JPH09223507A - Solid polymer fuel cell - Google Patents

Solid polymer fuel cell

Info

Publication number
JPH09223507A
JPH09223507A JP8027527A JP2752796A JPH09223507A JP H09223507 A JPH09223507 A JP H09223507A JP 8027527 A JP8027527 A JP 8027527A JP 2752796 A JP2752796 A JP 2752796A JP H09223507 A JPH09223507 A JP H09223507A
Authority
JP
Japan
Prior art keywords
polymer electrolyte
fuel cell
hollow fiber
positive electrode
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8027527A
Other languages
Japanese (ja)
Other versions
JP3731234B2 (en
Inventor
Makoto Uchida
誠 内田
Hiroko Fukuoka
裕子 福岡
Yasushi Sugawara
靖 菅原
Nobuo Eda
信夫 江田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP02752796A priority Critical patent/JP3731234B2/en
Publication of JPH09223507A publication Critical patent/JPH09223507A/en
Application granted granted Critical
Publication of JP3731234B2 publication Critical patent/JP3731234B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1007Fuel cells with solid electrolytes with both reactants being gaseous or vaporised
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2457Grouping of fuel cells, e.g. stacking of fuel cells with both reactants being gaseous or vaporised
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/247Arrangements for tightening a stack, for accommodation of a stack in a tank or for assembling different tanks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fuel cell-whose structure can be simplified and on which size reduction can be attained by simplifying the constitution of a unit cell, and integrally forming a humidifying part and a power generation part. SOLUTION: A unit cell is constituted in such as way that a negative electrode 2 is formed on an inside surface of hollow yarn 1 of solid polymer electrolyte, and a positive electrode 3 is formed on an outside surface, and fuel is supplied to the negative electrode side, and an oxidizing agent is supplied to the positive electrode side. Mutual electrodes formed on an outside surface and mutual electrodes formed on an inside surface in this unit cell are respectively connected in parallel to each other, and are formed as parallel connection cell groups, and the cell groups are also connected in series to each other. A solid polymer fuel cell constituted so that a part of the hollow yarn 1 of the polymer electrolyte is formed as a humidifying part 7 and the other part is formed as a power generation part 6 is formed. Therefore, a structure of the solid polymer fuel cell is simplified, and size reduction can be attained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は燃料として純水素、
またはメタノールや化石燃料からの改質水素などの還元
剤を用い、空気や酸素を酸化剤とする固体高分子型燃料
電池の構成に関するものである。
TECHNICAL FIELD The present invention relates to pure hydrogen as a fuel,
Alternatively, the present invention relates to the configuration of a solid polymer fuel cell using a reducing agent such as reformed hydrogen from methanol or fossil fuel and using air or oxygen as an oxidant.

【0002】[0002]

【従来の技術】従来の固体高分子型燃料電池は電解質に
固体高分子電解質であるイオン交換膜を用いており、そ
の一般的な構成を図5に示す。従来のイオン交換膜9を
用いた構成では上記イオン交換膜9の両面に正極3また
は負極2を層状に形成し、単位電池10はシート状の平
面体の構成となる。この単位電池10を図6に示すよう
にセパレータ板11とガスケット12を間に挟みガスシ
ールして積層する。
2. Description of the Related Art A conventional polymer electrolyte fuel cell uses an ion exchange membrane, which is a polymer electrolyte, as an electrolyte, and its general structure is shown in FIG. In the configuration using the conventional ion exchange membrane 9, the positive electrode 3 or the negative electrode 2 is formed in layers on both sides of the ion exchange membrane 9, and the unit battery 10 has a sheet-like planar structure. As shown in FIG. 6, the unit battery 10 is laminated by gas sealing with a separator plate 11 and a gasket 12 sandwiched therebetween.

【0003】この燃料電池に水素を燃料として用いた場
合、負極では触媒と高分子電解質の接触界面において
(化1)の式に示す反応が起こる。
When hydrogen is used as a fuel in this fuel cell, the reaction represented by the formula (Formula 1) occurs at the contact interface between the catalyst and the polymer electrolyte in the negative electrode.

【0004】[0004]

【化1】 Embedded image

【0005】酸素を酸化剤として用いた場合、正極では
(化2)の式に示す反応が起こり水が生成される。
When oxygen is used as the oxidant, the positive electrode undergoes the reaction represented by the formula (Formula 2) to produce water.

【0006】[0006]

【化2】 Embedded image

【0007】触媒は反応の活性点となり、電極層は上記
反応の電子の伝導体であり、高分子電解質は水素イオン
の伝導体となる。
The catalyst serves as an active site of the reaction, the electrode layer serves as a conductor of electrons in the above reaction, and the polymer electrolyte serves as a conductor of hydrogen ions.

【0008】ただし、一般的に用いられる高分子電解質
は含水して初めて実用的なイオン透過性を持つ。従っ
て、この高分子電解質を加湿する方法が広く検討されて
いる。米国特許5,252,410号に代表されるよう
に、上記単位電池10は図6に示すようなセパレータ板
11とガスケット12を間に挟み直列に接続され、図7
に示すような積層体13を形成しエンドプレート14で
締め付けて一つの発電ユニットとなる。このユニットの
マニホールド部15中に酸化剤としての酸素を、マニホ
ールド部16に燃料としての水素を供給する。上記米国
特許では燃料および酸化剤の加湿部は上記積層体の発電
部とエンドプレートで一体に構成されている。この加湿
部はイオン交換膜の一方の面に燃料または酸化剤を供給
し他方に水を供給して、膜が水分だけを透過する性質を
利用して上記燃料または酸化剤をそれぞれ加湿してい
る。特開平5−54900号公報の加湿方法は、燃料ま
たは酸化剤ガスの供給通路内に加圧水の噴霧ノズルを有
する動力噴霧器、あるいは極微小化した霧の生成水面を
有する超音波加湿器を持つ構成とした。特開平6−33
8338号公報の加湿方法はセパレータ板と単位電池と
の間に多孔性の燃料配流板あるいは酸化剤配流板を設置
し、配流坂内部に水を供給して配流板の微細孔を介して
加湿する構成とした。また、特開平7−245116号
公報は積層電池のスタック内に中空糸膜を用いた加湿装
置を設置して燃料電池をコンパクト化する内容を開示し
ている。さらに、米国特許5,262,250号ではイ
オン交換膜内部に細いパスを通し、このパスに水を供給
して加湿する構成としている。
However, a commonly used polymer electrolyte has practical ion permeability only when it contains water. Therefore, methods for humidifying this polymer electrolyte have been widely studied. As represented by US Pat. No. 5,252,410, the unit battery 10 is connected in series with a separator plate 11 and a gasket 12 as shown in FIG.
A laminated body 13 as shown in (1) is formed and tightened with the end plate 14 to form one power generation unit. Oxygen as an oxidant is supplied into the manifold portion 15 of this unit, and hydrogen as a fuel is supplied to the manifold portion 16. In the above-mentioned U.S. patent, the fuel and oxidizer humidifying section is integrally formed with the power generating section of the laminate and the end plate. The humidifying section supplies the fuel or the oxidant to one surface of the ion exchange membrane and the water to the other side, and humidifies the fuel or the oxidant by utilizing the property that the membrane permeates only water. . The humidifying method disclosed in JP-A-5-54900 includes a power atomizer having a nozzle for spraying pressurized water in a fuel or oxidant gas supply passage, or an ultrasonic humidifier having a water surface for producing extremely fine mist. did. JP-A-6-33
In the humidification method disclosed in Japanese Patent No. 8338, a porous fuel distribution plate or oxidizer distribution plate is installed between a separator plate and a unit cell, and water is supplied to the inside of a distribution slope to humidify it through fine holes in the distribution plate. It was configured. Further, Japanese Patent Application Laid-Open No. 7-245116 discloses that a fuel cell is made compact by installing a humidifying device using a hollow fiber membrane in a stack of a laminated battery. Further, in US Pat. No. 5,262,250, a thin path is passed through the inside of the ion exchange membrane, and water is supplied to this path for humidification.

