JPH09223515A - Secondary battery system to cope with peak electric power - Google Patents

Secondary battery system to cope with peak electric power

Info

Publication number
JPH09223515A
JPH09223515A JP8028946A JP2894696A JPH09223515A JP H09223515 A JPH09223515 A JP H09223515A JP 8028946 A JP8028946 A JP 8028946A JP 2894696 A JP2894696 A JP 2894696A JP H09223515 A JPH09223515 A JP H09223515A
Authority
JP
Japan
Prior art keywords
power
secondary battery
peak
electric power
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8028946A
Other languages
Japanese (ja)
Inventor
Tadahiko Mitsuyoshi
忠彦 三吉
Manabu Madokoro
間所  学
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP8028946A priority Critical patent/JPH09223515A/en
Publication of JPH09223515A publication Critical patent/JPH09223515A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a system effective in a measure against peak electric power of an electric power system by eliminating uselessness of a conventional secondary battery system. SOLUTION: Integrated electric energy of one day of electric power used by exceeding an electric power value by subtracting AC output capacity of an electric power converter 2 from a peak value of electrice power used in an electric power system 4 and a value by multiplying storage electric energy capacity of a secondary battery by D.C-A.C conversion efficiency of the electrice power converter 2, are made to almost coincide with each other. Or the relationship between the integrated electric energy and AC output is found by using a pattern with the lapse of time of electric power in the past annual electric power peak generating days, and when the integrated electrice energy is equal to the value by multiplying the storage electric energy capacity of the secondary battery 1 by the orthogonal conversion efficiency of the electric power converter 2, AC output capacity of the electric power converter 2 is made larger than a value of AC output calculated from this relationship.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は電力系統のピーク電
力対策に有効な二次電池システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a secondary battery system which is effective as a measure against peak power in a power system.

【0002】[0002]

【従来の技術】電力系統の負荷平準化対策として、負極
にナトリウム,正極に硫黄を用いたナトリウム−黄黄電
池などのような二次電池システムを用いて、電力使用量
の少ない夜間電力を蓄え、電力使用量の多い昼間に電力
を放出する負荷平準化システムは、例えば、エネルギ・
資源学会から1992年に発行された出版物『エネルギ
貯蔵システム』61〜81頁に見られるように公知であ
る。一方、近年の電力事情では、昼間の内でも特定の時
間帯に必要とされるピーク電力値の影響が大きく、この
ピーク電力値に応じて装備する発電設備や送電設備,変
電設備の容量が決まってくるため、平均使用電力に対し
て過大な発電設備や送電設備,変電設備の投資が必要と
され、これを避けるためにピーク電力対策が急務とされ
ている。しかし、従来の負荷平準化用の二次電池システ
ムでは、電力変換器の出力容量と二次電池の貯蔵電力量
容量とのバランスが不適切で、ピーク電力対策には相対
的に二次電池の貯蔵電力量容量が大き過ぎて、システム
が大きくなり、かつ無駄が出るなど、この目的に適した
ものはなかった。
2. Description of the Related Art As a load leveling measure for a power system, a secondary battery system such as a sodium-yellow-yellow battery using sodium for a negative electrode and sulfur for a positive electrode is used to store nighttime power with a small amount of power consumption. , A load leveling system that emits power during the daytime when power consumption is high,
It is known, as can be found in the publication "Energy Storage System", pages 61-81, published by the Resource Society in 1992. On the other hand, in the recent power situation, the effect of the peak power value required during a specific time zone during the daytime is large, and the capacity of the power generation equipment, the power transmission equipment, and the substation equipment to be equipped is determined according to this peak power value. Therefore, it is necessary to invest excessive power generation equipment, power transmission equipment, and substation equipment with respect to the average power used, and in order to avoid this, peak power measures are urgently needed. However, in the conventional secondary battery system for load leveling, the balance between the output capacity of the power converter and the stored power capacity of the secondary battery is improper, and the secondary battery system is relatively used for peak power measures. There was nothing suitable for this purpose, because the amount of stored electricity was too large, the system became large, and waste was generated.

【0003】[0003]

【発明が解決しようとする課題】本発明の課題は、上記
従来技術の欠点を除き、電力系統のピーク電力対策に有
効な二次電池システムを提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a secondary battery system which is effective as a measure against peak power in an electric power system, except for the above-mentioned drawbacks of the prior art.

