JPH09223621A - Superconducting apparatus - Google Patents

Superconducting apparatus

Info

Publication number
JPH09223621A
JPH09223621A JP9037177A JP3717797A JPH09223621A JP H09223621 A JPH09223621 A JP H09223621A JP 9037177 A JP9037177 A JP 9037177A JP 3717797 A JP3717797 A JP 3717797A JP H09223621 A JPH09223621 A JP H09223621A
Authority
JP
Japan
Prior art keywords
refrigerator
superconducting
disconnector
temperature
current supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9037177A
Other languages
Japanese (ja)
Inventor
Florian Dr Steinmeyer
シユタインマイヤー フロリアン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of JPH09223621A publication Critical patent/JPH09223621A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/06Coils, e.g. winding, insulating, terminating or casing arrangements therefor
    • H01F6/065Feed-through bushings, terminals and joints

Abstract

PROBLEM TO BE SOLVED: To obtain a superconducting apparatus in which the introduction of heat into an inner chamber at a vacuum container is reduced by a method wherein a disconnector at a current supply device is installed in a region at the end part of its room-temperature-side end part. SOLUTION: A refrigerator 6 which indirectly cools a magnet device 5 is constituted of a room-temperature-side refrigerator part 6a situated inside a room-temperature range RT and of a very-low-temperature-side refrigerator part 6b which comprises both refrigeration stages 7, 8 and which is extended into a very-low-temperature range TT. The very-low-temperature-side refrigerator part 6b is passed airtightly into an inner chamber 4 evacuated to an insulating vacuum residual pressure (p) through an opening part 10 in a vacuum container 3. In addition, at the very-low- temperature-side end part of the refrigeration stage 8, the very-low-temperature refrigerator part 6b is coupled thermally to the magnet device 5 to be cooled. Then, a room- temperature-side lead part 12a at a current supply device 12 is passed through an opening part 15 in a radiation shielding body 16 which is coupled thermally to the refrigeration stage 7 at the refrigerator 6, and it is connected to a contact piece 17a at a disconnector 17. When the disconnector 17 is closed, a contact piece 17b is inserted into the contact piece 17a. Thereby, when the disconnector is closed, a thermal shock to the refrigerator is reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、真空容器の排気可
能な内室内に配置された超伝導機器と、真空容器の内室
内に突入し極低温側端部が超伝導機器に良熱伝導結合し
て超伝導機器を間接冷却する冷凍機と、室温と極低温と
の間に延在し超伝導機器に電気的に接続されかつ真空容
器の内室内に電気式断路器を有する電流供給装置とを備
えた超伝導装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a superconducting device arranged in an evacuable inner chamber of a vacuum container and a superconducting device having a cryogenic side end that rushes into the inner chamber of the vacuum container and has good heat conduction. A refrigerator that indirectly cools the superconducting device, and a current supply device that extends between room temperature and cryogenic temperature and that is electrically connected to the superconducting device and that has an electrical disconnector inside the vacuum chamber To a superconducting device.

【0002】[0002]

【従来の技術】このような超伝導装置は米国特許第53
17296号明細書によって知られている。
2. Description of the Related Art Such a superconducting device is disclosed in US Pat.
No. 17296.

【0003】超伝導機器の間接冷却は冷媒タンクを具備
しない比較的小容積で冷媒のないクライオスタットを構
成することを可能にし、利用者の低温液体の補給作業を
不要とする。必要な冷凍能力は通常多段に構成された冷
凍機、例えば、いわゆるギフォード−マクマホン原理に
基づいて作動する冷凍機によって作られる。この冷凍機
の場合、第1段は約60Kで30W、第2段は10Kで
1Wの熱出力を受ける。その場合特殊な冷媒容器は自由
に使えない。クライオスタットの冷熱質量は、使用され
た超伝導体材料の臨界磁界の減少を甘受する場合にのみ
熱容量が時間的に高まる熱損失に対するバッファを形成
するような冷却すべき超伝導機器によって主として形成
される。このような間接冷却を特に核スピントモグラフ
ィ(“核磁気共鳴”又は“磁気共鳴撮像”とも称されて
いる)のための医療診断装置の分野に使用される超伝導
磁石装置用に設けることは特に有利である。しかしこの
ような冷却技術は他の超伝導機器にも設けることができ
る。
The indirect cooling of superconducting equipment makes it possible to construct a cryostat-less cryostat having a relatively small volume without a refrigerant tank, thus eliminating the need for the user to replenish the cryogenic liquid. The required refrigerating capacity is usually produced by a multi-stage refrigerator, for example a refrigerator operating on the so-called Gifford-McMahon principle. In the case of this refrigerator, the first stage receives a heat output of about 60 K and 30 W, and the second stage receives a heat output of 10 K and 1 W. In that case, the special refrigerant container cannot be used freely. The cold mass of the cryostat is formed mainly by the superconducting device to be cooled, which forms a buffer for heat loss whose heat capacity increases temporally only if it accepts the reduction of the critical magnetic field of the superconductor material used. . It is especially desirable to provide such indirect cooling especially for superconducting magnet devices used in the field of medical diagnostic devices for nuclear spin tomography (also called "nuclear magnetic resonance" or "magnetic resonance imaging"). It is advantageous. However, such cooling techniques can also be applied to other superconducting equipment.

