JPH09228037A - Target for forming compound thin coating at high speed and evaporating source - Google Patents

Target for forming compound thin coating at high speed and evaporating source

Info

Publication number
JPH09228037A
JPH09228037A JP6700196A JP6700196A JPH09228037A JP H09228037 A JPH09228037 A JP H09228037A JP 6700196 A JP6700196 A JP 6700196A JP 6700196 A JP6700196 A JP 6700196A JP H09228037 A JPH09228037 A JP H09228037A
Authority
JP
Japan
Prior art keywords
metal
target
compound
thin film
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6700196A
Other languages
Japanese (ja)
Inventor
Tomonobu Hata
朋延 畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP6700196A priority Critical patent/JPH09228037A/en
Publication of JPH09228037A publication Critical patent/JPH09228037A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a reactive sputtering target capable of depositing compound thin coating and usable at a perfect utilizing rate by forming the target of a mixture of metal and partial metallic compounds or of the one obtd. by integrating and fixing the same. SOLUTION: A sputtering target is formed of a mixture of metal (single metals, allays, intermetallic compounds, the mixtures of metals or the like) and partial metallic compounds or the one obtd. by integrating the same. For example, in the case titanate zirconate is deposited by a reactive sputtering method, PbO is placed on a Zr-Ti alloy target to form into a feeding source of Pb and oxygen. Since this mixture is brought into reaction at a flow ratio of the metal mode on a substrate and is deposited, the depositing rate is high. By using the target, compound thin coating of oxide, nitride, sulfide, carbide or the like such as superconducting ceramic thin coating, ferroelectric ceramic thin coating and optical thin coating is formed. The deposition of the thin coating may be executed not only by a sputtering method but also by a physical method.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はスパッタリング法および
物理的堆積法で化合物薄膜を高速で堆積するためのター
ゲットおよび蒸発源の構成法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of constructing a target and an evaporation source for high speed deposition of a compound thin film by a sputtering method and a physical deposition method.

【0002】[0002]

【従来の技術】スパッタリング法で化合物薄膜を作成す
る方法は二通りある。金属とガス(酸素源,窒素源,炭
素源等)が反応して出来る化合物,例えばZnO,Si
,AlN,ZrN等は,金属ターゲットを用い不
活性ガスにOやN反応ガスを添加してスパッタする
方法と,最終的に必要な薄膜組成と同じ組成のセラミ
ック・ターゲットを(Ar+O)同様にスパッタする
方法とがある。しかし,金属ターゲットを用いる方法は
(活性ガス/不活性ガス)の割合が小さい場合には金属
モードと呼ばれて主に金属が堆積し,(活性ガス/不活
性ガス)の割合が大きい場合には化合物モードと呼ばれ
化合物薄膜が堆積出来る。しかし,化合物モードの堆積
速度は遅い場合が多い。セラミック・ターゲットを用い
る場合は堆積速度は上記の化合物モードと同様に堆積速
度は遅いが,マグネトロン・スパッタリングを用いれば
この欠点が緩和される。しかし,化合物のガス成分は往
々にして高速中性粒子となって堆積した膜に衝撃を与
え,組成ずれを起こしたりその部分だけ堆積速度の低下
を来たすという欠点がある。したがって,ターゲット中
の酸素等の元素は極力低減する方が望ましい。
2. Description of the Related Art There are two methods for forming a compound thin film by a sputtering method. Compounds formed by reacting metal and gas (oxygen source, nitrogen source, carbon source, etc.), eg ZnO, Si
For O 2 , AlN, ZrN, etc., a method of sputtering by adding O 2 or N 2 reaction gas to an inert gas using a metal target and a ceramic target of the same composition as the finally required thin film composition (Ar + O 2 ) Similarly, there is a method of sputtering. However, the method using a metal target is called a metal mode when the ratio of (active gas / inert gas) is small, and metal is mainly deposited, and when the ratio of (active gas / inert gas) is large. Is called a compound mode, and a compound thin film can be deposited. However, the compound mode deposition rate is often slow. When a ceramic target is used, the deposition rate is slow as in the compound mode described above, but using magnetron sputtering alleviates this drawback. However, the gas component of the compound often becomes high-speed neutral particles and impacts the deposited film, causing a composition shift or reducing the deposition rate only in that part. Therefore, it is desirable to reduce oxygen and other elements in the target as much as possible.