【0004】[0004]

【課題を解決するための手段】上記課題を達成するた
め、第一の発明は、電力変換器を介して電力系統と接続
されたピーク電力対応二次電池システムで、前記電力系
統で使用される電力のピーク値から前記電力変換器の交
流出力容量を差し引いた電力値を超えて使用される電力
の1日の積算電力量と、前記二次電池の貯蔵電力量容量
に前記電力変換器の直交変換効率を掛けた値とを、略一
致させたことを特徴としている。また、前記ピーク電力
対応二次電池システムでは、過去の年間電力ピーク発生
日における電力の経時パターンを用い、前記交流出力容
量を可変として求めた前記交流出力容量と前記積算電力
量との間の関係と、前記交流出力容量の前記電力系統で
の要求値とを用いて、前記積算電力量を算出することを
特徴としている。
In order to achieve the above object, the first invention is a peak power secondary battery system connected to a power system via a power converter and used in the power system. The daily integrated electric energy of the electric power used exceeding the electric power value obtained by subtracting the AC output capacity of the electric power converter from the peak value of electric power, and the stored electric energy capacity of the secondary battery are orthogonal to the electric power converter. It is characterized in that the value obtained by multiplying the conversion efficiency is substantially matched. Further, in the peak power secondary battery system, a relationship between the AC output capacity and the integrated electric energy obtained by variably determining the AC output capacity using a temporal pattern of electric power on a past annual power peak occurrence day. And the required value of the AC output capacity in the electric power system, the integrated electric energy is calculated.

【0005】さらに、第二の発明は、電力変換器を介し
て電力系統と接続されたピーク電力対応二次電池システ
ムで、過去の年間電力ピーク発生日における電力の経時
パターンを用いて、前記電力系統の電力のピーク値から
前記電力変換器の交流出力を差し引いた電力値を超えて
使用される電力の1日の積算電力量と、前記交流出力と
の間の関係を求め、前記積算電力量が前記二次電池の貯
蔵電力量容量に前記電力変換器の直交変換効率を掛けた
値に等しい時に、前記関係から算出される前記交流出力
の値よりも、前記電力変換器の交流出力容量を大きくす
ることを特徴としている。
A second aspect of the present invention is a peak power secondary battery system connected to a power system via a power converter, wherein the power consumption is measured by using a temporal pattern of power on the day of the past annual power peak. The relationship between the daily integrated power amount of the power used exceeding the power value obtained by subtracting the AC output of the power converter from the peak value of the power of the grid and the AC output is obtained, and the integrated power amount is calculated. Is equal to the storage power capacity of the secondary battery multiplied by the orthogonal conversion efficiency of the power converter, the AC output capacity of the power converter than the value of the AC output calculated from the relationship. It is characterized by making it larger.

【0006】なお、ここで考えている電力系統は、電力
ネットワークで結ばれた全体の電力系統、または、例え
ば1変電所ごとのようなローカルな電力系統を意味して
いる。また、対象とする電力系統に複数個の二次電池シ
ステムを設置する場合には、二次電池システムを構成す
る電力変換器の合計の交流出力容量と二次電池の合計の
貯蔵電力量容量とが本発明の関係を満たせば良い。
The power system considered here means the entire power system connected by the power network or a local power system such as one substation. In addition, when installing multiple secondary battery systems in the target power system, the total AC output capacity of the power converters that make up the secondary battery system and the total stored power capacity of the secondary battery Should satisfy the relationship of the present invention.

【0007】第一の発明では、電力系統の電力のピーク
値から電力変換器の交流出力容量を差し引いた電力値を
超えて使用される電力の1日の積算電力量と、二次電池
の貯蔵電力量容量に電力変換器の直交変換効率を掛けた
値とを、略一致させている。このために、電力変換器の
交流出力容量および二次電池の貯蔵電力量容量がピーク
電力対応に丁度必要十分な量となり、ピーク電力対応二
次電池システムの交流出力容量および貯蔵電力量容量を
過不足なく使用して、電力のピーク値から電力変換器の
交流出力容量を差し引いた電力値を超えて使用される電
力ピークを二次電池からの貯蔵電力量で賄うことができ
る。
According to the first aspect of the present invention, the daily integrated electric energy of the electric power used exceeding the electric power value obtained by subtracting the AC output capacity of the electric power converter from the peak value of the electric power of the electric power system, and the storage of the secondary battery The value obtained by multiplying the electric energy capacity by the orthogonal conversion efficiency of the electric power converter is substantially matched. For this reason, the AC output capacity of the power converter and the stored power capacity of the secondary battery are just the necessary and sufficient amounts to support peak power, and the AC output capacity and the stored power capacity of the peak power compatible secondary battery system are exceeded. It can be used without any shortage, and the power peak used when exceeding the power value obtained by subtracting the AC output capacity of the power converter from the peak value of the power can be covered by the stored power amount from the secondary battery.