【0004】極低温冷却された超伝導体を有する超伝導
機器への給電のために、電流を高い温度レベル(例えば
室温)にある電源装置からその超伝導体に供給する電流
供給装置が必要である。それゆえ、この電流供給装置は
室温領域と、冷凍機によって超伝導材料の遷移温度以下
の極低温に保持された超伝導機器の超伝導体との間に延
在する電気導体部分を有する。電流供給装置の同様に熱
良伝導性のこの導体部分を介して極低温領域内へ相当の
熱導入が行われる。この熱漏洩は冷凍機によって作られ
るべき冷凍能力の主要部分を必要とする。すなわち、例
えば、核スピントモグラフィの磁石装置用に用いられる
ような200Aの作動電流用に最適化された金属導体を
備えた従来の電流供給装置は付加的なジュール損失を発
生することなくこの熱導入だけによって公知の2段式冷
凍機の第1段を約0.8Wの負荷を掛け、一方第2段は
さらに0.9Wの負荷が掛かる。この第2段の熱漏洩
は、例えば冒頭で述べた米国特許明細書に記載されてい
るように公知の方法で電流供給装置が少なくとも2つの
リード部を持ち、その場合極低温側リード部が高い遷移
温度を持つ金属酸化物超伝導体材料、いわゆるHTS材
料から成る部分を有する場合、さらに1桁下がる。
In order to supply superconducting equipment with cryogenically cooled superconductors, a current supply is needed to supply the superconductor with current from a power supply at a high temperature level (eg room temperature). is there. Therefore, the current supply device has an electric conductor portion extending between a room temperature region and a superconductor of a superconducting device which is maintained at a cryogenic temperature below the transition temperature of the superconducting material by a refrigerator. A considerable amount of heat is introduced into the cryogenic region via this electrically conductive conductor part of the current supply device. This heat leakage requires a major part of the refrigeration capacity to be produced by the refrigerator. That is, conventional current supply devices with metal conductors optimized for operating currents of 200 A, such as those used for nuclear spin tomography magnet systems, for example, introduce this heat without additional Joule losses. By itself, the first stage of the known two-stage refrigerator is loaded with about 0.8 W, while the second stage is loaded with an additional 0.9 W. This second-stage heat leakage is due to the fact that the current supply device has at least two leads, in the known manner, for example as described in the U.S. Pat. If it has a part consisting of a metal oxide superconductor material with a transition temperature, the so-called HTS material, it goes down an order of magnitude.

【0005】当該電流供給装置は超伝導機器の冷却相の
間は必要とされないので、開状態では当該冷却相の間極
低温領域への熱導入を減少させる電気式断路器を設ける
ことができる。この種の断路器は超伝導磁石装置が作動
時に永久電流スイッチによって短絡される場合には特に
有利である。すなわちその場合、この作動相の間電流供
給装置を介する熱導入はそれに応じて減少させることが
できる。
Since the current supply is not required during the cooling phase of the superconducting device, it is possible to provide an electrical disconnector which reduces the heat transfer to the cryogenic region during the cooling phase in the open state. A disconnector of this kind is particularly advantageous when the superconducting magnet system is short-circuited during operation by a permanent current switch. That is, in this case, the heat input through the current supply during this operating phase can be correspondingly reduced.

【0006】冒頭で述べた米国特許明細書に記載された
電流供給装置において、断路器は、クライオスタットの
真空容器の排気された内室内で室温側リード部と冷凍機
の第1冷却段によって約60Kに保持された中間温度レ
ベルの極低温側リード部との間に位置している。そのた
めに、断路器の開状態ではまた相当の熱量が電流供給装
置の室温側リード部を介して真空容器の内室内へ導入さ
れ、それゆえこの熱量を排除するために相応する冷凍能
力が必要である。
In the current supply device described in the above-mentioned US patent specification, the disconnecting switch is installed at about 60 K by the room temperature side lead section and the first cooling stage of the refrigerator in the evacuated inner chamber of the cryostat vacuum vessel. It is located between the lead portion on the cryogenic side of the intermediate temperature level held at. Therefore, in the open state of the disconnector, a considerable amount of heat is also introduced into the inner chamber of the vacuum vessel through the room temperature side lead of the current supply device, and therefore a corresponding refrigerating capacity is required to eliminate this amount of heat. is there.