【0009】[0009]

【発明が解決しようとする課題】しかしながら上記従来
の固体高分子型燃料電池の構成では、図6に示すように
各単位電池10を反応ガスの混合を防ぎ、かつ電気的に
接続するための部材であるセパレータ板11が必要であ
るが、高分子電解質がそのイオン交換基であるスルホン
基の性質により酸性を示すために上記セパレータ板11
は耐酸性であり、かつ導電性が必要であるため、カーボ
ン材料やチタン材料が用いられている。これらの材料は
加工性が悪く高価であるため燃料電池本体のコストを高
価にする課題の一つになっている。また、積層化するた
めの部材として各部のガスシールのためにガスケット1
2が必要である。各単位電池10ごとに正極や負極の電
極部、燃料や酸化剤のマニホールド部15あるいは16
などをそれぞれ独立して分離、シールする必要があり、
上記ガスケット12は複雑かつ精密な形状となる。その
ためさらにコストを上げ組立を困難にする原因となる課
題を有していた。
However, in the structure of the above-mentioned conventional polymer electrolyte fuel cell, as shown in FIG. 6, a member for preventing mixing of reaction gases and electrically connecting the unit cells 10 together. The separator plate 11 is required. However, since the polymer electrolyte exhibits acidity due to the nature of the sulfone group which is the ion exchange group,
The carbon material and the titanium material are used because they are acid resistant and need conductivity. Since these materials have poor processability and are expensive, they are one of the problems that increase the cost of the fuel cell body. Also, as a member for stacking, a gasket 1 is used for gas sealing of each part.
2 is required. For each unit battery 10, a positive or negative electrode part, a fuel or oxidizer manifold part 15 or 16
It is necessary to separate and seal each independently,
The gasket 12 has a complicated and precise shape. Therefore, there is a problem that further increases the cost and makes the assembly difficult.

【0010】また、上記従来の固体高分子型燃料電池の
加湿部の構成では、膜加湿を行った場合には単位電池を
積層化する場合と同様にセパレータ板やガスケットの問
題があり、噴霧装置や多孔質板、超音波加湿を用いた場
合にはシステムが複雑になるのに加えて加圧装置や超音
波発振子などに要する動力源を燃料電池本体の出力から
賄う必要があり、性能低下につながるという課題を有し
ていた。
Further, in the structure of the humidifying part of the above-described conventional polymer electrolyte fuel cell, when the membrane humidification is performed, there is a problem of the separator plate and the gasket as in the case of stacking the unit cells, and the spraying device is used. In addition to complicating the system when using a porous plate, a porous plate, or ultrasonic humidification, it is necessary to cover the power source required for the pressurizing device, ultrasonic oscillator, etc. from the output of the fuel cell body, resulting in poor performance. Had the problem of leading to.

【0011】本発明はこのような従来の課題を解決する
もので、単位電池の構成を単純化し、さらに加湿部と発
電部を電池と一体化することによって、構造を簡素化し
小型化を可能にした固体高分子型燃料電池を提供するこ
とを目的とする。
The present invention solves such a conventional problem, and simplifies the structure of the unit battery and further integrates the humidifying part and the power generating part into the battery, thereby simplifying the structure and enabling downsizing. It is an object of the present invention to provide a polymer electrolyte fuel cell having the above structure.

【0012】[0012]

【課題を解決するための手段】上記課題を解決するため
に、本発明は固体高分子電解質より成る中空糸の内面あ
るいは外面に負極、他方の面に正極を形成し、中空糸の
負極を形成した面に燃料、正極を形成した面に酸化剤を
供給する固体高分子型燃料電池である。
In order to solve the above problems, the present invention forms a negative electrode on the inner surface or the outer surface of a hollow fiber made of a solid polymer electrolyte and a positive electrode on the other surface to form a hollow fiber negative electrode. It is a polymer electrolyte fuel cell in which the fuel is supplied to the surface and the oxidant is supplied to the surface where the positive electrode is formed.

【0013】また、本発明は固体高分子電解質よりなる
中空糸の一部に発電部を形成し、他の一部を加湿部とし
た固体高分子型燃料電池である。
Further, the present invention is a polymer electrolyte fuel cell in which a power generation part is formed in a part of a hollow fiber made of a solid polymer electrolyte and the other part is used as a humidification part.

【0014】本発明によれば、単位電池の構成を単純化
し、小型で性能の良い固体高分子型燃料電池とすること
ができる。
According to the present invention, the constitution of the unit cell can be simplified, and a small size and high performance polymer electrolyte fuel cell can be obtained.

【0015】[0015]

【発明の実施の形態】本発明の請求項1に記載の固体高
分子型燃料電池は、固体高分子電解質より成る中空糸の
内面あるいは外面に負極を、他方の面に正極を形成し、
中空糸の負極を形成した面に燃料、正極を形成した面に
酸化剤を供給する構成である。この構成によれば、燃料
が供給される部分と酸化剤が供給される部分とが中空糸
によって完全に隔離されているため、特別なセパレータ
や高価で複雑な構造のガスケットを用いることなくガス
シールすることが可能であり、ガスシール部の存在がな
いためガスが混合し性能を低下させることもない。
BEST MODE FOR CARRYING OUT THE INVENTION A polymer electrolyte fuel cell according to claim 1 of the present invention comprises a hollow fiber made of a solid polymer electrolyte having a negative electrode on the inner or outer surface and a positive electrode on the other surface.
This is a configuration in which the fuel is supplied to the surface of the hollow fiber on which the negative electrode is formed and the oxidant is supplied to the surface of the hollow fiber on which the positive electrode is formed. According to this structure, since the part to which the fuel is supplied and the part to which the oxidant is supplied are completely separated by the hollow fiber, the gas seal can be achieved without using a special separator or a gasket having an expensive and complicated structure. Since there is no gas seal portion, the gas is not mixed and the performance is not deteriorated.

