantageous in that the productivity is high. .

【0024】なお、可動鉄片に照射する加熱用ビームは
レーザに限らず、電子ビーム,プラズマなどのように磁
極部に設けた遮磁板を溶融させることにより、透磁率を
変化させ得るものであれば、特に限定するものではな
い。
The heating beam for irradiating the movable iron piece is not limited to the laser, and the magnetic permeability can be changed by melting the magnetic shielding plate provided on the magnetic pole part such as electron beam and plasma. However, it is not particularly limited.

【0025】第2実施例は、図3に示すように、前述の
第1実施例が回動する可動鉄片31を介して接点を開閉
する場合であるのに対し、往復移動する一対の可動鉄片
83,84で接点を開閉する場合である。なお、自己復
帰型の電磁継電器に適用した場合について説明した後、
自己保持型の電磁継電器に適用した場合について説明す
る。ただし、説明の便宜上、電磁石ブロック60および
可動ブロック80のみを説明し、接点機構の説明は省略
する。
In the second embodiment, as shown in FIG. 3, the contact is opened and closed through the rotating movable iron piece 31 in the above-described first embodiment, whereas a pair of reciprocating movable iron pieces is used. This is a case where the contacts are opened and closed by 83 and 84. After explaining the case of applying to a self-reset type electromagnetic relay,
The case of application to a self-holding electromagnetic relay will be described. However, for convenience of description, only the electromagnet block 60 and the movable block 80 will be described, and description of the contact mechanism will be omitted.

【0026】すなわち、電磁石ブロック60はコイル6
1を巻回したスプール62の貫通孔63に鉄芯70を圧
入し、突出する一端部を磁極部71とし、突出する他端
部72をヨーク75の一端部を曲げ起こして形成した起
立片76の嵌合孔77に圧入一体化したもので、ヨーク
75の切り起こした一対の舌片からなる磁極部78a,
78bと、前記鉄芯70の磁極部71の表裏面73a,
73bとが所定の間隔をおいてそれぞれ対向する。な
お、磁極部71の表裏面73a,73bには、遮磁板7
4a,74bが設けられている(遮磁板74bは図示せ
ず)。ただし、遮磁板74bは遮磁板74aと同一材質
であり、かつ、薄いので、遮磁板73bの透磁率が大き
く、裏面74bの磁気吸引力は表面73aのそれよりも
大きい。なお、64,64はスプール62の鍔部に設け
た係合受け部であり、65はコイル端子である。
That is, the electromagnet block 60 includes the coil 6
The iron core 70 is press-fitted into the through hole 63 of the spool 62 around which 1 is wound, the projecting one end portion is the magnetic pole portion 71, and the projecting other end portion 72 is formed by bending and raising one end portion of the yoke 75. Of the pair of tongues cut and raised from the yoke 75.
78b, front and back surfaces 73a of the magnetic pole portion 71 of the iron core 70,
73b are opposed to each other at a predetermined interval. The magnetic shield 71 is formed on the front and back surfaces 73a and 73b of the magnetic pole portion 71.
4a and 74b are provided (the magnetic shield 74b is not shown). However, since the magnetic shield plate 74b is made of the same material as the magnetic shield plate 74a and is thin, the magnetic shield plate 73b has a large magnetic permeability, and the back surface 74b has a magnetic attraction force larger than that of the front surface 73a. Incidentally, 64 and 64 are engagement receiving portions provided on the flange portion of the spool 62, and 65 is a coil terminal.