【0007】[0007]

【発明が解決しようとする課題】本発明の課題は、真空
容器の内室内への熱導入をより一層減少させることので
きる冒頭で述べた種類の超伝導装置を提供することにあ
る。
SUMMARY OF THE INVENTION It is an object of the invention to provide a superconducting device of the kind mentioned at the outset which makes it possible to further reduce the introduction of heat into the interior of the vacuum vessel.

【0008】[0008]

【課題を解決するための手段】この課題は、本発明によ
れば、電流供給装置の断路器がその室温側端部の領域に
設けられることによって解決される。
This problem is solved according to the invention by providing a disconnector of the current supply in the region of its room temperature end.

【0009】本発明による超伝導装置の電流供給装置を
このように構成することによって次の利点が得られる。
By constructing the current supply device of the superconducting device according to the present invention in this way, the following advantages are obtained.

【0010】断路器は電気的にも熱的にも最適化されな
ければならない。正しく設計された電流供給装置の場
合、熱出力が開閉接点を介して実際上搬送されてはなら
ない。室温では接触抵抗に抵抗損失が生じ、それゆえ冷
凍機には実際上負荷が掛からない。
The disconnector must be optimized both electrically and thermally. In the case of a properly designed current supply, the heat output should practically not be conveyed via the switching contacts. At room temperature, there is a resistance loss in the contact resistance, so that the refrigerator is practically unloaded.

【0011】開閉は温暖雰囲気内で行うことができる。
それゆえ、開閉接点は例えば60Kの中間温度レベルに
ある開閉接点より簡単で信頼性高くかつ摩耗少なく実現
することができる。
The opening and closing can be performed in a warm atmosphere.
Therefore, the switching contacts can be realized more easily, more reliably and with less wear than switching contacts at an intermediate temperature level of, for example, 60K.

【0012】従来の市販されている断路器を使用するこ
とができる。
Conventional commercially available disconnectors can be used.

【0013】電流供給装置の分離されたリード部は公知
の例とは逆に冷たい。これによって、断路器を閉路する
際冷凍機及び極低温系統への“熱ショック”が少なくな
り、冷媒備蓄が比較的僅かな場合でも超伝導機器は僅か
な熱負荷しか受けない。
The separate leads of the current supply device are cold, contrary to the known example. This reduces the "heat shock" to the refrigerator and the cryogenic system when the disconnector is closed, and the superconducting device receives only a small heat load even when the refrigerant reserve is relatively small.

【0014】断路器の開閉機構は、冷たい範囲内へ延び
断路器の閉状態では永続的に負荷の掛かる特殊な機構を
必要としない。
The switching mechanism of the disconnector does not require a special mechanism which extends into the cold range and is permanently loaded in the closed state of the disconnector.

【0015】超伝導機器として特に超伝導作動状態では
短絡される磁石装置が設けられると特に有利である。そ
の場合、この作動状態でも極低温領域への熱供給はかな
り阻止することができる。
It is particularly advantageous for the superconducting device to be provided with a magnet arrangement which is short-circuited, especially in the superconducting operating state. In that case, the heat supply to the cryogenic region can be considerably prevented even in this operating state.

【0016】本発明による超伝導装置の他の有利な実施
態様は請求項4以降に記載されている。
Other advantageous embodiments of the superconducting device according to the invention are described in claims 4 and following.

【0017】[0017]

【実施例】次に、本発明の実施形態を図面に基づいて詳
細に説明する。
Embodiments of the present invention will now be described in detail with reference to the drawings.

【0018】図1に断面図で示された本発明による超伝
導装置2は、排気された内室4内に冷却すべき超伝導機
器5が配置されている真空容器又はタンク3を含んでい
る。原理的に超伝導機器としては冷却すべき超伝導材料
を有する超伝導技術の各機器を設けることができる。そ
の超伝導材料は、20K以下の遷移温度を持ついわゆる
“古典的”(金属)超伝導体材料、又は例えば77K以
上の比較的高い遷移温度を持つ酸化セラミックス超伝導
体材料である。例えば当該超伝導機器は短絡電流制限、
電流輸送、又は変圧を行うための電気的又は磁気的な機
器又は装置である。当該磁石装置は特に核スピントモグ
ラフィのための診断装置の少なくとも1つの超伝導コイ
ルである。この種の磁石装置は以下においては実施例の
基礎をなしている。磁石装置5が超伝導作動状態におい
て公知の方法で永久電流スイッチによって短絡されるこ
とは好ましい(例えばドイツ連邦共和国特許第2707
589号公報参照)。
The superconducting device 2 according to the invention, shown in cross-section in FIG. 1, comprises a vacuum container or tank 3 in which a superconducting device 5 to be cooled is arranged in an evacuated inner chamber 4. . In principle, as the superconducting device, each device of superconducting technology having a superconducting material to be cooled can be provided. The superconducting material is a so-called "classical" (metal) superconductor material having a transition temperature of 20 K or less, or an oxide ceramic superconductor material having a relatively high transition temperature of, for example, 77 K or more. For example, the superconducting device is short-circuit current limited,
An electrical or magnetic device or device for carrying electric current or transforming. The magnet device is at least one superconducting coil of a diagnostic device, in particular for nuclear spin tomography. A magnet system of this kind forms the basis of the exemplary embodiment below. It is preferred that the magnet arrangement 5 is short-circuited in the known manner in the superconducting operating state by means of a permanent current switch (eg German patent DE 2707).
589).