【0016】請求項2に記載の発明は、請求項1の中空
糸の内面に形成した電極同士と、外面に形成した電極同
士をそれぞれ束ねることにより並列に接続する構成であ
り、簡単に並列接続することが可能である。
The invention according to claim 2 is a structure in which the electrodes formed on the inner surface of the hollow fiber of claim 1 and the electrodes formed on the outer surface are connected in parallel by bundling, respectively, and are easily connected in parallel. It is possible to

【0017】請求項3に記載の発明は、請求項1の中空
糸の各面に形成した負極と正極をそれぞれ直列接続する
構成であり、特別なセパレータ構造を用いることなく容
易に電池電圧を増加することが可能である。
The invention according to claim 3 has a constitution in which the negative electrode and the positive electrode formed on each surface of the hollow fiber of claim 1 are respectively connected in series, and the battery voltage can be easily increased without using a special separator structure. It is possible to

【0018】請求項5に記載の発明は、請求項1の中空
糸の一部に発電部を形成し、他の一部を加湿部とした構
成であり、このことにより容易に加湿構造と燃料電池構
造を一体化し燃料電池システム本体を小型化することが
できる。
According to a fifth aspect of the invention, the power generation part is formed in a part of the hollow fiber of the first aspect, and the other part is used as a humidification part, which facilitates the humidification structure and the fuel. The fuel cell system body can be miniaturized by integrating the cell structure.

【0019】請求項6に記載の発明は、請求項1の負極
または正極の少なくとも一方を触媒層とガス拡散層を交
互に少なくとも2層積層した層状構造であり、反応ガス
の拡散能力が向上し、濃度分極が低下することにより電
流密度が向上する。さらに、触媒層よりもガス拡散層の
撥水性が強い構造とすることにより、反応ガスの拡散能
力はより向上する。
According to a sixth aspect of the invention, at least one of the negative electrode and the positive electrode of the first aspect has a layered structure in which at least two layers of a catalyst layer and a gas diffusion layer are alternately laminated, and the reaction gas diffusion capacity is improved. The current density is improved due to the decrease in concentration polarization. Furthermore, by making the gas diffusion layer have a stronger water repellency than the catalyst layer, the diffusion capacity of the reaction gas is further improved.

【0020】(実施の形態1)図1に本発明の実施の形
態1の燃料電池の一部を切り取り内部断面の斜視図を示
す。
(Embodiment 1) FIG. 1 shows a perspective view of an internal cross section of a fuel cell according to Embodiment 1 of the present invention, which is partially cut away.

【0021】図1において1は固体高分子電解質よりな
る中空糸であり、この高分子電解質中空糸1の内面に負
極2を形成し、外面に正極3を形成する。負極2には負
極端子4を、正極3には正極端子5をとり、上記負極2
を形成した高分子電解質中空糸1の内面に燃料である水
素を、また、正極3を形成した外面に酸化剤である空気
を供給し、発電部とする。
In FIG. 1, reference numeral 1 denotes a hollow fiber made of a solid polymer electrolyte. A negative electrode 2 is formed on the inner surface of the polymer electrolyte hollow fiber 1 and a positive electrode 3 is formed on the outer surface thereof. The negative electrode 2 is provided with the negative electrode terminal 4, and the positive electrode 3 is provided with the positive electrode terminal 5.
Hydrogen, which is a fuel, is supplied to the inner surface of the polymer electrolyte hollow fiber 1 in which the positive electrode 3 is formed, and air, which is an oxidant, is supplied to the outer surface, where the positive electrode 3 is formed, to form a power generation unit.

【0022】(実施の形態2)図2に本発明の実施の形
態2の図1に示した燃料電池の単位電池を配列構成した
一例の斜視図を示す。
(Embodiment 2) FIG. 2 shows a perspective view of an example in which the unit cells of the fuel cell shown in FIG. 1 of Embodiment 2 of the present invention are arranged.

【0023】図2において14個の単位電池の正極端子
4と負極端子5をそれぞれ束ねて並列接続を行い、並列
接続電池群を構成する。さらに、並列接続電池群を他の
並列接続電池群と直列接続を行う。
In FIG. 2, the positive electrode terminal 4 and the negative electrode terminal 5 of 14 unit batteries are bundled and connected in parallel to form a parallel connected battery group. Further, the parallel connected battery group is connected in series with another parallel connected battery group.

【0024】(実施の形態3)図3に本発明の実施の形
態3の燃料電池の発電部6と加湿部7を備えた構成の一
例の斜視図を示す。また図4に図3の電池をケーシング
した電池の一例の断面図を示す。
(Embodiment 3) FIG. 3 is a perspective view showing an example of a structure including a power generation section 6 and a humidification section 7 of a fuel cell according to Embodiment 3 of the present invention. Further, FIG. 4 shows a sectional view of an example of a battery in which the battery of FIG. 3 is casing.

【0025】図3と図4において高分子電解質中空糸1
の一部に正極3と負極2を形成して発電部6とし、他の
一部を加湿部7として構成する。発電部6の高分子電解
質中空糸1の外面には酸化剤としての空気を供給し、加
湿部7の高分子電解質中空糸1の外面には純水を供給す
る。高分子電解質中空糸1の内面には燃料としての水素
が供給され、高分子電解質の純水のみを透過するという
性質により高分子電解質中空糸1の内面を通過する水素
を加湿部7で加湿し、加湿された水素が発電部6に供給
される。
3 and 4, the polymer electrolyte hollow fiber 1 is shown.
The positive electrode 3 and the negative electrode 2 are formed in a part of the above to form a power generation part 6, and the other part is formed as a humidification part 7. Air as an oxidizing agent is supplied to the outer surface of the polymer electrolyte hollow fiber 1 of the power generation section 6, and pure water is supplied to the outer surface of the polymer electrolyte hollow fiber 1 of the humidification section 7. Hydrogen as a fuel is supplied to the inner surface of the polymer electrolyte hollow fiber 1, and hydrogen passing through the inner surface of the polymer electrolyte hollow fiber 1 is humidified by the humidifying section 7 due to the property that only pure water of the polymer electrolyte permeates. The humidified hydrogen is supplied to the power generation unit 6.

【0026】[0026]

【実施例】以下、実施例により本発明をさらに詳しく説
明する。
The present invention will be described in more detail with reference to the following examples.

【0027】(実施例1)本発明の実施例による固体高
分子型燃料電池の単位電池を図1に示す構成で作製し
た。高分子電解質中空糸1として旭硝子エンジニアリン
グ株式会社製SUNSEP−WTMを用い、この外径0.
5mm、内径0.35mm、長さ12cmの中空糸を両
端1cmをマスキングしたのち、Ptの無電解メッキ浴に
浸漬して高分子電解質中空糸1の内部および外部の表面
に負極2および正極3となる触媒層を成形した。Ptの担
持量は両極ともに膜の表面積あたり0.5mg/cm2
とした。各電極にはTi線を接続して集電した。
(Example 1) A unit cell of a polymer electrolyte fuel cell according to an example of the present invention was produced with a structure shown in FIG. As the polymer electrolyte hollow fiber 1, SUNSEP-W ™ manufactured by Asahi Glass Engineering Co., Ltd.
A hollow fiber having a diameter of 5 mm, an inner diameter of 0.35 mm and a length of 12 cm was masked at both ends of 1 cm, and then immersed in a Pt electroless plating bath to form a negative electrode 2 and a positive electrode 3 on the inner and outer surfaces of the polymer electrolyte hollow fiber 1. Was formed into a catalyst layer. The loading amount of Pt was 0.5 mg / cm 2 per membrane surface area in both electrodes.
And A Ti wire was connected to each electrode to collect current.