【0003】図1は金属ターゲットを用いZrO薄膜
を反応性マグネトロンスパッタリング法で堆積したとき
の,堆積速度と酸素対アルゴン流量比の関係を示したも
のである。堆積速度の早い部分は金属モード(図1,A
→B)と呼ばれ基板とターゲットの間隔が狭いときには
金属薄膜が堆積し,広い場合には化合物薄膜が堆積する
ことも出来るが,堆積速度は遅い。8%の点で堆積速度
が急に1桁以上低下しているがここではターゲット表面
は酸化物で覆われ酸化物薄膜が堆積するので化合物モー
ド(図1,C→D)と呼ばれている。セラミック・ター
ゲットを用いた場合には化合物モードと同様に金属に比
べ堆積速度は遅いという問題があった。
FIG. 1 shows the relationship between the deposition rate and the flow rate ratio of oxygen to argon when a ZrO 2 thin film was deposited by a reactive magnetron sputtering method using a metal target. The part where the deposition rate is high is the metal mode (Fig. 1, A
The metal thin film is deposited when the distance between the substrate and the target is narrow, and it is possible to deposit the compound thin film when it is wide, but the deposition rate is slow. At 8%, the deposition rate suddenly decreased by one digit or more, but here it is called compound mode (Fig. 1, C → D) because the target surface is covered with oxide and an oxide thin film is deposited. . When using a ceramic target, there is a problem that the deposition rate is slower than that of metal as in the compound mode.

【0004】[0004]

【発明が解決しようとする課題】ところで,スパッタリ
ング法で化合物薄膜を堆積する場合には,前述のように
金属ターゲットまたはセラミック・ターゲットを用いて
しか作成されてはいない。そのため,堆積速度を犠牲に
するか,マグネトロン・スパッタリングでターゲット利
用率を犠牲にするしか方法はなく100%の利用率で高
速に堆積することは不可能であった。
By the way, when the compound thin film is deposited by the sputtering method, it is prepared only by using the metal target or the ceramic target as described above. Therefore, there is no choice but to sacrifice the deposition rate or to sacrifice the target utilization rate by magnetron sputtering, and it was impossible to deposit at a high utilization rate of 100%.

【0005】本発明は上記課題を解決するためのもの
で,我々が反応性スパッタリングの準金属モードと定義
するのは金属ターゲットの上に化合物ペレットを乗せた
場合で(活性ガス/不活性ガス)流量比を変えて堆積速
度を調べた場合,金属モードと化合物モードの間のガス
流量比で金属の堆積速度程度の高速で化合物薄膜が堆積
するモードである。通常のスパッタリング法でも十分に
高速となり,100%のターゲット利用率で堆積するた
めの混合物ターゲットを提供することを目的としてい
る。
The present invention is intended to solve the above problems, and what we define as a quasi-metal mode of reactive sputtering is when a compound pellet is placed on a metal target (active gas / inert gas). When the deposition rate is examined by changing the flow rate ratio, the compound thin film is deposited at a gas flow rate ratio between the metal mode and the compound mode, which is as high as the metal deposition rate. It is an object of the present invention to provide a mixture target for depositing at a target utilization rate of 100%, which is sufficiently fast even with a normal sputtering method.

【課題を解決するための手段】本発明の混合物ターゲッ
トは,金属と金属化合物との混合物またはそれを一体化
して固めたもので,金属の堆積速度が化合物の堆積速度
より速いことを利用し,ガス成分は一部導入ガスと一部
はターゲットに混合した化合物元素から供給され,主と
して基板上で反応するので化合物の堆積速度は金属の堆
積速度より速いことが特徴である。つまり,金属ターゲ
ットに化合物元素を添加調整して混合することが本ター
ゲットの大きな特徴である。こうすると,金属モードの
(活性ガス/不活性ガス)流量の領域であるにもかかわ
らず化合物薄膜が高速で堆積できる。
The mixture target of the present invention is a mixture of a metal and a metal compound or a mixture thereof which is integrated and solidified. Utilizing the fact that the metal deposition rate is faster than the compound deposition rate, The gas component is supplied partly from the introduced gas and partly from the compound element mixed in the target, and mainly reacts on the substrate, so the compound deposition rate is faster than the metal deposition rate. In other words, the major feature of this target is that the compound elements are added to the metal target, adjusted and mixed. By doing so, the compound thin film can be deposited at a high speed even in the region of the flow rate (active gas / inert gas) in the metal mode.