【0019】磁石装置5は冷凍機6によって間接的に冷
却される。この冷却様式の場合、沿冷却又は強制冷却と
は異なり、冷媒と磁石装置の超伝導部品との間の直接的
な熱交換は行われない。上述の冷凍機6は複数の冷凍
段、例えば2つの冷凍段7、8を有している。この冷凍
機6がいわゆるギフォード・マクマホン型の冷凍機であ
ると有利である。同様に、他の1段式又は多段式冷凍機
も使用することができる。冷凍機6は室温範囲RT内に
ある室温側冷凍機部6aと、両冷凍段7、8を含み極低
温範囲TT内へ延びる極低温側冷凍機部6bとから構成
されている。この極低温側冷凍機部6bは絶縁真空の残
留圧力pに排気された内室4内へ真空容器3の開口部1
0を通って気密に突入している。第2冷凍段8の極低温
側端部では極低温側冷凍機部6bが冷却すべき磁石装置
5に熱的に結合されている。
The magnet device 5 is indirectly cooled by the refrigerator 6. In the case of this cooling mode, there is no direct heat exchange between the refrigerant and the superconducting parts of the magnet arrangement, unlike the normal cooling or forced cooling. The above-mentioned refrigerator 6 has a plurality of refrigerating stages, for example, two refrigerating stages 7 and 8. It is advantageous if this refrigerator 6 is a so-called Gifford McMahon refrigerator. Similarly, other single-stage or multi-stage refrigerators can be used. The refrigerator 6 is composed of a room temperature side refrigerator unit 6a in the room temperature range RT and a cryogenic temperature side refrigerator unit 6b including both refrigeration stages 7 and 8 and extending into the cryogenic temperature range TT. This cryogenic side refrigerator unit 6b is provided with an opening 1 of the vacuum container 3 into the inner chamber 4 exhausted to the residual pressure p of the insulating vacuum.
It rushes airtight through 0. At the cryogenic temperature side end of the second freezing stage 8, the cryogenic temperature side refrigerator unit 6b is thermally coupled to the magnet device 5 to be cooled.

【0020】超伝導装置2はさらに本発明により構成さ
れた電流供給装置12を含んでいる。この電流供給装置
の詳細に示されていない部分は公知であるので、その図
示は省略されている。電流供給装置12が真空容器3の
排気された内室4内に室温側リード部12aと極低温側
リード部12bとを有すると有利である。勿論、電流供
給装置をそれよりも多くのリード部に分割してもよい。
この両リード部の電気的結合を行うための結合素子13
が冷凍機6の例えば約60Kの第1冷凍段7に熱的に結
合されると有利である。冷凍段7の電位に対してこの結
合素子13を電気的に分離するためにこの両部材間には
熱交換を少なくとも充分に可能にする電気絶縁体14が
設けられている。
Superconducting device 2 further includes a current supply device 12 constructed in accordance with the present invention. Since the parts of the current supply device which are not shown in detail are known, their illustration is omitted. It is advantageous that the current supply device 12 has the room temperature side lead portion 12a and the cryogenic temperature side lead portion 12b in the evacuated inner chamber 4 of the vacuum container 3. Of course, the current supply device may be divided into more leads.
A coupling element 13 for electrically coupling the two lead portions
Is preferably thermally coupled to the first refrigeration stage 7 of the refrigerator 6, for example about 60K. In order to electrically isolate this coupling element 13 from the potential of the refrigeration stage 7, an electrical insulator 14 is provided between the two members, which allows at least sufficient heat exchange.

【0021】磁石装置が20K以下の温度に維持されな
ければならない古典的超伝導体材料を有する場合には、
電流供給装置12の極低温側リード部12aが、転移温
度が特に少なくとも77K以上である金属酸化物超伝導
体材料を有すると有利である。当該HTS材料は例えば
特殊なビスマス又はイットリウム−銅酸塩である。
If the magnet system has a classical superconductor material which must be maintained at a temperature below 20 K,
Advantageously, the cryogenic side lead portion 12a of the current supply device 12 comprises a metal oxide superconductor material having a transition temperature of especially at least 77K or higher. The HTS material is, for example, a special bismuth or yttrium-cuprate.