【0028】(実施例2)実施例1の燃料電池をポリテ
トラフルオロエチレン(PTFE)あるいはポリテトラ
フルオロエチレンとポリヘキサフルオロプロピレンの共
重合体(FEP)などのディスパージョンに浸漬して触
媒層の表面に撥水性のガス拡散層を成形した他は全て実
施例1と同様の構成として本発明の固体高分子型燃料電
池を作製した。
Example 2 The fuel cell of Example 1 was immersed in a dispersion of polytetrafluoroethylene (PTFE) or a copolymer of polytetrafluoroethylene and polyhexafluoropropylene (FEP) to form a catalyst layer. A polymer electrolyte fuel cell of the present invention was produced with the same configuration as in Example 1 except that a water-repellent gas diffusion layer was formed on the surface.

【0029】(実施例3)図2に示すように実施例2で
作製した14個の単位電池の正極端子5と負極端子4を
それぞれ束ねて並列接続を行い並列接続電池群を構成し
た。さらに並列接続電池群を他の9個の並列接続電池群
と直列に接続した。
Example 3 As shown in FIG. 2, the positive electrode terminals 5 and the negative electrode terminals 4 of the 14 unit batteries prepared in Example 2 were bundled and connected in parallel to form a parallel connected battery group. Furthermore, the parallel-connected battery group was connected in series with the other nine parallel-connected battery groups.

【0030】(実施例4)実施例2と同様の方法で、全
長17cmの高分子電解質中空糸において両端1cmお
よび加湿部とする5cmをマスキングした後、残り10
cmに実施例2と同様の方法で発電部を形成し、10c
mの発電部と5cmの加湿部を有する単位電池を作製し
た。この単位電池を実施例3と同様に並列接続した様子
を図3に示す。さらに、並列接続した電池をケース8に
よりケーシングした。図4にケーシングした電池の断面
図を示す。図中、高分子電解質中空糸1の内面に水素を
供給し、外面の加湿部7では純水を注入し、発電部6で
は空気を供給する。このような構成とすることにより、
水素は加湿部7で高分子電解質を通過した純水により加
湿され、加湿した状態で発電部6に供給される。
(Example 4) In the same manner as in Example 2, after masking 1 cm at both ends and 5 cm to be the humidified portion in a polymer electrolyte hollow fiber having a total length of 17 cm, the remaining 10
cm to form a power generation unit in the same manner as in Example 2, and 10c
A unit battery having a power generation part of m and a humidification part of 5 cm was produced. FIG. 3 shows a state in which the unit batteries are connected in parallel as in the third embodiment. Further, the batteries connected in parallel were cased by a casing 8. FIG. 4 shows a cross-sectional view of the casingd battery. In the figure, hydrogen is supplied to the inner surface of the polymer electrolyte hollow fiber 1, pure water is injected into the humidifying section 7 on the outer surface, and air is supplied into the power generation section 6. With such a configuration,
Hydrogen is humidified by the pure water that has passed through the polymer electrolyte in the humidifying section 7, and is supplied to the power generation section 6 in a humidified state.

【0031】(比較例1)Ptを担持した炭素微粉末と高
分子電解質のアルコール溶液(アルドリッチ社製)を混
合してペースト状にし、導電性カーボンペーパーに塗布
して電極とした。白金触媒量は両極とも電極面積当たり
の白金重量で0.5mg/cm2とした。高分子電解質の添加
量は電極面積当たり1.0mg/cm2とした。これらの電極
とイオン交換膜とを120〜150℃、20〜200kg
/cm2でホットプレスして負極とイオン交換膜と正極との
接合を同時に行った。負極および正極は同じ種類の電極
とした。これらの接合体を用いて、図5に示した固体高
分子型燃料電池の単位電池を作製した。図中2は負極、
3は正極であり、9のイオン交換膜は米国デュポン社製
のNafion115を用いた。電極の面積は10cm
2 とした。
Comparative Example 1 Pt-supported carbon fine powder and a polymer electrolyte alcohol solution (manufactured by Aldrich Co.) were mixed to form a paste, which was applied to a conductive carbon paper to form an electrode. The amount of platinum catalyst was 0.5 mg / cm 2 in terms of platinum weight per electrode area for both electrodes. The amount of the polymer electrolyte added was 1.0 mg / cm 2 per electrode area. These electrodes and the ion exchange membrane are 120 to 150 ° C., 20 to 200 kg
The negative electrode, the ion-exchange membrane, and the positive electrode were bonded simultaneously by hot pressing at / cm 2 . The negative electrode and the positive electrode were electrodes of the same type. The unit cell of the polymer electrolyte fuel cell shown in FIG. 5 was produced using these bonded bodies. In the figure, 2 is the negative electrode,
3 is a positive electrode, and the ion exchange membrane of 9 was Nafion 115 manufactured by DuPont, USA. Area of electrode is 10 cm
And 2 .

【0032】(比較例2)比較例1の単位電池を図7に
示すように10セル積層した積層電池を比較の電池とし
て作製した。
Comparative Example 2 A unit cell of Comparative Example 1 was laminated with 10 cells as shown in FIG. 7 to prepare a laminated cell as a comparative cell.

【0033】以上の本発明の実施例1〜3および比較例
1の単電池の負極側に60℃の温度で加湿した水素ガス
を、正極側に60℃の温度で加湿した空気をそれぞれ供
給して放電試験を行った。また、実施例4では加湿しな
い水素および空気を供給した。
Hydrogen gas humidified at a temperature of 60 ° C. was supplied to the negative electrode side of the unit cells of Examples 1 to 3 and Comparative Example 1 of the present invention, and air humidified at a temperature of 60 ° C. was supplied to the positive electrode side. The discharge test was conducted. In addition, in Example 4, hydrogen and air that were not humidified were supplied.

【0034】[0034]

【表1】 [Table 1]

【0035】本発明の実施例および比較例に用いた燃料
電池を放電した結果を(表1)に示した。比較例1の単
位電池が開回路電圧0.95Vであり、単位電池の電圧
が0.5Vのときの電流密度は520mA/cm2 であ
ったのに対して実施例1の開回路電圧は1.01Vを示
し、単位電池の電圧が0.5Vのときの電流密度は61
0mA/cm2 であった。本実施例の電流密度の計算は
中空糸の外側の電極の面積をもとに計算した。実施例の
単位電池1本あたりの反応面積は約1.6cm 2 であ
る。
Fuel used in Examples and Comparative Examples of the present invention
The results of discharging the battery are shown in (Table 1). Comparative Example 1
The unit battery has an open circuit voltage of 0.95 V and the unit battery voltage
Current density is 520mA / cm at 0.5VTwoIn
On the other hand, the open circuit voltage of Example 1 is 1.01V.
However, the current density when the unit cell voltage is 0.5 V is 61
0 mA / cmTwoMet. Calculation of the current density of this example
It was calculated based on the area of the electrode outside the hollow fiber. Of the embodiment
The reaction area per unit cell is about 1.6 cm TwoIn
You.