【0008】電力変換器の交流出力容量と二次電池の貯
蔵電力量容量とを決定するには、対象とする電力系統の
過去の年間電力ピーク発生日における電力の経時パター
ンを用いれば良い。すなわち、交流出力容量を可変とし
て、経時パターンより電力系統のピーク電力値から電力
変換器の交流出力容量を差し引いた電力値を超えて使用
される電力の1日の積算電力量と、交流出力容量との間
の関係を求め、この関係と交流出力容量の電力系統での
要求値とを用いて積算電力量を算出し、この値を電力変
換器の直交変換効率で割った値を二次電池の貯蔵電力量
容量とすれば良い。
In order to determine the AC output capacity of the power converter and the stored power capacity of the secondary battery, it is sufficient to use the temporal pattern of power on the past annual power peak occurrence day of the target power system. That is, the AC output capacity is made variable, and the daily integrated power amount of the power used that exceeds the power value obtained by subtracting the AC output capacity of the power converter from the peak power value of the power system from the aging pattern, and the AC output capacity. Then, the integrated power amount is calculated using this relationship and the required value of the AC output capacity in the power system, and the value obtained by dividing this value by the orthogonal conversion efficiency of the power converter is used as the secondary battery. The storage power capacity of

【0009】積算電力量と交流出力容量との関係は生活
パターンに依存して変化するが、国内では電力系統の規
模や年度によってあまり大きくは変動せず、電力系統で
使用される電力の年間平均値をP(kW),交流出力容量
をp(kW),積算電力量をE(kWh)とした時、以下の
式で与えられることが分かった。
The relationship between the integrated electric energy and the AC output capacity changes depending on the life pattern, but does not change so much in Japan depending on the scale of the electric power system and the year, and the annual average of the electric power used in the electric power system. It was found that when the value is P (kW), the AC output capacity is p (kW), and the integrated electric energy is E (kWh), it is given by the following formula.

【0010】[0010]

【数5】 log(E/p)=(5/7)・log(p/P)+1.24±0.08 …(数5) また、同じ関係は、電力系統で使用される電力の年間ピ
ーク値をP′(kW),交流出力容量をp(kW),積算電
力量をE(kWh)とした時には、以下の式で与えられ
る。
## EQU00005 ## log (E / p) = (5/7) .log (p / P) +1.24. +-. 0.08 (Equation 5) Also, the same relationship applies to the annual amount of electric power used in the power system. When the peak value is P '(kW), the AC output capacity is p (kW), and the integrated electric energy is E (kWh), it is given by the following formula.

【0011】[0011]

【数6】 log(E/p)=(5/7)・log(p/P′)+1.455±0.08 …(数6) 従って、これらの関係式を用い、過去の実績やGNPの
伸びなどから予測した電力の年間平均値または年間ピー
ク値、および、系統で必要とされる電力変換器の交流出
力容量より、必要とされる二次電池の貯蔵電力量容量が
求められる。
[Equation 6] log (E / p) = (5/7) · log (p / P ′) + 1.455 ± 0.08 (Equation 6) Therefore, using these relational expressions, past performance and GNP The required storage capacity of the secondary battery can be obtained from the annual average value or the annual peak value of the electric power predicted from the growth of the electric power, and the AC output capacity of the power converter required in the system.

【0012】一方、第二の発明では、上記と同様の手続
きで求めた電力変換器の交流出力と積算電力量との関係
を用い、二次電池の貯蔵電力量容量に電力変換器の直交
変換効率を掛けた値と積算電力量とが等しいとして求め
た交流出力の値よりも、電力変換器の交流出力容量を大
きくしている。このため、系統のピーク電力が予想より
も大きくなったとしても、変換器の交流出力容量には余
裕があるため、交流出力を容量一杯に出し、電力ピーク
への対応時間を短くして二次電池の貯蔵電力量容量の不
足をカバーするなどの手段により、ピーク電力の予想か
らのずれに有効に対処できる。また、一般に電力変換器
の交流出力容量を大きくするのは用いる変換素子や冷却
性能を大きくする程度の変更で良いのに対し、二次電池
の貯蔵電力量容量を増すためには電池の数量を増やした
り、電池を大型化する必要があり、二次電池システムの
コンパクト化や経済性などの点で前者のほうが有利であ
る。
On the other hand, in the second invention, the relationship between the AC output of the power converter and the integrated power amount obtained by the same procedure as described above is used, and the orthogonal conversion of the power converter is converted into the stored power capacity of the secondary battery. The AC output capacity of the power converter is made larger than the value of the AC output obtained by assuming that the value obtained by multiplying the efficiency is equal to the integrated electric energy. For this reason, even if the peak power of the system becomes larger than expected, the AC output capacity of the converter has a margin, so the AC output should be maximized and the response time to the power peak should be shortened. It is possible to effectively deal with the deviation of the peak power from the prediction by means such as covering the shortage of the stored power capacity of the battery. In general, the AC output capacity of a power converter can be increased by changing the conversion element used and the cooling performance to a large extent, whereas the number of batteries must be increased in order to increase the storage power capacity of the secondary battery. It is necessary to increase the number of batteries and increase the size of the battery, and the former is more advantageous in terms of downsizing of the secondary battery system and economy.