【0022】電流供給装置12の室温側リード部12a
は熱損失が公知の方法で適切に最適化され、そして冷凍
機6の第1冷凍段7に熱的に結合された放射遮蔽体16
の開口部15を貫通案内されている。このリード部12
aは放射遮蔽体16と真空容器3の室温になっている壁
との間の空間において断路器17の第1の接触片17a
で終っている。図1には開状態で示されている断路器は
慣用されている開閉器でよい。この開閉器は、例えばば
ね力の作用の下に相互に接続可能であり一方の接触片が
位置固定され他方の接触片が可動に形成されている例え
ば平形接触片を有することができる。その場合、可動接
触片が電流供給装置の外部へ導かれた温暖側に配置され
ると有利である。図示の実施例では差込み接触部を備え
た断路器17が用いられている。従って、その第1の接
触片17aは接触ピンとして形成され、第2の接触片1
7bは接触受口又は集電舟の形態に形成されており、断
路器を閉路するためには第2の接触片17bが第1の接
触片17aに差込まれる。例えば、第1の接触片17a
はホルダー18によって位置固定されかつ絶縁されて真
空容器3の壁に固定され、その場合その第1の接触片1
7aは真空容器3内に設けることができる。第2の接触
片17bは可動に実施され、その場合移動方向は矢印b
で示されている。この第2の接触片17bは真空容器3
の開口部19を通って延びている。この開口部19にお
いて真空容器3を密封するために伸縮ベローズ20が設
けられており、開口部19とは反対側のベローズ端部は
蓋部材21で密閉されている。電流供給装置の第2の接
触片17bに結合された接続部材12cはこの蓋部材2
1を通って導出されている。第2の接触片17b及び接
続部材12cを真空容器3の電位に対して電気的に分離
するために、例えば蓋部材21又はベローズ20は少な
くとも一部分が絶縁部材で構成されている。接続部材1
2cには図1には詳細に示されていない外部の電流供給
装置22が接続されている。
Room temperature side lead portion 12a of the current supply device 12
Is a radiation shield 16 whose heat loss is appropriately optimized in a known manner and which is thermally coupled to the first refrigeration stage 7 of the refrigerator 6.
Is guided through the opening 15. This lead portion 12
a is the first contact piece 17a of the disconnector 17 in the space between the radiation shield 16 and the wall of the vacuum chamber 3 at room temperature.
Ends with The disconnector shown in the open state in FIG. 1 may be a conventional switch. This switch can have, for example, a flat contact piece, which can be connected to one another under the action of a spring force, one contact piece being fixed in position and the other contact piece being movable. In that case, it is advantageous if the movable contact piece is arranged on the warm side led to the outside of the current supply device. In the illustrated embodiment, a disconnector 17 with a plug contact is used. Therefore, the first contact piece 17a is formed as a contact pin, and the second contact piece 1a is formed.
7b is formed in the form of a contact receiving port or a current collecting boat, and the second contact piece 17b is inserted into the first contact piece 17a in order to close the disconnector. For example, the first contact piece 17a
Is fixed in position and insulated by a holder 18 and fixed to the wall of the vacuum vessel 3, in which case the first contact piece 1
7a can be provided in the vacuum container 3. The second contact piece 17b is movably implemented, in which case the direction of movement is the arrow b.
Indicated by The second contact piece 17b is used for the vacuum container 3
Through the opening 19 of the. An expandable bellows 20 is provided to seal the vacuum container 3 in the opening 19, and a bellows end opposite to the opening 19 is sealed with a lid member 21. The connecting member 12c coupled to the second contact piece 17b of the current supply device is the lid member 2
It is derived through 1. In order to electrically separate the second contact piece 17b and the connecting member 12c from the potential of the vacuum container 3, for example, the lid member 21 or the bellows 20 is at least partially formed of an insulating member. Connection member 1
An external current supply device 22, not shown in detail in FIG. 1, is connected to 2c.

【0023】断路器17の開路は温暖状態で強制的に行
われる。その閉路の際、必要に応じて、リード部12a
に結合された冷たい接触片17aは特別な加熱装置によ
って加熱することができ、それにより暖かい接触片17
bに接触する前に少なくともその接触片17bの温度レ
ベルにほぼ高めることができる。
The disconnector 17 is forcibly opened in a warm state. When the circuit is closed, if necessary, the lead portion 12a
The cold contact piece 17a, which is connected to the warm contact piece 17a, can be heated by a special heating device.
It is possible to raise the temperature level of at least the contact piece 17b thereof before the contact with b.