【0036】この結果、比較例ではガスケットのガスシ
ール不良によって水素と空気のわずかな混合が生じ開回
路電圧が1V以下に低下したと考えられる。一方、実施
例では高分子電解質中空糸によって水素と空気が完全に
分離され、ガスケット部を持つ必要がなく、シールの不
良が生じないために1V以上の開回路電圧が得られ、水
素および空気の拡散経路が短くなり電流密度も増加した
と考えられる。
As a result, it is considered that in the comparative example, the open circuit voltage was lowered to 1 V or less due to a slight mixture of hydrogen and air due to the poor gas sealing of the gasket. On the other hand, in the example, hydrogen and air are completely separated by the polymer electrolyte hollow fiber, it is not necessary to have a gasket part, and an open circuit voltage of 1 V or more is obtained because no defective sealing occurs. It is considered that the diffusion path became shorter and the current density also increased.

【0037】実施例2の単位電池は実施例1の電流密度
よりも大きい650mA/cm2 の電流密度が得られ
た。電極の触媒層の表面に撥水化した拡散層を付加した
ので反応ガスの拡散能力が向上し濃度分極が低下して電
流密度が向上したと考えられる。
The unit cell of Example 2 had a current density of 650 mA / cm 2 , which was higher than that of Example 1. It is considered that since the water-repellent diffusion layer was added to the surface of the catalyst layer of the electrode, the diffusion capacity of the reaction gas was improved, the concentration polarization was decreased, and the current density was improved.

【0038】実施例3では単位電池を並列および直列接
続した。総開回路電圧は10.1V、単位電池の電圧が
0.5Vのときの電流密度は630mA/cm2 であ
り、143Wの出力が得られた。以上のように複数の電
池の接続による性能低下はわずかであった。
In Example 3, the unit cells were connected in parallel and in series. The total open circuit voltage was 10.1 V, the current density when the unit cell voltage was 0.5 V was 630 mA / cm 2 , and an output of 143 W was obtained. As described above, the performance deterioration due to the connection of the plurality of batteries was slight.

【0039】実施例4は加湿を同じ高分子電解質中空糸
を用いて行った構成であるが、このときの開回路電圧は
1.00Vであり、単位電池の電圧が0.5Vのときの
電流密度は635mA/cm2 であった。この加湿部一
体型の電池の総体積は20cm3 (長さ20cm、高さ
1cm、幅1cm)であり、14.2Wの出力が得られ
た。単位体積あたりの出力は0.71W/cm3 であっ
た。一方、比較例2の積層電池の体積は320cm
3 (長さ8cm、高さ5cm、幅8cm)であり、25
Wの出力が得られた。単位体積あたりの出力は0.07
8W/cm3 であった。この結果より、単位体積あたり
の性能を比較すると本発明の実施例4の構成では加湿部
を一体化しているのにもかかわらず、加湿部を持たない
比較例2の従来型の積層電池の9倍の出力が得られた。
従って、同じ出力を得る場合には9分の1の顕著な小型
化が可能であると言える。
Example 4 has a constitution in which the same polymer electrolyte hollow fiber is used for humidification. The open circuit voltage at this time is 1.00 V, and the current when the unit cell voltage is 0.5 V. The density was 635 mA / cm 2 . The total volume of the battery of the humidifying part type was 20 cm 3 (length 20 cm, height 1 cm, width 1 cm), and an output of 14.2 W was obtained. The output per unit volume was 0.71 W / cm 3 . On the other hand, the volume of the laminated battery of Comparative Example 2 is 320 cm.
3 (8 cm long, 5 cm high, 8 cm wide), 25
An output of W was obtained. Output per unit volume is 0.07
It was 8 W / cm 3 . From these results, comparing the performance per unit volume, although the humidifying section is integrated in the configuration of Example 4 of the present invention, 9 of the conventional laminated battery of Comparative Example 2 having no humidifying section is provided. Double output was obtained.
Therefore, when obtaining the same output, it can be said that the size can be remarkably reduced by a factor of 9.

【0040】ただし、実施例および比較例の構成は充分
に最適化した構成ではないため種々の改良を加えること
により上記実施例および比較例の数値に差異が生じるこ
とが予想されるが、実施例の構成の優位性は十分に保証
できる。
However, since the constitutions of the examples and comparative examples are not fully optimized constitutions, it is expected that the numerical values of the above-mentioned examples and comparative examples may differ by adding various improvements. The superiority of the configuration can be sufficiently guaranteed.

【0041】なお、本実施例では高分子電解質中空糸の
内面に負極を形成し、外面に正極を形成した構成とした
が、正負極の設定はこの限りではなく、内面に正極を形
成し、外面に負極を形成してもよい。
In this embodiment, the negative electrode was formed on the inner surface of the polymer electrolyte hollow fiber, and the positive electrode was formed on the outer surface. However, the positive and negative electrodes are not limited to this, and the positive electrode is formed on the inner surface. A negative electrode may be formed on the outer surface.

【0042】また、本発明の高分子電解質中空糸や触媒
などの素材および製法は本実施例に限定されるものでは
なく、同様の機能を有するものであれば他の素材および
製法を用いることができる。
Further, the material and the manufacturing method of the polymer electrolyte hollow fiber and the catalyst of the present invention are not limited to this embodiment, and other materials and manufacturing methods may be used as long as they have the same function. it can.

【0043】さらに、本実施例では、固体高分子型燃料
電池の一例として水素−空気燃料電池を取り上げたが、
メタノール、天然ガスやナフサ、プロパンなどを燃料と
する改質水素を用いた燃料電池、また、酸化剤として酸
素を用いた燃料電池、さらにはメタノールなどの液体燃
料を直接反応させる燃料電池など他の固体高分子型燃料
電池に適用することも可能である。
Further, in this embodiment, the hydrogen-air fuel cell was taken up as an example of the polymer electrolyte fuel cell.
Fuel cells that use reformed hydrogen that uses methanol, natural gas, naphtha, propane, etc. as fuels, fuel cells that use oxygen as an oxidant, and fuel cells that directly react liquid fuels such as methanol. It can also be applied to a polymer electrolyte fuel cell.

【0044】[0044]

【発明の効果】以上のように本発明の構成によれば、燃
料が供給される部分と酸化剤が供給される部分が固体高
分子電解質から成る中空糸によって完全に隔離されてい
るため、特別なガスケットの構造を用いることなくガス
シールが可能となる。また、これらの単位電池同士を同
じ側の電極が接するように束ねることによって簡単に並
列接続が可能となり、それらの並列接続電池を直列接続
して特別なセパレータ構造を用いることなく容易に電池
電圧を増加することができる。さらに、中空糸の一部を
発電部とし、他の一部を加湿部として構成することによ
って容易に加湿構造と燃料電池構造を一体化することが
でき、構造を簡素化し小型化を可能にした固体高分子型
燃料電池を提供できる。
As described above, according to the structure of the present invention, the portion to which the fuel is supplied and the portion to which the oxidant is supplied are completely separated by the hollow fiber made of the solid polymer electrolyte. Gas sealing is possible without using a unique gasket structure. Also, these unit batteries can be easily connected in parallel by bundling them so that the electrodes on the same side are in contact, and the battery voltage can be easily connected by connecting these parallel-connected batteries in series without using a special separator structure. Can be increased. Further, by constructing a part of the hollow fiber as a power generation part and another part as a humidification part, the humidification structure and the fuel cell structure can be easily integrated, and the structure can be simplified and downsized. A polymer electrolyte fuel cell can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例による燃料電池の一部を切り取
り内部断面を示す斜視図
FIG. 1 is a perspective view showing a cutaway internal cross-section of a fuel cell according to an embodiment of the present invention.