【0013】なお、交流出力と積算電力量との関係は、
電力系統で使用される電力の年間平均値をP(kW),交
流出力をp′(kW),積算電力量をE(kWh)とした時
には
The relationship between the AC output and the integrated electric energy is
When the annual average value of the power used in the power system is P (kW), the AC output is p '(kW), and the integrated power amount is E (kWh)

【0014】[0014]

【数7】 log(E/p′)=(5/7)・log(p′/P)+1.24±0.08 …(数7) あるいは、電力系統で使用される電力の年間ピーク値を
P′(kW),交流出力をp′(kW),積算電力量をE
(kWh)とした時には
[Equation 7] log (E / p ′) = (5/7) · log (p ′ / P) + 1.24 ± 0.08 (Equation 7) Alternatively, the annual peak value of the power used in the power system Is P '(kW), AC output is p' (kW), and integrated electric energy is E
When (kWh)

【0015】[0015]

【数8】 log(E/p′)=(5/7)・log(p′/P′)+1.455±0.08…(数8) で与えられる。(8) log (E / p ′) = (5/7) · log (p ′ / P ′) + 1.455 ± 0.08 ... (Equation 8)

【0016】また、本発明に用いられる二次電池は、活
物質としてナトリウムと硫黄を用いたナトリウム−黄黄
電池を用いることが、エネルギ密度が大きいためにシス
テムがコンパクトに出来ること、出力密度が大きいため
にピーク電力対応に適していること、サイクル寿命が長
いために電力系統の信頼性を損なわないこと、自己放電
がなく、充放電効率が高いこと、の理由で、この目的に
好適である。特に、大電力で放電を繰り返したり、貯蔵
電力容量の定格値一杯まで充放電を繰り返したりしても
特性劣化が起こりにくいというナトリウム−黄黄電池の
特徴を活かすことによって、本発明のように電力変換器
の交流出力容量や二次電池の貯蔵電力量容量を電力系統
の特性に合わせて合理的に設計することが初めて可能と
なる。
Further, the secondary battery used in the present invention uses a sodium-yellow yellow battery using sodium and sulfur as active materials. Since the energy density is large, the system can be made compact and the output density is high. It is suitable for this purpose because it is large and suitable for peak power, because the long cycle life does not impair the reliability of the power system, there is no self-discharge, and the charge and discharge efficiency is high. . In particular, by repeating the discharge with a large amount of power, or by taking advantage of the characteristic of the sodium-yellow-yellow battery that characteristic deterioration does not easily occur even if the charge and discharge are repeated up to the rated value of the stored power capacity, the power consumption of For the first time, it is possible to rationally design the AC output capacity of the converter and the stored power capacity of the secondary battery according to the characteristics of the power system.

【0017】[0017]

【発明の実施の形態】以下、本発明を実施例に従って説
明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to embodiments.

【0018】図1は本発明のピーク電力対応二次電池シ
ステムの構成の一例である。図で、1はナトリウム−黄
黄電池などを1個または複数個集合した二次電池であ
る。2は電力変換器であり、二次電池から放電される直
流電力を交流に変換したり、逆に交流電力を直流に変換
して、二次電池を充電したりするのに使用される。ま
た、3は変圧器であり、電力変換器と電力系統4との間
で電圧を合わせるために電圧変換したり、電力変換器を
系統から直流的に分離したりするために用いられる。さ
らに、5は制御・保護装置であり、電力変換器を制御し
たり、系統を保護したりするために用いられる。また、
図2は電力系統での年間ピーク発生日における電力の経
時パターンの一例を示している。
FIG. 1 shows an example of the configuration of a peak power secondary battery system of the present invention. In the figure, 1 is a secondary battery in which one or more sodium-yellow-yellow batteries are assembled. Reference numeral 2 denotes a power converter, which is used to convert the DC power discharged from the secondary battery into AC, or conversely convert the AC power into DC to charge the secondary battery. Further, 3 is a transformer, which is used for voltage conversion in order to match the voltage between the power converter and the power system 4 and for separating the power converter from the system in a direct current manner. Further, 5 is a control / protection device, which is used for controlling the power converter and protecting the system. Also,
FIG. 2 shows an example of a temporal pattern of electric power on a day when an annual peak occurs in the electric power system.

【0019】第一の実施例では、電力変換装置の交流出
力容量が例えば図2の6に等しい時、図2の破線で示し
た積算電力量7と二次電池の貯蔵電力容量に電力変換装
置の直交変換効率を掛けた値とを略一致させている。こ
うすることにより、電力変換装置および二次電池の容量
を過不足なく利用して、図2の破線部分のピーク電力を
二次電池に蓄えた電力量で賄い、ピーク電力を有効にカ
ットできる。
In the first embodiment, when the AC output capacity of the power converter is equal to 6 in FIG. 2, for example, the integrated power amount 7 shown by the broken line in FIG. 2 and the stored power capacity of the secondary battery are converted into the power converter. The value obtained by multiplying the orthogonal transformation efficiency of is approximately matched. By doing so, the capacities of the power conversion device and the secondary battery can be used without excess or deficiency, and the peak power in the broken line portion of FIG. 2 can be covered by the amount of power stored in the secondary battery to effectively cut the peak power.