【0006】[0006]

【作用】本発明は,混合物ターゲットを金属モードの
(活性ガス/不活性ガス)流量比で基板上で反応させ堆
積するので堆積速度が速い。したがって,必ずしもマグ
ネトロン・スパッタリング装置を使わなくても堆積速度
は十分に速く,通常の2極スパッタリング装置でも高速
堆積となり,ターゲット利用率は100%となる。この
ターゲットをマグネトロンスパッタリング装置に用いれ
ば利用率は装置で決まる値に低下するが,堆積速度は通
常の方法に比べ更に高速となる。通常化合物ターゲット
では堆積速度を上げるために入力電力を上げると,異常
放電が発生するが,本方法では金属モードであること,
ターゲットに金属が多い分その発生は本質的に極めて少
ない。
According to the present invention, since the mixture target is reacted and deposited on the substrate at the metal mode (active gas / inert gas) flow ratio, the deposition rate is high. Therefore, the deposition rate is sufficiently high without necessarily using the magnetron sputtering apparatus, and the deposition rate is high even with the normal bipolar sputtering apparatus, and the target utilization rate is 100%. If this target is used in a magnetron sputtering system, the utilization rate will drop to a value determined by the system, but the deposition rate will be even faster than in conventional methods. Normally, when the input power is increased to increase the deposition rate in the compound target, abnormal discharge occurs, but in this method, it is in the metal mode,
Since the target contains a large amount of metal, its generation is essentially extremely small.

【0007】[0007]

【実施例】図2は混合物ターゲットを発明するに至った
経過を説明するものである。例えば,チタン酸ジルコン
酸鉛(PZT:Pb(TiZr)O)を,反応性ス
パッタリング法で堆積する場合,Pb−Zr−Ti合金
かPZTのセラミック・ターゲットを用いる事になる。
金属モードで不足する酸素を固体酸素源から供給し,基
板上で金属と酸素を反応させ高速にPZTを堆積する準
金属モードでは,あらかじめ固体酸素源を金属の中に仕
込んでおく必要がある。PZTの場合には直径100m
mのZr−Tiの合金ターゲット(図2の1)の上に直
径13mm厚さ2mmの円盤状のPbOペレット(図2
の2)を面積比が約40%となるように乗せて,Pbと
酸素の供給源とする。このようにして通常では金属モー
ドである2.1%という小さな酸素流量比(O/Ar
+O)にもかかわらず,入力電力200W,基板温度
450℃という低温でかつ450〜540℃という広い
範囲でぺロブスカイト構造のPZT薄膜を,堆積速度が
〜12μm/分で作成することができた。これは報告さ
れている多くのマグネトロンスパッタリング法によるデ
ータが2〜12μm/分であることを考えると十分高速
である。
EXAMPLE FIG. 2 illustrates the process leading to the invention of a mixture target. For example, lead zirconate titanate (PZT: Pb (Ti x Zr ) O 3) and, when depositing by reactive sputtering, so that the use of ceramic targets for Pb-Zr-Ti alloy or PZT.
In the quasi-metal mode in which oxygen which is deficient in the metal mode is supplied from the solid oxygen source and the metal reacts with oxygen on the substrate to deposit PZT at high speed, it is necessary to prepare the solid oxygen source in the metal in advance. 100m diameter for PZT
m Zr—Ti alloy target (1 in FIG. 2) on a disc-shaped PbO pellet (diameter 13 mm and thickness 2 mm) (FIG. 2).
No. 2) is added so that the area ratio is about 40% to serve as a supply source of Pb and oxygen. In this way, a small oxygen flow rate ratio (O 2 / Ar) of 2.1%, which is usually the metal mode, is obtained.
Despite + O 2 ), a PZT thin film having a perovskite structure could be formed at a deposition rate of ~ 12 μm / min at an input power of 200 W, a substrate temperature of 450 ° C, and a wide range of 450 to 540 ° C. . This is sufficiently fast considering that the reported data by many magnetron sputtering methods is 2 to 12 μm / min.

【0008】図2は金属ターゲットの上に円盤状のPb
Oを乗せて準金属モードでの低温・高速堆積に成功した
ターゲットである。これと同じ効果のターゲットを別の
方法で作るとすれば図3で示すように,PbO円盤の代
わりに合金ターゲットに同じ直径の穴を明け,その中に
PbO粉末を圧縮充填すれば良い。こうすれば両者の作
用に違いは無い。次に,図3のターゲットを粉砕し再び
図4のように固めたとしても,形状はミクロになったと
はいえ,その効果は全く同じ筈である。そうであれば,
最初から図4のように金属と金属化合物成分を調合して
も効果に変わりは無い。このようにZr−Ti合金とP
bOの混合物または化合物であることを特徴とする反応
性スパッタリング用ターゲットである。
FIG. 2 shows a disk-shaped Pb on a metal target.
It is a target that succeeds in low temperature and high speed deposition in the quasi-metal mode by adding O. If a target having the same effect as this is produced by another method, a hole having the same diameter may be formed in the alloy target instead of the PbO disk, and PbO powder may be compressed and filled therein, as shown in FIG. This way, there is no difference in the action of both. Next, even if the target of FIG. 3 was crushed and solidified again as shown in FIG. 4, the effect should be exactly the same although the shape became micro. in that case,
Even if the metal and the metal compound component are mixed from the beginning as shown in FIG. 4, the effect remains the same. Thus, Zr-Ti alloy and P
The target for reactive sputtering is a mixture or compound of bO.

【0009】[0009]

【発明の効果】以上のように本発明では,混合物ターゲ
ットを用いることにより,準金属モードで化合物薄膜を
高速に,堆積することができる。これを,通常のスパッ
タリング装置に用いても,マグネトロンスパッタリング
の場合と同程度の堆積速度でかつターゲット利用率は1
00%となる。さらに,基板上で反応し形成するので薄
膜形成温度は低くなり,人工格子膜形成などの相互拡散
を防止することが可能となり,化合物薄膜形成時のアー
クの発生を低減することが出来る。
As described above, in the present invention, the compound target can be deposited at a high speed in the quasi-metal mode by using the mixture target. Even if this is used in a normal sputtering apparatus, the deposition rate is about the same as in the case of magnetron sputtering and the target utilization rate is 1
00%. Further, since the reaction is performed on the substrate to form, the thin film forming temperature is lowered, it is possible to prevent mutual diffusion such as artificial lattice film formation, and it is possible to reduce the generation of arc during the formation of the compound thin film.

【図面の簡単な説明】[Brief description of drawings]

【図1】反応性スパッタリングにおける堆積速度と酸素
ガス流量比
FIG. 1 Deposition rate and oxygen gas flow rate ratio in reactive sputtering

【図2】金属−金属酸化物 複合ターゲットFIG. 2 Metal-metal oxide composite target

【図3】仮想 金属−金属酸化物 複合ターゲットFIG. 3 Virtual metal-metal oxide composite target

【図4】金属−金属酸化物の混合物ターゲットFIG. 4 Metal-Metal Oxide Mixture Target

【符号の説明】[Explanation of symbols]

1…金属ターゲット 2…金属酸化物,3…金属酸化
物,4…金属,5…金属と金属酸化物の混合物を一体化
した例,粉末のままでも使用できる
1 ... Metal target 2 ... Metal oxide, 3 ... Metal oxide, 4 ... Metal, 5 ... Integrated mixture of metal and metal oxide, can be used as powder

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C23C 14/28 C23C 14/28 14/32 14/32 A ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical indication C23C 14/28 C23C 14/28 14/32 14/32 A

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】スパッタリング法による化合物薄膜の作
成,例えば超伝導セラミック薄膜,強誘電体セラミック
薄膜,透明導電薄膜,光学薄膜などのいわゆる酸化物
や,窒化物,硫化物,炭化物などの化合物薄膜の作成に
おける,スパッタリング・ターゲットを金属(単金属,
合金,金属間化合物,金属の混合物等)と一部金属化合
物との混合物またはそれらを一体化し,反応性スパッタ
リングの金属モードの堆積速度より速く化合物薄膜の堆
積を可能とした反応性スパッタリング用ターゲット。
1. Preparation of a compound thin film by a sputtering method, for example, a so-called oxide such as a superconducting ceramic thin film, a ferroelectric ceramic thin film, a transparent conductive thin film, an optical thin film, or a compound thin film such as a nitride, a sulfide, or a carbide. The sputtering target used in the creation was a metal (single metal,
Alloy, intermetallic compound, metal mixture, etc.) and a mixture of some metal compounds, or a combination of them, which makes it possible to deposit a compound thin film faster than the deposition rate in the metal mode of reactive sputtering.
【請求項2】請求項1において金属モードで化合物を堆
積するので,ガスからの供給で不足する成分を金属化合
物として添加し,薄膜は主に基板上で金属とガスおよび
ターゲットに含まれたガス種と反応し,堆積できること
を特徴とする反応性スパッタリング用ターゲット。
2. The compound is deposited in the metal mode in claim 1, so that a component insufficient in supply from a gas is added as a metal compound, and the thin film is mainly the metal and the gas on the substrate and the gas contained in the target. A target for reactive sputtering, which is capable of reacting with a seed and depositing.
【請求項3】要求項1のスパッタリング法に限らず同様
の物理的方法(PVD法)で堆積する,レーザーアブレ
ーション法,反応性蒸着法,イオン化蒸着法,イオンプ
レーティング法等物質を蒸発して基板上で化合物を反応
堆積することを特徴とする,金属(単金属,合金,金属
間化合物,金属の混合物等)と一部金属化合物との混合
物またはそれらを一体化した反応性薄膜堆積用ターゲッ
トおよび蒸発源。
3. The material is not limited to the sputtering method of claim 1, but is deposited by the same physical method (PVD method), such as laser ablation method, reactive deposition method, ionization deposition method, ion plating method, etc. A target for reactive thin film deposition, which is a mixture of a metal (a single metal, an alloy, an intermetallic compound, a mixture of metals, etc.) and a part of a metal compound, which is characterized by reactively depositing a compound on a substrate. And evaporation source.
JP6700196A 1996-02-16 1996-02-16 Target for forming compound thin coating at high speed and evaporating source Pending JPH09228037A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6700196A JPH09228037A (en) 1996-02-16 1996-02-16 Target for forming compound thin coating at high speed and evaporating source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6700196A JPH09228037A (en) 1996-02-16 1996-02-16 Target for forming compound thin coating at high speed and evaporating source

Publications (1)

Publication Number Publication Date
JPH09228037A true JPH09228037A (en) 1997-09-02

Family

ID=13332277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6700196A Pending JPH09228037A (en) 1996-02-16 1996-02-16 Target for forming compound thin coating at high speed and evaporating source

Country Status (1)

Country Link
JP (1) JPH09228037A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005083148A1 (en) * 2004-03-01 2005-09-09 Nippon Mining & Metals Co., Ltd. Sputtering target with few surface defects and method for processing surface thereof
US9034154B2 (en) 2009-03-03 2015-05-19 Jx Nippon Mining & Metals Corporation Sputtering target and process for producing same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005083148A1 (en) * 2004-03-01 2005-09-09 Nippon Mining & Metals Co., Ltd. Sputtering target with few surface defects and method for processing surface thereof
US7909949B2 (en) 2004-03-01 2011-03-22 Jx Nippon Mining & Metals Corporation Sputtering target with few surface defects, and surface processing method thereof
US8663402B2 (en) 2004-03-01 2014-03-04 Jx Nippon Mining & Metals Corporation Sputtering target with few surface defects, and surface processing method thereof
US9034154B2 (en) 2009-03-03 2015-05-19 Jx Nippon Mining & Metals Corporation Sputtering target and process for producing same

Similar Documents

Publication Publication Date Title
Hibbs et al. Effects of substrate temperature and substrate material on the structure of reactively sputtered TiN films
US6042777A (en) Manufacturing of high density intermetallic sputter targets
Chain The influence of deposition temperature on the structure and optical properties of vanadium oxide films
US6787003B2 (en) Sputtering target and methods of making and using same
CN107299313A (en) Method for preparing cubic oxide zirconium layer
JP2825521B2 (en) Hard material protective layer for strongly loaded substrates and its preparation
JPH09228037A (en) Target for forming compound thin coating at high speed and evaporating source
JPS6063372A (en) Manufacture of thin boron nitride film of high hardness
US6210545B1 (en) Method for forming a perovskite thin film using a sputtering method with a fully oxidized perovskite target
JPH03162573A (en) Sputtering target for producing integrated circuit device
US3681226A (en) Sputtering process for making ferroelectric films
EP0273195B1 (en) A method of making a thin magnetic pole piece
JPH05246782A (en) Substoichiometric zirconium nitride coating
JPH0610121A (en) Target for reactive sputtering and film forming method using the same
JPH02138458A (en) Laminated hard material and production thereof
JP2767972B2 (en) Method for producing TiAl-based intermetallic compound layer
JP3015009B1 (en) Titanium silicide target and method of manufacturing the same
JPS6320446A (en) Formation of boron nitride film
JP2928330B2 (en) Melting material for sputtering target for optical media
JPH06207268A (en) Sputtering target and its production
JPH116056A (en) Target containing intermetallic compound, and manufacture of hard covered member using it
Inoue et al. Effect of partial pressure on the internal stress and the crystallographic structure of rf reactive sputtered Ti-N films
JP2543056B2 (en) Method for manufacturing optical information recording member
JPH01159372A (en) Sputtering target for forming thin film
JP2677667B2 (en) High corrosion resistance amorphous aluminum alloy