【0024】勿論、図に示されている断路器17の代わ
りに、他の公知の形態の開閉器を使用することもでき
る。このことは特に電流リードの電気的分離が実際上室
温で、すなわち真空室4の冷たい範囲を通って延びる電
流供給装置のリード部の上方で行われることによって可
能である。これによって、冷却時間を短縮することがで
きると共に、超伝導機器の作動電流を低い端部温度に基
づいて高めることができるか又は高い安全性余裕が得ら
れる。このことは冷凍機の長い作動時間の経過と共に衰
える冷凍能力にとって特に重要である。さらに、2つの
冷凍機を有するシステムの場合、修理時に、運転を中断
することなく、機器を切断し、取外すことができる。
Of course, other known forms of switches may be used in place of the disconnector 17 shown in the figures. This is possible in particular because the electrical isolation of the current leads takes place practically at room temperature, i.e. above the leads of the current supply device which extend through the cold region of the vacuum chamber 4. This makes it possible to reduce the cooling time and to increase the operating current of the superconducting device on the basis of the low end temperature or to obtain a high safety margin. This is especially important for refrigerating capacity, which declines over time in refrigerators. Furthermore, in the case of a system with two refrigerators, the equipment can be disconnected and removed during repair without interruption of operation.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示す概略断面図。FIG. 1 is a schematic sectional view showing an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

2 超伝導装置 3 真空容器 4 真空容器の内室 5 超伝導機器(超伝導磁石装置) 6 冷凍機 6a 室温側冷凍機部 6b 極低温側冷凍機部 7、8 冷凍段 10 真空容器の開口部 12 電流供給装置 12a 電流供給装置の室温側リード部 12b 電流供給装置の極低温側リード部 12c 電流供給装置の接続部材 13 電気的結合素子 14 電気絶縁部材 15 放射遮蔽体の開口部 16 放射遮蔽体 17 断路器 17a 断路器の第1接触片 17b 断路器の第2接触片 18 ホルダー 19 真空容器の開口部 20 伸縮ベローズ 21 蓋部材 22 外部の電流供給装置 2 Superconducting device 3 Vacuum container 4 Inner chamber of vacuum container 5 Superconducting device (superconducting magnet device) 6 Refrigerator 6a Room temperature side refrigerator unit 6b Cryogenic side refrigerator unit 7, 8 Freezing stage 10 Vacuum container opening 12 current supply device 12a room temperature side lead part of current supply device 12b cryogenic temperature side lead part of current supply device 12c connection member of current supply device 13 electrical coupling element 14 electrical insulating member 15 opening of radiation shield 16 radiation shield 17 Disconnector 17a First contact piece of disconnector 17b Second contact piece of disconnector 18 Holder 19 Vacuum container opening 20 Telescopic bellows 21 Lid member 22 External current supply device

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】 真空容器の排気可能な内室内に配置され
た超伝導機器と、真空容器の内室内に突入し極低温側端
部が超伝導機器に良熱伝導結合して超伝導機器を間接冷
却する冷凍機と、室温と極低温との間に延在し超伝導機
器に電気的に接続されかつ真空容器の内室内に電気式断
路器を有する電流供給装置とを備えた超伝導装置におい
て、電流供給装置(12)の断路器(17)がその室温
側端部の領域に設けられていることを特徴とする超伝導
装置。
1. A superconducting device disposed in an evacuable inner chamber of a vacuum container, and a superconducting device which rushes into the inner chamber of the vacuum container and has a cryogenic side end coupled to the superconducting device by good heat conduction. A superconducting device provided with a refrigerator for indirect cooling, and a current supply device extending between room temperature and cryogenic temperature, electrically connected to the superconducting device, and having an electric disconnector inside the vacuum chamber. 2. A superconducting device according to claim 1, wherein the disconnector (17) of the current supply device (12) is provided in the region of the room temperature side end thereof.
【請求項2】 超伝導機器は磁界発生、短絡電流制限、
変圧又は電流伝送を行うために設けられていることを特
徴とする請求項1記載の装置。
2. A superconducting device is configured to generate a magnetic field, limit short-circuit current,
The device according to claim 1, wherein the device is provided for performing transformation or current transmission.
【請求項3】 超伝導機器は超伝導作動状態で短絡され
る磁石装置であることを特徴とする請求項1又は2記載
の装置。
3. The device according to claim 1, wherein the superconducting device is a magnet device which is short-circuited in a superconducting operating state.
【請求項4】 超伝導磁石装置(5)は核スピントモグ
ラフィのための機器の一部であることを特徴とする請求
項2又は3記載の装置。
4. Device according to claim 2 or 3, characterized in that the superconducting magnet device (5) is part of a device for nuclear spin tomography.
【請求項5】 断路器(17)はそれぞれの保持装置
(18、20)を介して真空容器(3)によって保持さ
れた2つの接触片(17a、17b)を有することを特
徴とする請求項1乃至4の1つに記載の装置。
5. The disconnector (17) has two contact pieces (17a, 17b) held by a vacuum vessel (3) via respective holding devices (18, 20). The device according to any one of 1 to 4.
【請求項6】 断路器(17)の接触片の一方(17
b)は可動的に形成され、付属の保持装置は伸縮ベロー
ズ(20)として形成されていることを特徴とする請求
項5記載の装置。
6. One of the contact pieces (17) of the disconnector (17).
Device according to claim 5, characterized in that b) is movably formed and the associated holding device is formed as a telescopic bellows (20).
【請求項7】 極低温側接触片(17a)は加熱装置を
備えていることを特徴とする請求項5又は6記載の装
置。
7. Device according to claim 5, characterized in that the cryogenic side contact piece (17a) comprises a heating device.
【請求項8】 断路器は差込み装置として形成されてい
ることを特徴とする請求項1乃至7の1つに記載の装
置。
8. The device as claimed in claim 1, wherein the disconnector is embodied as a plug-in device.
【請求項9】 電流供給装置(12)は真空容器(3)
の内室(4)内に少なくとも2つのリード部(12a、
12b)を有し、そのリード部の内極低温側リード部
(12b)は磁石装置(5)に接続されていることを特
徴とする請求項1乃至8の1つに記載の装置。
9. The current supply device (12) is a vacuum container (3).
At least two lead portions (12a, 12a,
Device according to one of claims 1 to 8, characterized in that it has a lead part (12b), the inner cryogenic side lead part (12b) of which is connected to the magnet device (5).
【請求項10】 電流供給装置(12)の両リード部
(12a、12b)間の電気的結合素子(13)は冷凍
機(6)によって室温(RT)と極低温(TT)との間
の中間温度レベルに保持されていることを特徴とする請
求項9記載の装置。
10. An electric coupling element (13) between both lead portions (12a, 12b) of the current supply device (12) is provided between a room temperature (RT) and a very low temperature (TT) by a refrigerator (6). An apparatus according to claim 9, characterized in that it is held at an intermediate temperature level.
【請求項11】 電気的結合素子(13)は冷凍機
(6)の中間温度レベルの冷凍段(7)に熱的に結合さ
れていることを特徴とする請求項10記載の装置。
11. Device according to claim 10, characterized in that the electrical coupling element (13) is thermally coupled to the intermediate temperature level refrigeration stage (7) of the refrigerator (6).
【請求項12】 電流供給装置(12)の極低温側リー
ド部(12b)は少なくとも77Kの遷移温度を持つ金
属酸化物超伝導材料から成る部材を含むことを特徴とす
る請求項9乃至11の1つに記載の装置。
12. The cryogenic lead portion (12b) of the current supply device (12) comprises a member made of a metal oxide superconducting material having a transition temperature of at least 77K. The device according to one.
【請求項13】 冷凍機は多段に構成され、そのうち1
つの冷凍段(7)は真空容器(3)の内室内で室温側真
空容器壁と磁石装置(5)との間に設けられた放射遮蔽
体(16)に熱的に結合されていることを特徴とする請
求項1乃至12の1つに記載の装置。
13. The refrigerator is configured in multiple stages, one of which is
The two refrigeration stages (7) are thermally coupled to the radiation shield (16) provided between the room temperature side vacuum container wall and the magnet device (5) in the interior of the vacuum container (3). Device according to one of the claims 1 to 12, characterized.
【請求項14】 冷凍機(3)はギフォード−マクマホ
ン型の冷凍機であることを特徴とする請求項1乃至13
の1つに記載の装置。
14. The refrigerator (3) is a Gifford-McMahon type refrigerator.
An apparatus according to one of the preceding claims.
JP9037177A 1996-02-09 1997-02-05 Superconducting apparatus Withdrawn JPH09223621A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19604805.2 1996-02-09
DE19604805A DE19604805C2 (en) 1996-02-09 1996-02-09 System of superconductivity technology with an indirectly cooled superconducting device and a power supply device

Publications (1)

Publication Number Publication Date
JPH09223621A true JPH09223621A (en) 1997-08-26

Family

ID=7784992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9037177A Withdrawn JPH09223621A (en) 1996-02-09 1997-02-05 Superconducting apparatus

Country Status (3)

Country Link
EP (1) EP0789368B1 (en)
JP (1) JPH09223621A (en)
DE (2) DE19604805C2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001148520A (en) * 1999-10-01 2001-05-29 Abb Res Ltd Low-temperature device
JP2016217818A (en) * 2015-05-19 2016-12-22 株式会社日立製作所 Ac loss measurement device