【0020】電力変換装置の必要容量は電力系統におけ
る電力のピークカット値によって異なるが、電力変換装
置の交流出力容量6が変化すると、当然のことながら積
算電力量7は変化する。図3および図4はこの関係を示
したものであり、図3は積算電力量(E)/交流出力容量
(p)と交流出力容量(p)/電力の年間平均値(P)との関
係を、図4は積算電力量(E)/交流出力容量(p)と交流
出力容量(p)/電力の年間ピーク値(P′)との関係であ
る。なお、図の破線と実線は平成4〜6年の3年間での
データのばらつき範囲(約±20%)とそれらの平均値を
示している。これを数式で表わすと
The required capacity of the power converter differs depending on the peak cut value of the power in the power system, but when the AC output capacity 6 of the power converter changes, the integrated power amount 7 naturally changes. 3 and 4 show this relationship, and FIG. 3 shows the integrated electric energy (E) / AC output capacity.
Fig. 4 shows the relationship between (p) and AC output capacity (p) / annual average value (P) of electric power, and Fig. 4 shows accumulated electric energy (E) / AC output capacity (p) and AC output capacity (p) / power This is the relationship with the annual peak value (P '). In addition, the broken line and the solid line in the figure show the variation range (about ± 20%) of the data for three years from 1992 to 1994 and the average value thereof. If this is expressed by a mathematical formula

【0021】[0021]

【数9】 log(E/p)=(5/7)・log(p/P)+1.24±0.08 …(数9) 但し、p,PはkW,EはkWh、または、[Equation 9] log (E / p) = (5/7) · log (p / P) + 1.24 ± 0.08 (Equation 9) However, p and P are kW, E is kWh, or

【0022】[0022]

【数10】 log(E/p)=(5/7)・log(p/P′)+1.455±0.08 …(数10) 但し、p,P′はkW,EはkWhとなる。従って、過
去の事例およびGNPの伸び率などから電力の年間平均
値Pまたは電力の年間ピーク値P′を求め、電力系統で
必要とされる電力のピークカット量と電力変換器の交流
出力容量とを一致させ、上式へこれらの値を入れて求め
た積算電力量Eを電力変換器の直交変換率で割った値を
二次電池の貯蔵電力容量とすれば良い。
[Equation 10] log (E / p) = (5/7) · log (p / P ′) + 1.455 ± 0.08 (Equation 10) However, p and P ′ are kW and E is kWh. . Therefore, the annual average value P of electric power or the annual peak value P ′ of electric power is obtained from past cases and the growth rate of GNP, and the peak cut amount of electric power required in the electric power system and the AC output capacity of the power converter are calculated. And the value obtained by dividing the integrated electric energy E obtained by inserting these values into the above equation by the orthogonal conversion rate of the power converter may be used as the storage power capacity of the secondary battery.

【0023】具体的には、年間平均電力約三万kW,予
想ピーク電力約六万kWの電力系統で、直交変換効率が
0.95 の電力変換器の交流出力容量を三千kWとし、
ナトリウム−黄黄電池の貯蔵電力量容量を約一万六百k
Whとすることにより、ピーク電力から三千kWをカッ
トした、約五万七千kWを超える電力を丁度ナトリウム
−黄黄電池に貯蔵した電力量で賄うことができる。
Specifically, in an electric power system with an annual average power of about 30,000 kW and an expected peak power of about 60,000 kW, the AC output capacity of a power converter with an orthogonal conversion efficiency of 0.95 is set to 3,000 kW,
Storage capacity of sodium-yellow-yellow battery is about 16,600k
By setting Wh, it is possible to cover the electric power of about 57,000 kW, which is 3,000 kW cut from the peak electric power, with the amount of electric power stored in the sodium-yellow-yellow battery.