【0027】可動ブロック80は、樹脂成形したブロッ
ク本体81の枠部82に永久磁石87を挾持した一対の
可動鉄片83,84を圧入,保持したもので、前記ブロ
ック本体81の側面から一対の係合腕部85,85が側
方に延在している。そして、前記ブロック本体81の係
合腕部85,85を前記スプール62の係合受け部6
4,64にそれぞれ係合してスライド可能に支持するこ
とにより、一対の可動鉄片83,84が前記鉄芯70の
磁極部71の表裏面73a,73bに設けた遮磁板74
a,74bに交互に接離するように対向するとともに、
一対の可動鉄片83,84がヨーク75の磁極部78
a,78bに交互に接離するように対向する。
The movable block 80 is formed by press-fitting and holding a pair of movable iron pieces 83, 84 holding a permanent magnet 87 in a frame portion 82 of a resin-molded block body 81. Joint arms 85, 85 extend laterally. Then, the engagement arm portions 85, 85 of the block body 81 are connected to the engagement receiving portion 6 of the spool 62.
A pair of movable iron pieces 83, 84 are provided on the front and back surfaces 73a, 73b of the magnetic pole portion 71 of the iron core 70 by being engaged with and slidably supported by the magnetic shield plates 74, 64, respectively.
a and 74b so as to alternately approach and separate, and
The pair of movable iron pieces 83, 84 are the magnetic pole portions 78 of the yoke 75.
It opposes so that it may contact and separate from a and 78b by turns.

【0028】本実施例にかかる電磁継電器の動作特性を
調整するには、まず、電磁石ブロック60に可動ブロッ
ク80を組み付けた後、可動ブロック80および図示し
ない接点機構部の動作特性を測定する。そして、例え
ば、遮磁板74aの透磁率が低い場合には、その測定結
果からレーザの照射箇所,照射量,照射時間を演算す
る。ついで、前記可動ブロック80を電磁石ブロック6
0から外し、前述の演算結果に基づき、磁極部71の表
面に設けた遮磁板74aにレーザ照射ノズル50からレ
ーザ51を照射し、遮磁板74aの一部を溶融させて除
去することにより、透磁率を高め、磁気特性を微調整す
る。そして、再度、電磁石ブロック60に可動ブロック
80を組み付けて動作特性を測定し、動作特性が規格内
であれば、次の組立工程に搬送し、規格外であれば、前
述の調整を繰り返す。
In order to adjust the operating characteristics of the electromagnetic relay according to this embodiment, first, the movable block 80 is assembled to the electromagnet block 60, and then the operating characteristics of the movable block 80 and the contact mechanism portion (not shown) are measured. Then, for example, when the magnetic permeability of the magnetic shield 74a is low, the laser irradiation location, irradiation amount, and irradiation time are calculated from the measurement result. Then, the movable block 80 is attached to the electromagnet block 6
By removing the value from 0 and irradiating the magnetic shield plate 74a provided on the surface of the magnetic pole portion 71 with the laser 51 from the laser irradiation nozzle 50 based on the above calculation result, and melting and removing a part of the magnetic shield plate 74a. , Increase magnetic permeability and fine-tune magnetic characteristics. Then, the movable block 80 is attached to the electromagnet block 60 again, and the operation characteristic is measured. If the operation characteristic is within the standard, the operation is carried to the next assembly step, and if it is out of the standard, the above adjustment is repeated.

【0029】したがって、コイル61が無励磁の場合、
鉄芯70の磁極部71の裏面73aに遮磁板74aより
も薄い遮磁板74bを設けてあるので、永久磁石87の
磁力で可動鉄片84が鉄芯70の磁極部71の裏面73
bに遮磁板74bを介して吸着する一方、可動鉄片83
がヨーク75の磁極部78aに吸着する。
Therefore, when the coil 61 is not excited,
Since the magnetic shield plate 74b thinner than the magnetic shield plate 74a is provided on the back surface 73a of the magnetic pole portion 71 of the iron core 70, the magnetic force of the permanent magnet 87 causes the movable iron piece 84 to move to the rear surface 73 of the magnetic pole portion 71 of the iron core 70.
b through the magnetic shield 74b, while the movable iron piece 83
Is attracted to the magnetic pole portion 78a of the yoke 75.