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11288809A (en) * 1998-03-31 1999-10-19 Toshiba Corp Superconducting magnet
EP1063482A1 (en) * 1999-06-24 2000-12-27 CSP Cryogenic Spectrometers GmbH Refrigeration device
WO2001001048A1 (en) * 1999-06-24 2001-01-04 Csp Cryogenic Spectrometers Gmbh Cooling device
DE10039964A1 (en) * 2000-08-16 2002-03-07 Siemens Ag Superconducting device with a cooling unit for cooling a rotating, superconducting winding
EP1217708A1 (en) 2000-12-21 2002-06-26 Abb Research Ltd. Superconducting device
DE10117847C1 (en) * 2001-04-04 2003-02-06 Siemens Ag Forced liquid cooling transformer
DE10131235C1 (en) * 2001-06-28 2003-01-30 Siemens Ag Power supply device for an electrical device to be cooled with an electrical separating device and use of the device
DE10324500B3 (en) * 2003-05-26 2004-11-18 Siemens Ag Regulated cryogenic current feed device has setting region of current conductor section provided by fixed contact and movable contact displaced along its contact surface
LU101151B1 (en) 2019-02-25 2020-08-26 Vision Electric Super Conductors Gmbh Transition piece that connects a normal current conductor with a superconductor in an electrically conductive manner

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3644803A (en) * 1969-03-18 1972-02-22 Us Air Force Electrical connections to low temperatures
FR2166440A5 (en) * 1971-11-05 1973-08-17 Comp Generale Electricite
DE2611266C2 (en) * 1976-03-17 1982-10-21 Siemens AG, 1000 Berlin und 8000 München Superconducting magnetic device with delayed magnetic field decrease when it becomes normally conductive
DE2707589C3 (en) * 1977-02-22 1980-02-21 Siemens Ag, 1000 Berlin Und 8000 Muenchen Continuous current switch for short-circuiting a superconducting magnet
US4543794A (en) * 1983-07-26 1985-10-01 Kabushiki Kaisha Toshiba Superconducting magnet device
JPS60216592A (en) * 1984-04-12 1985-10-30 Toshiba Corp Lead-out device for superconductive coil
JPS63237509A (en) * 1987-03-26 1988-10-04 Sumitomo Electric Ind Ltd Superconducting magnet
US5317296A (en) * 1991-09-13 1994-05-31 General Electric Company Demountable conduction cooled current leads for refrigerated superconducting magnets
US5302928A (en) * 1992-08-03 1994-04-12 General Electric Company Superconducting current leads for a cryogenless superconducting magnetic energy storage device
US5410286A (en) * 1994-02-25 1995-04-25 General Electric Company Quench-protected, refrigerated superconducting magnet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001148520A (en) * 1999-10-01 2001-05-29 Abb Res Ltd Low-temperature device
JP2016217818A (en) * 2015-05-19 2016-12-22 株式会社日立製作所 Ac loss measurement device

Also Published As

Publication number Publication date
DE59701680D1 (en) 2000-06-21
EP0789368B1 (en) 2000-05-17
DE19604805C2 (en) 2001-03-08
DE19604805A1 (en) 1997-08-14
EP0789368A1 (en) 1997-08-13

Similar Documents

Publication Publication Date Title
US5737927A (en) Cryogenic cooling apparatus and cryogenic cooling method for cooling object to very low temperatures
US20080115510A1 (en) Cryostats including current leads for electronically powered equipment
US5934082A (en) Indirect cooling system for an electrical device
US5918470A (en) Thermal conductance gasket for zero boiloff superconducting magnet
US4841268A (en) MRI Magnet system with permanently installed power leads
JPH09312210A (en) Cooling device and cooling method
JPH09223621A (en) Superconducting apparatus
US8923939B2 (en) Superconduction apparatus
GB2420910A (en) Superconducting device having a cryogenic system and a superconducting switch
CN109074931B (en) Ramped lead and thermal disconnect for MRI or other superconducting magnets
JPH0851015A (en) Superconducting lead wire aggregation for superconductive magnet
CN109273193B (en) Current lead structure and superconducting magnet
JP6488020B2 (en) Superconducting magnet device and superconducting magnet excitation tool
EP0860668A2 (en) An adiabatic apparatus
CN109243754B (en) Current lead structure and superconducting magnet
US5563369A (en) Current lead
JP2005521019A (en) Refrigeration equipment
CN112397271A (en) High-temperature superconducting magnetic resonance imager
US6570747B1 (en) Low-temperature apparatus
JPS59224187A (en) Exciting leading conductor unit for superconductive unit andparticularly magnet
JP3450318B2 (en) Thermoelectric cooling type power lead
JP3020140B2 (en) Permanent current switch device for refrigerator cooled superconducting magnet
JPH07131079A (en) High-temperature superconductor current lead
US5057645A (en) Low heat loss lead interface for cryogenic devices
Steinmeyer et al. Towards the invisible cryogenic system for magnetic resonance imaging

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040406