【0024】また、第二の実施例では、図3及び図4に
示した積算電力量E/交流出力p′と交流出力p′/電
力の年間平均値Pとの関係、または積算電力量E/交流
出力p′と交流出力p′/電力の年間ピーク値P′との
関係を用い、第一の実施例と同様に求めた電力の年間平
均値Pまたは電力の年間ピーク値P′、及び、二次電池
の貯蔵電力量容量と電力変換器の直交変換率との積に等
しくした積算電力量Eから交流出力p′を算出し、電力
変換器の交流出力容量をこの交流出力p′よりも大きく
している。これにより、系統のピーク電力が予想よりも
大きくなったとしても、電力変換器の交流出力容量には
余裕があるため、交流出力を容量一杯に出し、電力ピー
クへの対応時間を短くして二次電池の貯蔵電力量容量の
不足をカバーするなどの手段により、ピーク電力の予想
からのずれに容易に対処できる。また、電力変換器の交
流出力容量の余裕を利用して、無効電力処理を行うこと
もできる。なお、E/p′とp′/Pとの関係式および
E/p′とp′/P′との関係式はそれぞれ、
In the second embodiment, the relationship between the integrated electric energy E / AC output p'and the AC output p '/ annual average value P of the electric power shown in FIGS. 3 and 4, or the integrated electric energy E / AC output p'and AC output p '/ annual peak value P'of electric power are used, and the annual average value P of electric power or the annual peak value P'of electric power obtained in the same manner as in the first embodiment, and , The AC output p ′ is calculated from the integrated power amount E which is equal to the product of the stored power capacity of the secondary battery and the orthogonal conversion rate of the power converter, and the AC output capacity of the power converter is calculated from this AC output p ′. Is also getting bigger. As a result, even if the peak power of the grid becomes larger than expected, the AC output capacity of the power converter has a margin, so the AC output should be full and the response time to the power peak should be shortened. Deviations from the expected peak power can be easily dealt with by means such as covering the shortage of the stored power capacity of the secondary battery. In addition, reactive power processing can be performed by using the margin of the AC output capacity of the power converter. The relational expression between E / p 'and p' / P and the relational expression between E / p 'and p' / P 'are respectively

【0025】[0025]

【数11】 log(E/p′)=(5/7)・log(p′/P)+1.24±0.08 …(数11) あるいはLog (E / p ′) = (5/7) · log (p ′ / P) + 1.24 ± 0.08 (Equation 11) or

【0026】[0026]

【数12】 log(E/p′)=(5/7)・log(p′/P′)+1.455±0.08 …(数12) 但し、p,p′,P,P′はkW、EはkWh、で与え
られる。
[Equation 12] log (E / p ') = (5/7) .log (p' / P ') + 1.455 ± 0.08 (Equation 12) where p, p', P and P'are kW and E are given by kWh.

【0027】具体的には、年間平均電力約九万kW,予
想ピーク電力約十八万kWの電力系統で、ナトリウム−
黄黄電池の貯蔵電力量容量を三万二千kWh,直交変換
効率0.95 の電力変換器の交流出力容量を一万四千k
Wとすることにより、ナトリウム−黄黄電池の貯蔵電力
量容量で丁度ピーク電力を約5%カットできると同時
に、ピーク電力として約3%分の余裕が電力変換器の交
流出力容量にあり、ピーク電力の予想値からの増加に有
効に対処できる。
Specifically, in an electric power system with an annual average power of about 90,000 kW and an expected peak power of about 180,000 kW, sodium-
The storage capacity of the yellow-yellow battery is 32,000 kWh, and the AC output capacity of the power converter with an orthogonal conversion efficiency of 0.95 is 14,000 kWh.
By setting W, the peak power can be cut by about 5% with the stored power capacity of the sodium-yellow-yellow battery, and at the same time, there is a margin of about 3% as peak power in the AC output capacity of the power converter. It can effectively deal with the increase of the power from the expected value.

【0028】[0028]

【発明の効果】第一の発明によれば、ピーク電力対応二
次電池システムを構成する電力変換装置および二次電池
の容量を過不足なく利用して、電力系統のピーク電力を
処理することが可能となる。この結果、有効に電力のピ
ークカットができ、電力系統を構成する発電設備や送電
設備,変電設備の投資を押さえることが可能となる。
According to the first aspect of the present invention, it is possible to process the peak power of the power system by utilizing the capacities of the power converter and the secondary battery that compose the peak power secondary battery system without excess or deficiency. It will be possible. As a result, it is possible to effectively cut the peak of electric power, and it is possible to suppress investment in power generation equipment, power transmission equipment, and substation equipment that constitute the power system.

【0029】また、第二の発明によれば、電力系統のピ
ーク電力が予想よりも大きくなっても、これに容易に対
処することができる。
Further, according to the second invention, even if the peak power of the power system becomes larger than expected, it can be easily dealt with.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のピーク電力対応二次電池システムのブ
ロック図。
FIG. 1 is a block diagram of a peak power secondary battery system of the present invention.

【図2】電力系統における電力の経時パターンの例を示
す特性図。
FIG. 2 is a characteristic diagram showing an example of a temporal pattern of electric power in the electric power system.

【図3】交流出力容量または交流出力と積算電力量との
関係を示す特性図。
FIG. 3 is a characteristic diagram showing a relationship between an AC output capacity or an AC output and an integrated electric energy.