【0030】そして、前記永久磁石87の磁束を打ち消
すようにコイル61に電圧を印加すると、永久磁石87
の磁力に抗して可動鉄片84が鉄芯70の磁極部71に
設けた遮磁板74bから離れてヨーク75の磁極部78
bに吸着する一方、可動鉄片83がヨーク75の磁極部
78aから離れて鉄芯70の磁極部71の表面73aに
遮磁板74aを介して吸着する。このため、可動ブロッ
ク80が平行移動し、これに基づいて係合腕部85,8
5のスリット86,86に挿入した図示しない可動接触
片が回動し、接点が切り換わる。
When a voltage is applied to the coil 61 so as to cancel the magnetic flux of the permanent magnet 87, the permanent magnet 87
The movable iron piece 84 is separated from the magnetic shield plate 74b provided on the magnetic pole portion 71 of the iron core 70 against the magnetic force of
While being attracted to b, the movable iron piece 83 is separated from the magnetic pole portion 78a of the yoke 75 and is attracted to the surface 73a of the magnetic pole portion 71 of the iron core 70 via the magnetic shield 74a. Therefore, the movable block 80 moves in parallel, and based on this, the engaging arm portions 85, 8
The movable contact piece (not shown) inserted in the slits 86, 86 of 5 rotates to switch the contacts.

【0031】ついで、前記コイル61の励磁を解くと、
図示しない可動接触片のバネ力によるバネ負荷が永久磁
石87の磁力による磁気吸引力よりも大きく、かつ、磁
極部71の裏面73bに設けた遮磁板74bは薄く、前
記遮磁板74aよりも磁束が通り易いので、可動ブロッ
ク80は永久磁石87の磁力に抗して元の状態に自動的
に復帰し、接点が切り換わる。
Then, when the excitation of the coil 61 is released,
The spring load due to the spring force of the movable contact piece (not shown) is larger than the magnetic attraction force due to the magnetic force of the permanent magnet 87, and the magnetic shield plate 74b provided on the back surface 73b of the magnetic pole portion 71 is thin and is smaller than the magnetic shield plate 74a. Since the magnetic flux easily passes through, the movable block 80 automatically returns to the original state against the magnetic force of the permanent magnet 87, and the contacts are switched.

【0032】前述の実施例では、自己復帰型の電磁継電
器について説明したが、例えば、これと同一の構成部品
から自己保持型の電磁継電器を製造してもよい。すなわ
ち、前述の第2実施例にかかる電磁継電器では、その鉄
芯70の磁極部71の表面73aに設けた遮磁板74a
にレーザを照射して溶融,除去し、磁極部71の表裏面
73a,73bにおける透磁率を同等とし、かつ、磁気
吸引力をばね負荷荷重よりも大きくすることにより、自
己復帰型の電磁継電器から自己保持型の電磁継電器を製
造できる。動作特性の調整方法は前述と同様であるの
で、説明を省略する。
In the above-mentioned embodiment, the self-reset type electromagnetic relay has been described. However, for example, the self-holding type electromagnetic relay may be manufactured from the same components. That is, in the electromagnetic relay according to the second embodiment described above, the magnetic shield plate 74a provided on the surface 73a of the magnetic pole portion 71 of the iron core 70 thereof.
By irradiating the laser with a laser to melt and remove it, the magnetic permeability in the front and back surfaces 73a and 73b of the magnetic pole portion 71 is made equal, and the magnetic attraction force is made larger than the spring load load. A self-holding type electromagnetic relay can be manufactured. Since the method of adjusting the operating characteristics is the same as that described above, the description thereof will be omitted.

【0033】したがって、本実施例によれば、部品精
度,組立精度のバラツキによる動作特性のバラツキを加
熱用ビームの照射によって調整できるだけでなく、動作
パターンの全く異なる電磁継電器を同一構成部品で製造
できるという利点がある。
Therefore, according to the present embodiment, not only the variations in operating characteristics due to variations in parts accuracy and assembly accuracy can be adjusted by irradiating the heating beam, but also electromagnetic relays having completely different operation patterns can be manufactured with the same components. There is an advantage.

【0034】前述の実施例では、磁極部71の表裏面に
設けた遮磁板74a,74bにレーザを照射する場合に
ついて説明したが、レーザの照射は一か所である必要は
なく、複数箇所に照射してもよく、例えば、図3に示す
ように、レーザの照射によって形成される調整用凹部7
5を同心円状、かつ、放射状に配置してもよい。このよ
うな配置とすることにより、レーザの照射によって調整
用凹部75の縁部に盛り上がりが生じても、可動鉄片8
3,84が遮磁板74a,74bに片当たりせず、動作
特性が安定するという利点がある。
In the above-described embodiment, the case where the magnetic shield plates 74a and 74b provided on the front and back surfaces of the magnetic pole portion 71 are irradiated with the laser has been described. However, the laser irradiation does not have to be performed in one place, but in a plurality of places. May be irradiated to the adjustment recess 7 for example, as shown in FIG.
The 5 may be arranged concentrically and radially. With this arrangement, even if the edge of the adjustment recess 75 is raised due to laser irradiation, the movable iron piece 8
There is an advantage that the operation characteristics are stable because the magnets 3 and 84 do not hit the magnetic shield plates 74a and 74b.