【図2】本発明の実施例による燃料電池の配列構成概念
の一例を示す斜視図
FIG. 2 is a perspective view showing an example of an arrangement configuration concept of a fuel cell according to an embodiment of the present invention.

【図3】本発明の実施例による燃料電池の構成の一例を
示す斜視図
FIG. 3 is a perspective view showing an example of the configuration of a fuel cell according to an embodiment of the present invention.

【図4】本発明の実施例による燃料電池の構成の一例を
示す断面図
FIG. 4 is a sectional view showing an example of the configuration of a fuel cell according to an embodiment of the present invention.

【図5】従来の固体高分子電解質膜を用いた燃料電池の
単電池の断面図
FIG. 5 is a sectional view of a unit cell of a fuel cell using a conventional solid polymer electrolyte membrane.

【図6】従来の固体高分子電解質膜を用いた燃料電池の
積層体の単電池の断面図
FIG. 6 is a cross-sectional view of a unit cell of a fuel cell stack using a conventional solid polymer electrolyte membrane.

【図7】従来の固体高分子電解質膜を用いた燃料電池の
積層体の組立斜視図
FIG. 7 is an assembled perspective view of a stack of a fuel cell using a conventional solid polymer electrolyte membrane.

【符号の説明】[Explanation of symbols]

1 固体高分子電解質中空糸 2 負極 3 正極 4 負極端子 5 正極端子 6 発電部 7 加湿部 8 ケース 9 イオン交換膜 10 単位電池 11 セパレータ板 12 ガスケット 13 積層体 14 エンドプレート 15 マニホールド部 16 マニホールド部 1 Solid Polymer Electrolyte Hollow Fiber 2 Negative Electrode 3 Positive Electrode 4 Negative Terminal 5 Positive Electrode Terminal 6 Power Generation Section 7 Humidification Section 8 Case 9 Ion Exchange Membrane 10 Unit Battery 11 Separator Plate 12 Gasket 13 Laminate 14 End Plate 15 Manifold 16 Manifold

───────────────────────────────────────────────────── フロントページの続き (72)発明者 江田 信夫 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Nobuo Eda 1006 Kazuma Kadoma, Kadoma City, Osaka Matsushita Electric Industrial Co., Ltd.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】固体高分子電解質から成る中空糸の内面あ
るいは外面に負極を、他方の面に正極を形成して発電部
とし、上記中空糸の負極を形成した面に燃料、正極を形
成した面に酸化剤を供給する固体高分子型燃料電池。
1. A hollow fiber made of a solid polymer electrolyte is provided with a negative electrode on the inner or outer surface and a positive electrode is formed on the other surface to form a power generation section, and a fuel and a positive electrode are formed on the surface of the hollow fiber on which the negative electrode is formed. A polymer electrolyte fuel cell that supplies an oxidant to the surface.
【請求項2】複数の中空糸の外面に形成した電極同士
と、内面に形成した電極同士をそれぞれ並列接続した請
求項1記載の固体高分子型燃料電池。
2. The polymer electrolyte fuel cell according to claim 1, wherein the electrodes formed on the outer surfaces of the plurality of hollow fibers and the electrodes formed on the inner surfaces are connected in parallel.
【請求項3】中空糸の各面に形成した正極と負極とを直
列接続した請求項1記載の固体高分子型燃料電池。
3. The polymer electrolyte fuel cell according to claim 1, wherein a positive electrode and a negative electrode formed on each surface of the hollow fiber are connected in series.
【請求項4】中空糸の内面に負極を形成し、外面に正極
を形成した請求項1記載の固体高分子型燃料電池。
4. The polymer electrolyte fuel cell according to claim 1, wherein a negative electrode is formed on the inner surface of the hollow fiber and a positive electrode is formed on the outer surface.
【請求項5】中空糸の一部に発電部を形成し、他の一部
を加湿部とした請求項1記載の固体高分子型燃料電池。
5. The polymer electrolyte fuel cell according to claim 1, wherein the power generation part is formed in a part of the hollow fiber and the other part is used as a humidification part.
【請求項6】負極または正極の少なくともどちらか一方
が触媒層とガス拡散層を交互に少なくとも2層積層した
層状構造である請求項1記載の固体高分子型燃料電池。
6. The polymer electrolyte fuel cell according to claim 1, wherein at least one of the negative electrode and the positive electrode has a layered structure in which at least two catalyst layers and gas diffusion layers are alternately laminated.
【請求項7】ガス拡散層が触媒層よりも撥水性が強い構
造とした請求項6記載の固体高分子型燃料電池。
7. The polymer electrolyte fuel cell according to claim 6, wherein the gas diffusion layer has a structure having stronger water repellency than the catalyst layer.
JP02752796A 1996-02-15 1996-02-15 Polymer electrolyte fuel cell Expired - Fee Related JP3731234B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02752796A JP3731234B2 (en) 1996-02-15 1996-02-15 Polymer electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02752796A JP3731234B2 (en) 1996-02-15 1996-02-15 Polymer electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JPH09223507A true JPH09223507A (en) 1997-08-26
JP3731234B2 JP3731234B2 (en) 2006-01-05

Family

ID=12223601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02752796A Expired - Fee Related JP3731234B2 (en) 1996-02-15 1996-02-15 Polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP3731234B2 (en)