【図4】交流出力容量または交流出力と積算電力量との
関係を示す特性図。
FIG. 4 is a characteristic diagram showing a relationship between an AC output capacity or an AC output and an integrated electric energy.

【符号の説明】[Explanation of symbols]

1…二次電池、2…電力変換器、3…変圧器、4…電力
系統、5…制御・保護装置。
1 ... Secondary battery, 2 ... Power converter, 3 ... Transformer, 4 ... Power system, 5 ... Control / protection device.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】電力変換器を介して電力系統と接続された
ピーク電力対応の二次電池システムにおいて、前記電力
系統で使用される電力のピーク値から前記電力変換器の
交流出力容量を差し引いた電力値を超えて使用される電
力の1日の積算電力量と、前記二次電池の貯蔵電力量容
量に前記電力変換器の直交変換効率を掛けた値とを略一
致させたことを特徴とするピーク電力対応二次電池シス
テム。
1. In a secondary battery system for peak power, which is connected to a power system via a power converter, an AC output capacity of the power converter is subtracted from a peak value of power used in the power system. It is characterized in that the daily integrated electric energy of the electric power used in excess of the electric power value and the value obtained by multiplying the stored electric energy capacity of the secondary battery by the orthogonal conversion efficiency of the electric power converter are substantially matched. Rechargeable battery system for peak power.
【請求項2】請求項1において、過去の年間電力ピーク
発生日における電力の経時パターンを用い、前記交流出
力容量を可変として求めた前記交流出力容量と前記積算
電力量との間の関係と、前記交流出力容量の前記電力系
統での要求値とを用いて、前記積算電力量を算出したピ
ーク電力対応二次電池システム。
2. The relationship between the AC output capacity and the integrated electric energy obtained by variably setting the AC output capacity using a temporal pattern of electric power on a past annual power peak occurrence day, according to claim 1. A peak power compatible secondary battery system in which the integrated power amount is calculated using the required value of the AC output capacity in the power system.
【請求項3】請求項2において、前記電力系統で使用さ
れる電力の年間平均値をP(kW),前記交流出力容量を
p(kW),前記積算電力量をE(kWh)とした時、前記
関係が 【数1】 log(E/p)=(5/7)・log(p/P)+1.24±0.08 …(数1) で与えられるピーク電力対応二次電池システム。
3. The method according to claim 2, wherein an annual average value of electric power used in the electric power system is P (kW), the AC output capacity is p (kW), and the integrated electric energy is E (kWh). The peak power correspondence secondary battery system whose relation is given by log (E / p) = (5/7) · log (p / P) + 1.24 ± 0.08 (Equation 1).
【請求項4】請求項2において、前記電力系統で使用さ
れる電力の年間ピーク値をP′(kW),前記交流出力容量
をp(kW),前記積算電力量をE(kWh)とした時、前
記関係が 【数2】 log(E/p)=(5/7)・log(p/P′)+1.455±0.08 …(数2) で与えられるピーク電力対応二次電池システム。
4. The electric power used in the electric power system according to claim 2, wherein an annual peak value of electric power is P '(kW), the AC output capacity is p (kW), and the integrated electric energy is E (kWh). At this time, the above-mentioned relationship is given by the following equation: log (E / p) = (5/7) · log (p / P ') + 1.455 ± 0.08 (Equation 2) Secondary battery for peak power system.
【請求項5】電力変換器を介して電力系統と接続された
二次電池システムにおいて、過去の年間電力ピーク発生
日における電力の経時パターンを用いて、前記電力系統
の電力のピーク値から前記電力変換器の交流出力を差し
引いた電力値を超えて使用される電力の1日の積算電力
量と、前記交流出力との間の関係を求め、前記積算電力
量が前記二次電池の貯蔵電力量容量に前記電力変換器の
直交変換効率を掛けた値に等しい時に、前記関係から算
出される前記交流出力の値よりも、前記電力変換器の交
流出力容量が大きいことを特徴とするピーク電力対応二
次電池システム。
5. A secondary battery system connected to a power system via a power converter, using a temporal pattern of power on a past annual power peak occurrence date, from a peak value of power of the power system to the power The relationship between the daily integrated power amount of the power used exceeding the power value obtained by subtracting the AC output of the converter and the AC output is obtained, and the integrated power amount is the stored power amount of the secondary battery. When the capacity is equal to the value obtained by multiplying the orthogonal conversion efficiency of the power converter, the AC output capacity of the power converter is larger than the value of the AC output calculated from the relationship. Secondary battery system.
【請求項6】請求項5において、前記電力系統で使用さ
れる電力の年間平均値をP(kW),前記交流出力をp′
(kW),前記積算電力量をE(kWh)とした時、前記関
係が 【数3】 log(E/p′)=(5/7)・log(p′/P)+1.24±0.08 …(数3) で与えられるピーク電力対応二次電池システム。
6. The method according to claim 5, wherein an annual average value of electric power used in the electric power system is P (kW) and the AC output is p ′.
(kW) and the integrated electric energy is E (kWh), the relationship is as follows: log (E / p ′) = (5/7) · log (p ′ / P) + 1.24 ± 0 0.08 ... (Equation 3) A secondary battery system corresponding to peak power.
【請求項7】請求項5において、前記電力系統で使用さ
れる電力の年間ピーク値をP′(kW),前記交流出力を
p′(kW),前記積算電力量をE(kWh)とした時、前
記関係が 【数4】 log(E/p′)=(5/7)・log(p′/P′)+1.455±0.08…(数4) で与えられるピーク電力対応二次電池システム。
7. The method according to claim 5, wherein an annual peak value of electric power used in the electric power system is P '(kW), the AC output is p' (kW), and the integrated electric energy is E (kWh). At this time, the above relation is expressed by the following equation: log (E / p ′) = (5/7) · log (p ′ / P ′) + 1.455 ± 0.08 ... (Equation 4) Secondary battery system.
【請求項8】請求項1,2,3,4,5,6又は7にお
いて、前記二次電池がナトリウム−硫黄電池であるピー
ク電力対応二次電池システム。
8. The peak power secondary battery system according to claim 1, 2, 3, 4, 5, 6 or 7, wherein the secondary battery is a sodium-sulfur battery.
JP8028946A 1996-02-16 1996-02-16 Secondary battery system to cope with peak electric power Pending JPH09223515A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8028946A JPH09223515A (en) 1996-02-16 1996-02-16 Secondary battery system to cope with peak electric power