【0035】また、レーザの照射によって生じる調整用
凹部75は必ずしも鉄芯71が露出する深さ寸法である
必要はなく、例えば、図4に示すように、照射エネルギ
ー,照射時間等を調整することにより、鉄芯71に達し
ない深さ寸法の調整用凹部75を形成してもよい。この
ような調整用凹部75を形成することにより、より一層
高精度の微調整が可能となる。
Further, the adjustment concave portion 75 generated by the laser irradiation does not necessarily have a depth dimension to expose the iron core 71. For example, as shown in FIG. 4, the irradiation energy, the irradiation time, etc. may be adjusted. Thus, the adjustment recess 75 having a depth dimension that does not reach the iron core 71 may be formed. By forming such an adjustment recess 75, it is possible to perform fine adjustment with higher accuracy.

【0036】さらに、図5に示すように、調整用凹部7
5は必ずしも前述のような散点状である必要はなく、複
数本の平行な溝形状であってもよい。溝形状の調整用凹
部75の巾寸法,ピッチ,位置関係は必要に応じて適宜
選択できるが、左右対称となるように形成することによ
り、調整用凹部75の縁部に盛り上がりが生じても、可
動鉄片84,85が片当たりせず、動作特性が安定す
る。
Further, as shown in FIG.
The number 5 does not necessarily have to be the scattered point shape as described above, and may be a plurality of parallel groove shapes. The width dimension, pitch, and positional relationship of the groove-shaped adjusting recess 75 can be appropriately selected as necessary, but by forming the adjusting recess 75 so as to be bilaterally symmetric, even if the edge of the adjusting recess 75 rises, The movable iron pieces 84 and 85 do not hit each other, and the operation characteristics are stable.

【0037】そして、図6に示すように、前記遮磁板7
4aは、必ずしも単層である必要ではなく、融点の異な
る材料76a,76b,76cを積層一体化したもので
あってもよい。特に、表層から下層に向けて順次融点が
高くなる材料を積層一体化したものを遮磁板74aとす
れば、照射温度を調整することにより、高精度の深さ寸
法を有する調整用凹部75を形成できるので、より一層
高精度の調整が可能になるという利点がある。
Then, as shown in FIG. 6, the magnetic shield 7
4a does not necessarily have to be a single layer, and may be a material in which materials 76a, 76b, and 76c having different melting points are laminated and integrated. In particular, if the magnetic shield 74a is formed by laminating and integrating materials whose melting points sequentially increase from the surface layer to the lower layer, the adjustment recess 75 having a highly accurate depth dimension can be formed by adjusting the irradiation temperature. Since it can be formed, there is an advantage that the adjustment can be performed with higher accuracy.

【0038】なお、調整用凹部75は、前述の形状に限
定するものではなく、例えば、遮磁板の表面に格子状に
形成してもよく、また、複数本の環状溝からなる同心円
状に形成してもよい。
The adjustment recess 75 is not limited to the above-described shape, but may be formed in a grid pattern on the surface of the magnetic shield, or may be formed in a concentric circle shape including a plurality of annular grooves. You may form.

【0039】さらに、第2実施例にかかる調整用凹部7
5の形状等は、前記第1実施例にかかる電磁継電器に適
用してもよいことは勿論である。
Furthermore, the adjusting recess 7 according to the second embodiment.
It goes without saying that the shape and the like of 5 may be applied to the electromagnetic relay according to the first embodiment.

【0040】[0040]

【発明の効果】本発明にかかる電磁継電器の調整方法の
請求項1ないし請求項8によれば、磁極部に設けた遮磁
板に加熱用ビームを照射し、前記遮磁板の一部を溶融,
除去することにより、透磁率を変化させて磁気特性を調
整できる。このため、従来例のような可動接触片のスプ
リングバックを考慮する必要がなく、開閉性能を低下さ
せることなく、電磁継電器の動作特性を調整できる。こ
の結果、動作特性を安定化できるだけでなく、高精度の
調整が簡単となり、品質の安定化,不良率の低減化をも
図ることができる。また、電磁継電器が小型化しても、
本願発明によれば、加熱用ビームを所定の箇所に照射す
るだけでよいので、微妙な調整作業を行うことができ、
前述の効果と相俟ってより一層高精度の調整が可能とな
る。さらに、加熱用ビームを照射するだけでよいので、
動作特性の調整に手間がかからず、組立工程における調
整作業の自動化が簡単になる。請求項4によれば、調整
用凹部の深さ寸法を調整するので、より一層高精度の動
作特性の調整が可能となる。請求項5によれば、調整用
溝部の長さ寸法によって吸引力特性を容易に調整できる
だけでなく、加工工数が少なく、加工が容易である。特
に、磁極部の吸引力中心部を中心にして対称に調整用溝
部を形成すれば、溝部の縁部に盛り上がりが生じても、
片当たりが生ぜず、動作特性が安定する。請求項6によ
れば、調整用凹部が多角形を形成するので、調整用凹部
の縁部に盛り上がりが生じても、他部材が片当たりせ
ず、動作特性が安定する。請求項7によれば、遮磁板に
SUS等の高融点材料を使用しているので、調整用凹部
の縁部に盛り上がりが生じにくくなり、部材相互の片当
たりを防止でき、動作特性が安定化する。請求項8によ
れば、融点の温度差を利用して調整用凹部の深さ寸法を
調整しやすくなるので、磁気特性の調整をより一層正
確、かつ、容易に行うことができるという効果がある。
According to the first to eighth aspects of the method for adjusting an electromagnetic relay according to the present invention, the magnetic shield plate provided on the magnetic pole portion is irradiated with a heating beam to partially expose the magnetic shield plate. Melting,
By removing, magnetic permeability can be changed and magnetic characteristics can be adjusted. Therefore, it is not necessary to consider the springback of the movable contact piece as in the conventional example, and the operating characteristics of the electromagnetic relay can be adjusted without degrading the opening / closing performance. As a result, not only the operating characteristics can be stabilized, but also highly accurate adjustment can be facilitated, and the quality can be stabilized and the defect rate can be reduced. Also, even if the electromagnetic relay becomes smaller,
According to the invention of the present application, since it suffices to irradiate the heating beam to a predetermined place, it is possible to perform a delicate adjustment work,
In combination with the above-mentioned effects, it becomes possible to perform adjustment with higher accuracy. Furthermore, since it only needs to irradiate the heating beam,
It does not take time and effort to adjust the operating characteristics, and automation of the adjustment work in the assembly process becomes easy. According to the fourth aspect, since the depth dimension of the adjustment concave portion is adjusted, it is possible to adjust the operating characteristics with higher accuracy. According to the fifth aspect, not only the suction force characteristics can be easily adjusted by the length dimension of the adjustment groove portion, but also the number of processing steps is small and the processing is easy. In particular, if the adjusting groove is formed symmetrically about the attraction center of the magnetic pole, even if the edge of the groove rises,
One-sided contact does not occur and the operating characteristics are stable. According to the sixth aspect, since the adjusting recess forms a polygon, even if a bulge occurs at the edge of the adjusting recess, the other members do not hit each other and the operating characteristics are stable. According to claim 7, since a high melting point material such as SUS is used for the magnetic shield, swelling is less likely to occur at the edge of the adjustment recess, uneven contact between members can be prevented, and operation characteristics are stable. Turn into. According to the eighth aspect, since it becomes easy to adjust the depth dimension of the adjusting concave portion by utilizing the temperature difference of the melting points, there is an effect that the magnetic characteristics can be adjusted more accurately and easily. .

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明にかかる電磁継電器の第1実施例を示
す斜視図であり、図(a)は分解斜視図であり、図
(b)は加工方法を示す斜視図である。
1 is a perspective view showing a first embodiment of an electromagnetic relay according to the present invention, FIG. 1 (a) is an exploded perspective view, and FIG. 1 (b) is a perspective view showing a processing method.

【図2】 本発明にかかる電磁継電器の第2実施例を示
す分解斜視図である。
FIG. 2 is an exploded perspective view showing a second embodiment of the electromagnetic relay according to the present invention.

【図3】 図2に示した鉄芯の部分正面図である。FIG. 3 is a partial front view of the iron core shown in FIG.

【図4】 図2に示した鉄芯の応用例を示す部分断面図
である。
FIG. 4 is a partial cross-sectional view showing an application example of the iron core shown in FIG.

【図5】 図2に示した鉄芯の他の応用例を示し、図
(a)は部分正面図であり、図(b)は部分断面図であ
る。
5 shows another application example of the iron core shown in FIG. 2, FIG. 5 (a) is a partial front view, and FIG. 5 (b) is a partial sectional view.

【図6】 図2に示した鉄芯の別の応用例を示し、図
(a)は加工前の部分断面図であり、図(b)は加工後
の部分断面図である。
6 shows another application example of the iron core shown in FIG. 2, FIG. 6A is a partial cross-sectional view before processing, and FIG. 6B is a partial cross-sectional view after processing.

【符号の説明】 13a,14a…固定接点、20…電磁石ブロック、2
1…鉄芯、21a,21b…磁極部、22…永久磁石、
24…コイル、30…接極子ブロック、31…可動鉄
片、31a,31b…磁極部、32…可動接触片、32
a,32b…可動接点、34a,34b…遮磁板、51
…加熱用レーザ、60…電磁石ブロック、70…鉄芯、
71…磁極部、73a,73b…表裏面、74a,74
b…遮磁板、75…調整用凹部、80…可動ブロック、
83,84…可動鉄片、87…永久磁石。
[Explanation of reference numerals] 13a, 14a ... fixed contact, 20 ... electromagnet block, 2
1 ... Iron core, 21a, 21b ... Magnetic pole part, 22 ... Permanent magnet,
24 ... Coil, 30 ... Armature block, 31 ... Movable iron piece, 31a, 31b ... Magnetic pole part, 32 ... Movable contact piece, 32
a, 32b ... movable contact, 34a, 34b ... magnetic shield plate, 51
… Laser for heating, 60… Electromagnet block, 70… Iron core,
71 ... Magnetic pole portions, 73a, 73b ... Front and back surfaces, 74a, 74
b ... magnetic shield plate, 75 ... adjustment recess, 80 ... movable block,
83, 84 ... movable iron pieces, 87 ... permanent magnets.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 上笹 純 京都府京都市右京区花園土堂町10番地 オ ムロン株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Jun Kamesasa, 10 Odoron-cho, Hanazono Todo-cho, Ukyo-ku, Kyoto City, Kyoto Prefecture

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 鉄芯にコイルを巻回して形成した電磁石
ブロックの励磁,消磁に基づき、前記鉄芯の磁極部に吸
着,離反する可動鉄片を介して接点を開閉する電磁継電
器において、 相互に接離する前記鉄芯の磁極部および前記可動鉄片の
磁極部のうち、少なくともいずれか一方に設けた遮磁板
に加熱用ビームを照射して調整用凹部を形成することを
特徴とする電磁継電器の調整方法。
1. An electromagnetic relay that opens and closes contacts through a movable iron piece that is attracted to and separated from a magnetic pole portion of the iron core based on the excitation and demagnetization of an electromagnet block formed by winding a coil around the iron core. An electromagnetic relay, characterized in that a magnetic shielding plate provided on at least one of the magnetic pole portion of the iron core and the magnetic pole portion of the movable iron piece that come into contact with and separate from each other is irradiated with a heating beam to form an adjustment recess. Adjustment method.
【請求項2】 前記可動鉄片の磁極部に設けた遮磁板に
加熱用レーザを照射することを特徴とする請求項1に記
載の電磁継電器の調整方法。
2. The method of adjusting an electromagnetic relay according to claim 1, wherein a heating laser is applied to a magnetic shield plate provided on a magnetic pole portion of the movable iron piece.
【請求項3】 前記鉄芯の磁極部の表裏面の少なくとも
いずれか一方に設けた遮磁板に加熱用レーザを照射する
ことを特徴とする請求項1に記載の電磁継電器の調整方
法。
3. The method of adjusting an electromagnetic relay according to claim 1, wherein a heating laser is applied to a magnetic shield plate provided on at least one of the front and back surfaces of the magnetic pole portion of the iron core.
【請求項4】 前記調整用凹部が、前記遮磁板を貫通し
ない深さ寸法であることを特徴とする請求項1ないし3
のいずれか1項に記載の電磁継電器の調整方法。
4. The depth of the adjusting recess is set so as not to penetrate the magnetic shield plate.
The method for adjusting an electromagnetic relay according to any one of 1.
【請求項5】 前記調整用凹部が、少なくとも1本の調
整用溝部からなることを特徴とする請求項1ないし4の
いずれか1項に記載の電磁継電器の調整方法。
5. The method for adjusting an electromagnetic relay according to claim 1, wherein the adjusting recess comprises at least one adjusting groove.
【請求項6】 前記遮磁板の表面に設けた少なくとも3
個の調整用凹部で多角形を形成することを特徴とする請
求項1ないし5のいずれか1項に記載の電磁継電器の調
整方法。
6. At least 3 provided on the surface of the magnetic shield.
The method for adjusting an electromagnetic relay according to claim 1, wherein a polygon is formed by the individual adjusting recesses.
【請求項7】 前記遮磁板が、SUS,Ni等の高融点
材料からなることを特徴とする請求項1ないし6のいず
れか1項に記載の電磁継電器の調整方法。
7. The method of adjusting an electromagnetic relay according to claim 1, wherein the magnetic shield plate is made of a high melting point material such as SUS or Ni.
【請求項8】 前記遮磁板が、表層から下層に向けて融
点が順次高い材料からなる多層構造であることを特徴と
する請求項1ないし7のいずれか1項に記載の電磁継電
器の調整方法。
8. The adjustment of the electromagnetic relay according to claim 1, wherein the magnetic shield has a multi-layer structure made of a material having a higher melting point from a surface layer to a lower layer. Method.
JP16899895A 1995-07-04 1995-07-04 Method for adjusting electromagnetic relay Pending JPH0922820A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16899895A JPH0922820A (en) 1995-07-04 1995-07-04 Method for adjusting electromagnetic relay

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16899895A JPH0922820A (en) 1995-07-04 1995-07-04 Method for adjusting electromagnetic relay

Publications (1)

Publication Number Publication Date
JPH0922820A true JPH0922820A (en) 1997-01-21

Family

ID=15878465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16899895A Pending JPH0922820A (en) 1995-07-04 1995-07-04 Method for adjusting electromagnetic relay

Country Status (1)

Country Link
JP (1) JPH0922820A (en)

Similar Documents

Publication Publication Date Title
EP0918346B1 (en) Switch for high frequency
JPH0758606B2 (en) Electromagnetic contactor
US4366459A (en) Miniature magnetic latch relay
JPH0922820A (en) Method for adjusting electromagnetic relay
JP3829392B2 (en) Electromagnetic relay
JPH08213229A (en) Electromagnetic relay and manufacture thereof
JP4151248B2 (en) Electromagnetic relay
JP4089188B2 (en) Electromagnetic relay
JP4089189B2 (en) Electromagnetic relay
JP2861126B2 (en) Electromagnetic relay
JP3972448B2 (en) Electromagnetic relay
JP3603455B2 (en) High frequency relay
JPH0735279Y2 (en) Electromagnetic relay
JP3318781B2 (en) Electromagnetic relay
JPH0633638Y2 (en) Electromagnetic relay
JP2893602B2 (en) Electromagnetic relay
JPH0727543Y2 (en) Electromagnetic relay
JP2503626Y2 (en) Electromagnetic relay
JP3454071B2 (en) Electromagnet device
JPH11345555A (en) Electromagnetic relay
JPH0612955A (en) Electromagnetic relay
JP3521616B2 (en) Electromagnetic relay
JPH0724769Y2 (en) Electromagnetic relay
JPS6346938B2 (en)
JPH11354001A (en) Electromagnetic relay