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001047054A1 (en) * 1999-12-22 2001-06-28 Proton Energy Systems, Inc. Electrochemical cell system
US6338913B1 (en) 2000-07-24 2002-01-15 Microcell Corporation Double-membrane microcell electrochemical devices and assemblies, and method of making and using the same
WO2002009212A1 (en) * 2000-07-24 2002-01-31 Microcell Corporation Microcell electrochemical devices and assemblies, and method of making and using the same
JP2002151125A (en) * 2000-11-14 2002-05-24 Mitsubishi Heavy Ind Ltd Abnormality detecting method for fuel cell and abnormality detecting device for fuel cell
US6399232B1 (en) 2000-07-24 2002-06-04 Microcell Corporation Series-connected microcell electrochemical devices and assemblies, and method of making and using the same
US6403248B1 (en) 2000-07-24 2002-06-11 Microcell Corporation Microcell electrochemical devices assemblies with water management subsystem, and method of making and using the same
US6403517B1 (en) 2000-07-24 2002-06-11 Microcell Corporation System and process for manufacturing microcell electrochemical devices and assemblies
US6444339B1 (en) 2000-07-24 2002-09-03 Microcell Corporation Microcell electrochemical device assemblies with thermal management subsystem, and method of making and using the same
JP2002260685A (en) * 2001-03-02 2002-09-13 National Institute Of Advanced Industrial & Technology Small fuel cell
EP1258936A2 (en) * 2001-05-18 2002-11-20 Hitachi, Ltd. Fuel cell, fuel cell generator, and equipment using the same
US6495281B1 (en) 2000-07-24 2002-12-17 Microcell Corporation Microcell electrochemical devices assemblies with corrosion management subsystem, and method of making and using the same
WO2003005466A3 (en) * 2001-07-05 2003-10-16 Stephan Ruediger Blum Electrode arrangement
JP2005310583A (en) * 2004-04-22 2005-11-04 Seiko Epson Corp Fuel cell and its manufacturing method
JP2005322621A (en) * 2004-03-22 2005-11-17 Ibiden Co Ltd Solid polymer electrolyte fuel cell
US6972160B2 (en) 2002-04-08 2005-12-06 National Institute Of Advanced Industrial Science And Technology Fuel cell
WO2005122307A1 (en) * 2004-06-11 2005-12-22 Toyota Jidosha Kabushiki Kaisha Cell module and fuel cell
JP2006512746A (en) * 2002-12-23 2006-04-13 マイクロセル コーポレーション Manufacturing method supported on substrate of microfibrous fuel cell
WO2006055101A2 (en) * 2004-11-15 2006-05-26 3M Innovative Properties Company Fuel cell component storage or shipment
JP2006190603A (en) * 2005-01-07 2006-07-20 Toyota Motor Corp Tubular membrane-electrode assembly for fuel cell with heat insulation tube
WO2006083036A1 (en) * 2005-02-04 2006-08-10 Toyota Jidosha Kabushiki Kaisha Fuel cell
JP2006216403A (en) * 2005-02-04 2006-08-17 Toyota Motor Corp Fuel cell
JP2006216408A (en) * 2005-02-04 2006-08-17 Toyota Motor Corp Cell module assembly and fuel cell
JP2006216405A (en) * 2005-02-04 2006-08-17 Toyota Motor Corp Fuel cell
JP2006216416A (en) * 2005-02-04 2006-08-17 Toyota Motor Corp Membrane electrode assembly bundle for tube type fuel cell
US7105244B2 (en) 2001-09-25 2006-09-12 Hitachi, Ltd. Fuel cell power generation equipment and a device using the same
JP2007141840A (en) * 2005-11-16 2007-06-07 Ford Motor Co Fuel cell assembly and manufacturing method therefor
JP2007194205A (en) * 2005-12-22 2007-08-02 Nok Corp Fuel cell module
US7323266B2 (en) 2002-10-22 2008-01-29 Hitachi, Ltd. Sheet-like chemical cell, fuel cell and methods for manufacturing thereof
JP2009176645A (en) * 2008-01-28 2009-08-06 Gyoseiin Genshino Iinkai Kakuno Kenkyusho Manufacture method of microtube type thin membrane electrode assembly
US7641996B2 (en) 2005-08-31 2010-01-05 Toyota Jidosha Kabushiki Kaisha Fuel cell
US7695843B2 (en) 2004-02-13 2010-04-13 Microcell Corporation Microfibrous fuel cell assemblies comprising fiber-supported electrocatalyst layers, and methods of making same
US7838064B2 (en) 2005-08-31 2010-11-23 Toyota Jidosha Kabushiki Kaisha Method for manufacturing tube-type fuel cell
US7977009B2 (en) 2004-06-11 2011-07-12 Toyota Jidosha Kabushiki Kaisha Cell module for fuel cell, method for forming cell module, and fuel cell
US8048584B2 (en) 2003-03-07 2011-11-01 Microcell Corporation Fuel cell structures and assemblies
US8168350B1 (en) 2002-07-02 2012-05-01 Microcell Corporation Fuel cell structures and assemblies with channeled current collectors, and method of making the same
US8338056B2 (en) 2005-11-10 2012-12-25 Toyota Jidosha Kabushiki Kaisha Tubular fuel cell
US8455148B2 (en) 2005-08-31 2013-06-04 Toyota Jidosha Kabushiki Kaisha Fuel cell
US8741463B2 (en) 2004-06-11 2014-06-03 Toyota Jidosha Kabushiki Kaisha Fuel cell
CN105810980A (en) * 2016-03-25 2016-07-27 山西大学 Assembly method for battery pile of tubular solid oxide fuel cell