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8028946A JPH09223515A (en) 1996-02-16 1996-02-16 Secondary battery system to cope with peak electric power

Publications (1)

Publication Number Publication Date
JPH09223515A true JPH09223515A (en) 1997-08-26

Family

ID=12262581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8028946A Pending JPH09223515A (en) 1996-02-16 1996-02-16 Secondary battery system to cope with peak electric power

Country Status (1)

Country Link
JP (1) JPH09223515A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011042943A1 (en) * 2009-10-05 2011-04-14 トヨタ自動車株式会社 Specification selection device of power storage system and specification selection method of power storage system
US8779724B2 (en) 2009-12-28 2014-07-15 Toyota Jidosha Kabushiki Kaisha Residential electric power storage system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011042943A1 (en) * 2009-10-05 2011-04-14 トヨタ自動車株式会社 Specification selection device of power storage system and specification selection method of power storage system
JP5013023B2 (en) * 2009-10-05 2012-08-29 トヨタ自動車株式会社 Specification selection device for power storage system and specification selection method for power storage system
US8829720B2 (en) 2009-10-05 2014-09-09 Toyota Jidosha Kabushiki Kaisha Apparatus for selecting specifications of power storage system and method for selecting specifications of power storage system
US8779724B2 (en) 2009-12-28 2014-07-15 Toyota Jidosha Kabushiki Kaisha Residential electric power storage system

Similar Documents

Publication Publication Date Title
US7091625B2 (en) Home-use fuel cell system
US8334606B2 (en) Wind power generation system of a type provided with power storage system
US8482155B2 (en) Power converting device for renewable energy storage system
KR101369692B1 (en) Energy storage system and controlling method of the same
JP4353446B2 (en) DC power output device and solar power generation system
CN111276960B (en) Energy storage module predictive control method in light-storage direct-current micro-grid system
CN108695871B (en) Configuration method for reducing energy storage capacity requirement of island micro-grid containing power spring
EP4064516A1 (en) Battery management system
JP2003158825A (en) Hybrid system constituted of power generating device using natural energy and secondary battery for storing power, and usage thereof
JP6427826B2 (en) Control device, control method and program
Zhao et al. A daily optimization method for a PV-battery microgrid considering the battery lifetime and time-of-use pricing
CN103560533A (en) Method and system for causing energy storage power station to smooth wind and photovoltaic power generation fluctuation based on change rate
KR101863138B1 (en) Power-controlled energy storage device using lithium battery and supercapacitor
Weaver et al. Energy storage baseline requirements for pulsed power loads
Even et al. Peak shaving with batteries
JPH09223515A (en) Secondary battery system to cope with peak electric power
CN111934387A (en) Method for charging and discharging storage battery
CN117941196A (en) Control method and control device of energy storage system
Atcitty et al. Battery energy storage system
KR102022321B1 (en) Energy storage system
JP3688744B2 (en) Solar power plant
Mori et al. Experimental Analysis of Efficiencies of a Large Scale Energy Storage System
Shams et al. Design and implementation of Lithium-ion battery based smart solar powered street light system
Faisal et al. Real time implementation of fuzzy based charging-discharging controller for lithium-ion battery in microgrid applications
Volkov et al. Comparative analysis of power generation systems for renewable energy using electric energy storage devices