Cited By (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001047054A1 (en) * 1999-12-22 2001-06-28 Proton Energy Systems, Inc. Electrochemical cell system
JP2004505417A (en) * 2000-07-24 2004-02-19 マイクロセル・コーポレイション Microcell electrochemical devices and assemblies and methods of making and using the same
AU2001282953B2 (en) * 2000-07-24 2005-07-07 Microcell Corporation Series-connected microcell electrochemical devices and assemblies, and method of making and using the same
US6495281B1 (en) 2000-07-24 2002-12-17 Microcell Corporation Microcell electrochemical devices assemblies with corrosion management subsystem, and method of making and using the same
AU2004202981B2 (en) * 2000-07-24 2007-03-15 Microcell Corporation Microcell electrochemical devices and assemblies, and method of making and using the same
US6403248B1 (en) 2000-07-24 2002-06-11 Microcell Corporation Microcell electrochemical devices assemblies with water management subsystem, and method of making and using the same
US6403517B1 (en) 2000-07-24 2002-06-11 Microcell Corporation System and process for manufacturing microcell electrochemical devices and assemblies
US6444339B1 (en) 2000-07-24 2002-09-03 Microcell Corporation Microcell electrochemical device assemblies with thermal management subsystem, and method of making and using the same
CN100353590C (en) * 2000-07-24 2007-12-05 微电池公司 Microcell electrochemical devices and assemblies and method of making and using the same
WO2002009212A1 (en) * 2000-07-24 2002-01-31 Microcell Corporation Microcell electrochemical devices and assemblies, and method of making and using the same
US6338913B1 (en) 2000-07-24 2002-01-15 Microcell Corporation Double-membrane microcell electrochemical devices and assemblies, and method of making and using the same
US6399232B1 (en) 2000-07-24 2002-06-04 Microcell Corporation Series-connected microcell electrochemical devices and assemblies, and method of making and using the same
JP2002151125A (en) * 2000-11-14 2002-05-24 Mitsubishi Heavy Ind Ltd Abnormality detecting method for fuel cell and abnormality detecting device for fuel cell
JP2002260685A (en) * 2001-03-02 2002-09-13 National Institute Of Advanced Industrial & Technology Small fuel cell
US6869713B2 (en) 2001-05-18 2005-03-22 Hitachi, Ltd. Fuel cell, fuel cell generator, and equipment using the same
EP1258936A2 (en) * 2001-05-18 2002-11-20 Hitachi, Ltd. Fuel cell, fuel cell generator, and equipment using the same
CN1303712C (en) * 2001-07-05 2007-03-07 斯特凡·吕迪格·布吕姆 Electrode arrangement
US7306865B2 (en) 2001-07-05 2007-12-11 2S-Sophisticated Systems Limited Electrode arrangement for a fuel cell having sectored headplates
WO2003005466A3 (en) * 2001-07-05 2003-10-16 Stephan Ruediger Blum Electrode arrangement
US7105244B2 (en) 2001-09-25 2006-09-12 Hitachi, Ltd. Fuel cell power generation equipment and a device using the same
US6972160B2 (en) 2002-04-08 2005-12-06 National Institute Of Advanced Industrial Science And Technology Fuel cell
US8168350B1 (en) 2002-07-02 2012-05-01 Microcell Corporation Fuel cell structures and assemblies with channeled current collectors, and method of making the same
US7572302B2 (en) 2002-10-22 2009-08-11 Hitachi Ltd. Sheet-like chemical cell, fuel cell and methods for manufacturing thereof
US7323266B2 (en) 2002-10-22 2008-01-29 Hitachi, Ltd. Sheet-like chemical cell, fuel cell and methods for manufacturing thereof
JP2006512746A (en) * 2002-12-23 2006-04-13 マイクロセル コーポレーション Manufacturing method supported on substrate of microfibrous fuel cell
US8048584B2 (en) 2003-03-07 2011-11-01 Microcell Corporation Fuel cell structures and assemblies
US7695843B2 (en) 2004-02-13 2010-04-13 Microcell Corporation Microfibrous fuel cell assemblies comprising fiber-supported electrocatalyst layers, and methods of making same
JP2005322621A (en) * 2004-03-22 2005-11-17 Ibiden Co Ltd Solid polymer electrolyte fuel cell
JP4513393B2 (en) * 2004-04-22 2010-07-28 セイコーエプソン株式会社 Fuel cell and manufacturing method thereof
JP2005310583A (en) * 2004-04-22 2005-11-04 Seiko Epson Corp Fuel cell and its manufacturing method
JP2005353495A (en) * 2004-06-11 2005-12-22 Toyota Motor Corp Cell module and fuel cell
WO2005122307A1 (en) * 2004-06-11 2005-12-22 Toyota Jidosha Kabushiki Kaisha Cell module and fuel cell
US8741463B2 (en) 2004-06-11 2014-06-03 Toyota Jidosha Kabushiki Kaisha Fuel cell
US7887973B2 (en) 2004-06-11 2011-02-15 Toyota Jidosha Kabushiki Kaisha Cell module and fuel cell having a water permeable hollow body
DE112005001340B4 (en) * 2004-06-11 2010-08-19 Toyota Jidosha Kabushiki Kaisha, Toyota-shi Cell module and fuel cell
US7977009B2 (en) 2004-06-11 2011-07-12 Toyota Jidosha Kabushiki Kaisha Cell module for fuel cell, method for forming cell module, and fuel cell
WO2006055101A3 (en) * 2004-11-15 2006-08-24 3M Innovative Properties Co Fuel cell component storage or shipment
WO2006055101A2 (en) * 2004-11-15 2006-05-26 3M Innovative Properties Company Fuel cell component storage or shipment
JP4720185B2 (en) * 2005-01-07 2011-07-13 トヨタ自動車株式会社 Membrane electrode composite for tubular fuel cell with heat insulation tube
JP2006190603A (en) * 2005-01-07 2006-07-20 Toyota Motor Corp Tubular membrane-electrode assembly for fuel cell with heat insulation tube
JP2006216408A (en) * 2005-02-04 2006-08-17 Toyota Motor Corp Cell module assembly and fuel cell
JP2006216416A (en) * 2005-02-04 2006-08-17 Toyota Motor Corp Membrane electrode assembly bundle for tube type fuel cell
WO2006083036A1 (en) * 2005-02-04 2006-08-10 Toyota Jidosha Kabushiki Kaisha Fuel cell
JP2006216403A (en) * 2005-02-04 2006-08-17 Toyota Motor Corp Fuel cell
JP2006216410A (en) * 2005-02-04 2006-08-17 Toyota Motor Corp Fuel cell
JP2006216405A (en) * 2005-02-04 2006-08-17 Toyota Motor Corp Fuel cell
US7838064B2 (en) 2005-08-31 2010-11-23 Toyota Jidosha Kabushiki Kaisha Method for manufacturing tube-type fuel cell
US7641996B2 (en) 2005-08-31 2010-01-05 Toyota Jidosha Kabushiki Kaisha Fuel cell
DE112006002128B4 (en) 2005-08-31 2013-03-21 Toyota Jidosha K.K. Method for producing a tubular fuel cell
US8455148B2 (en) 2005-08-31 2013-06-04 Toyota Jidosha Kabushiki Kaisha Fuel cell
US8338056B2 (en) 2005-11-10 2012-12-25 Toyota Jidosha Kabushiki Kaisha Tubular fuel cell
JP2007141840A (en) * 2005-11-16 2007-06-07 Ford Motor Co Fuel cell assembly and manufacturing method therefor
JP2007194205A (en) * 2005-12-22 2007-08-02 Nok Corp Fuel cell module
JP2009176645A (en) * 2008-01-28 2009-08-06 Gyoseiin Genshino Iinkai Kakuno Kenkyusho Manufacture method of microtube type thin membrane electrode assembly
CN105810980A (en) * 2016-03-25 2016-07-27 山西大学 Assembly method for battery pile of tubular solid oxide fuel cell

Also Published As

Publication number Publication date
JP3731234B2 (en) 2006-01-05

Similar Documents

Publication Publication Date Title
JP3731234B2 (en) Polymer electrolyte fuel cell
US5958616A (en) Membrane and electrode structure for methanol fuel cell
KR100450820B1 (en) Air breathing direct methanol fuel cell pack
US7157169B2 (en) Fuel cell
US6541144B2 (en) Fuel cell system
WO2004004055A1 (en) Solid high polymer type cell assembly
JPS60100377A (en) Fuel battery
JP2003100315A (en) Fuel cell power generator and unit using its generator
JP4826992B2 (en) Fuel cell plate, fuel cell cylindrical cell, fuel cell stack, fuel cell module, fuel cell unit and fuel cell system
US8039171B2 (en) Current-collecting composite plate for fuel cell and fuel cell fabricated using same
WO2001059864A1 (en) Polymer electrolyte fuel cell
JP5062392B2 (en) Polymer electrolyte fuel cell
JP2790666B2 (en) Fuel cell generator
JP2003323902A (en) Fuel cell power generator and portable device using the same
US20060210854A1 (en) Fuel battery
US20030228508A1 (en) Fuel cells utilizing non-porous nanofilm microchannel architecture
JPWO2008072363A1 (en) Polymer electrolyte fuel cell
JPH04298964A (en) Solid electrolyte type fuel cell and manufacture thereof
JP4945887B2 (en) Cell module and solid polymer electrolyte fuel cell
JPH0992308A (en) Solid polymer electrolyte fuel cell
JP2009043688A (en) Fuel cell
WO2009119434A1 (en) Fuel cell unit, fuel cell stack and electronic device
JP2002110190A (en) Fuel cell
JP2783926B2 (en) Single cell of solid oxide fuel cell and power generator using the same
JP3729151B2 (en) Manufacturing method of fuel cell

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050920

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051003

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091021

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091021

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101021

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees