JPH09222185A - Composite pipe and its manufacture - Google Patents

Composite pipe and its manufacture

Info

Publication number
JPH09222185A
JPH09222185A JP18207696A JP18207696A JPH09222185A JP H09222185 A JPH09222185 A JP H09222185A JP 18207696 A JP18207696 A JP 18207696A JP 18207696 A JP18207696 A JP 18207696A JP H09222185 A JPH09222185 A JP H09222185A
Authority
JP
Japan
Prior art keywords
vinyl chloride
pipe body
coating layer
chloride resin
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP18207696A
Other languages
Japanese (ja)
Inventor
Tadashi Shinko
忠 新子
Hiroshi Kakei
博志 加計
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP18207696A priority Critical patent/JPH09222185A/en
Publication of JPH09222185A publication Critical patent/JPH09222185A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a composite pipe having excellent heat insulating and temperature holding functions without the occurrence of any thermal deformation in a coated layer or the absorption of water from a surface even when it is used in a high temperature and manufacture thereof. SOLUTION: A composite pipe 1 is constructed in such a manner that a coated layer 12 composed of a polyvinyl chloride resin foaming body is provided in the outer peripheral surface of a pipe main body 11 made of a polyvinyl chloride resin, the coated layer 12 is composed of a foamed inner layer part 121 and a substantially non-foamed surface layer part 122 formed in its outer periphery and the inner layer part 121 and the surface layer part 122 are integrally formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、流体移送に使用さ
れるパイプ本体の外周面に、発泡体からなる被覆層が形
成された、断熱性、保温性及び耐熱変形性の各品質特性
に優れた複合パイプ及びその製造方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention has excellent quality characteristics such as heat insulation, heat retention, and heat distortion resistance in which a coating layer made of foam is formed on the outer peripheral surface of a pipe body used for fluid transfer. And a manufacturing method thereof.

【0002】[0002]

【従来の技術】プラスチックパイプは、液体、固体や気
体の移送等に幅広く用いられており、特に塩化ビニル系
樹脂製のパイプは、上下水道管を始め種々の移送配管、
或いは公衆浴場や温泉地における給排水管等、高温流体
を移送する際の、断熱・保温バイプの素材としても汎用
されている。この場合は、移送中の温度低下を抑えると
共に、接触による火傷等を防護する為に、パイプ外周面
に合成樹脂発泡体からなる断熱・保温材を被覆するのが
通常である。
2. Description of the Related Art Plastic pipes are widely used for transporting liquids, solids and gases. Particularly, vinyl chloride resin pipes are used for various transport pipes including water and sewer pipes.
Alternatively, it is widely used as a material for a heat insulating / heat insulating vip when transferring a high temperature fluid such as a water supply / drain pipe in a public bath or a hot spring area. In this case, in order to suppress the temperature drop during the transfer and protect the burn and the like due to the contact, it is usual to coat the outer peripheral surface of the pipe with a heat insulating / heat insulating material made of a synthetic resin foam.

【0003】例えば、特開平3─122323号公報に
は、合成樹脂製の給水給湯パイプの外周面に合成樹脂製
発泡体を被覆し、更にその外周面に合成樹脂製の外装シ
ースを配した屋内配管材について記載されている。しか
し、耐熱パイプの周りに断熱材を巻いて施工を行う場
合、通常、耐熱パイプの施工と断熱材の施工を別々に行
うので、施工に手間と時間がかかるという問題点があ
る。
For example, in Japanese Unexamined Patent Publication No. 3-122323, indoors in which an outer peripheral surface of a water supply hot water supply pipe made of synthetic resin is covered with a synthetic resin foam and an outer sheath made of synthetic resin is arranged on the outer peripheral surface of the pipe. It describes the piping materials. However, in the case where the heat insulating pipe is wound around the heat insulating material for construction, the heat insulating pipe and the heat insulating material are usually constructed separately, so that there is a problem that the construction takes time and labor.

【0004】又、特開平5−96599号公報には、一
旦成形した熱可塑性エラストマーチューブに接着剤を塗
布した後、そのチューブの外周面にクロスヘッドダイを
用いて、軟質熱可塑性樹脂層を押出し成形して被覆層を
形成することにより、複合チューブを製造する方法が開
示されている。この場合、被覆層に高発泡倍率の発泡体
を用いても、フリー発泡であるため、発泡樹脂層外表面
より吸水したり、高温環境で使用すると発泡層が柔らか
くなり、変形するという問題点が挙げられる。
Further, in Japanese Unexamined Patent Publication No. 5-96599, an adhesive is applied to a thermoplastic elastomer tube that has been once molded, and then a soft thermoplastic resin layer is extruded on the outer peripheral surface of the tube using a crosshead die. A method of manufacturing a composite tube by molding to form a coating layer is disclosed. In this case, even if a foam having a high expansion ratio is used for the coating layer, since it is free foaming, there is a problem in that it absorbs water from the outer surface of the foamed resin layer or becomes soft and deforms when used in a high temperature environment. Can be mentioned.

【0005】又、特開昭56−155727号公報に
は、被覆押出成形法により、パイプ本体の外周面に発泡
体からなる被覆層を一体的に積層して、複合パイプを得
る製造方法が開示されている。
Further, Japanese Patent Application Laid-Open No. 56-155727 discloses a manufacturing method for obtaining a composite pipe by integrally laminating a coating layer made of a foam on the outer peripheral surface of a pipe body by a coating extrusion molding method. Has been done.

【0006】この開示技術の一つに、被覆層成形用の溶
融樹脂とパイプ本体成形用の溶融樹脂とを、一つの金型
内で溶融状態で被覆する方法が示されているが、この場
合、パイプ本体の外径寸法を規制し難く、更にパイプ本
体と被覆層とが熱融着するので、両者の界面は強固に接
着しており、かかる複合パイプ同士を継手で接続する際
に被覆層の剥離作業に時間がかかり、複合パイプ同士を
継手で接続するのが困難な作業であった。
As one of the disclosed techniques, there is shown a method of coating a molten resin for molding a coating layer and a molten resin for molding a pipe body in a molten state in one mold. In this case, Since it is difficult to control the outer diameter of the pipe body and the pipe body and the coating layer are heat-sealed, the interface between them is firmly adhered, and the coating layer is used when connecting such composite pipes with a joint. It took a long time to peel off, and it was difficult to connect the composite pipes with each other by a joint.

【0007】[0007]

【発明が解決しようとする課題】本発明は、上記従来技
術の問題点を解消し、高温で使用しても被覆層の熱変形
や表面からの吸水も無く、断熱・保温機能に優れ、パイ
プ本体の寸法精度に優れ、且つ施工性に優れた複合パイ
プ及びその製造方法を提供することを目的とする。又
は、上記目的に加え、パイプ本体と被覆層間が人手によ
る剥離が可能な程度の界面接着性を有し、特に施工性に
優れた複合パイプを提供すること、或いは、上記目的に
加え、被覆層の耐熱性が優れ、特に被覆層の耐熱変形性
に優れた複合パイプを提供することを目的とする。
DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned problems of the prior art, has no thermal deformation of the coating layer even when used at high temperature and absorbs water from the surface, is excellent in heat insulation and heat retention function, An object of the present invention is to provide a composite pipe having excellent dimensional accuracy of the main body and excellent workability, and a method for manufacturing the same. Or, in addition to the above object, to provide a composite pipe having an interfacial adhesiveness between the pipe body and the coating layer that allows manual peeling, and particularly excellent in workability, or in addition to the above object, a coating layer It is an object of the present invention to provide a composite pipe having excellent heat resistance, particularly, the heat deformation resistance of the coating layer.

【0008】[0008]

【課題を解決するための手段】本願の請求項1に記載の
発明(以下、本発明1という)は、塩化ビニル系樹脂か
らなるパイプ本体の外周面に、塩化ビニル系樹脂発泡体
からなる被覆層が設けられた複合パイプであって、該被
覆層が、発泡された内層部とその外周に形成された実質
的に非発泡の表層部とからなり、且つ内層部と表層部と
が一体的に形成されてなる複合パイプである。
The invention according to claim 1 of the present application (hereinafter referred to as the present invention 1) is a coating of a vinyl chloride resin foam on the outer peripheral surface of a pipe body made of a vinyl chloride resin. A composite pipe provided with a layer, wherein the coating layer comprises a foamed inner layer portion and a substantially non-foamed surface layer portion formed on the outer periphery thereof, and the inner layer portion and the surface layer portion are integrated. It is a composite pipe formed by.

【0009】本願の請求項2に記載の発明(以下、本発
明2という)は、塩化ビニル系樹脂からなるパイプ本体
の外周面に、塩化ビニル系樹脂発泡体からなる被覆層が
設けられた複合パイプであって、該被覆層が、発泡され
た内層部とその外周に形成された実質的に非発泡の表層
部とからなり、且つ内層部と表層部とが一体的に形成さ
れてなり、パイプ本体と被覆層間の引張剪断強度が0.
001〜0.3kg/cm2 である複合パイプである。
The invention according to claim 2 of the present application (hereinafter referred to as the present invention 2) is a composite in which a coating layer made of a vinyl chloride resin foam is provided on the outer peripheral surface of a pipe body made of a vinyl chloride resin. A pipe, wherein the coating layer comprises a foamed inner layer portion and a substantially non-foamed surface layer portion formed on the outer periphery thereof, and the inner layer portion and the surface layer portion are integrally formed, The tensile shear strength between the pipe body and the coating layer is 0.
It is a composite pipe of 001 to 0.3 kg / cm 2 .

【0010】本願の請求項3に記載の発明(以下、本発
明3という)は、前記パイプ本体が塩素化塩化ビニル系
樹脂からなる本発明1又は本発明2に記載の複合パイプ
である。
The invention according to claim 3 of the present application (hereinafter referred to as the present invention 3) is the composite pipe according to the present invention 1 or 2, wherein the pipe body is made of a chlorinated vinyl chloride resin.

【0011】本願の請求項4に記載の発明(以下、本発
明4という)は、第1押出機により溶融状態の塩化ビニ
ル系樹脂を押し出した後硬化させてパイプ本体を連続成
形し、得られたパイプ本体をクロスヘッドダイのパイプ
本体通路に順次導入するとともに、そのクロスヘッドダ
イの被覆樹脂流路内に第2押出機により溶融状態の発泡
性塩化ビニル系樹脂を供給し、クロスヘッドダイに引き
続いて設けられたセルカプロセス用サイジングダイ内
で、発泡性塩化ビニル系樹脂を被覆樹脂流路より押し出
し、内径方向に膨出するように発泡させて、パイプ本体
通路を通過したパイプ本体の外周面に、順次被覆層を形
成する複合パイプの製造方法である。
The invention according to claim 4 of the present application (hereinafter referred to as the present invention 4) is obtained by extruding a vinyl chloride resin in a molten state by a first extruder and then curing the resin to continuously form a pipe body. The pipe body is sequentially introduced into the pipe body passage of the crosshead die, and the meltable foamable vinyl chloride resin is supplied to the crosshead die by the second extruder in the coating resin flow passage of the crosshead die. In the subsequent sizing die for the selka process, the expandable vinyl chloride resin was extruded from the coating resin flow path, foamed so as to bulge in the inner diameter direction, and the outer peripheral surface of the pipe body that passed through the pipe body passage In addition, it is a method for manufacturing a composite pipe in which a coating layer is sequentially formed.

【0012】本発明1、本発明2及び本発明4におい
て、パイプ本体を形成する塩化ビニル系樹脂としては、
塩素化塩化ビニル系樹脂の他、例えば、塩化ビニル単量
体の単独重合体、塩化ビニル単量体と塩化ビニル単量体
以外の重合性単量体との共重合体、塩化ビニル系樹脂以
外の重合体に塩化ビニル単量体をグラフトさせたグラフ
ト共重合体等が使用される。
In the present invention 1, the invention 2, and the invention 4, as the vinyl chloride resin forming the pipe body,
Other than chlorinated vinyl chloride resins, for example, homopolymers of vinyl chloride monomers, copolymers of vinyl chloride monomers and polymerizable monomers other than vinyl chloride monomers, other than vinyl chloride resins For example, a graft copolymer obtained by grafting a vinyl chloride monomer onto the above polymer is used.

【0013】上記及び本発明3において、塩素化塩化ビ
ニル系樹脂としては、塩素化塩化ビニル樹脂、又はそれ
以外の塩化ビニル系樹脂との混合物が使用される。塩素
化塩化ビニル樹脂とは、塩化ビニル樹脂を乾式法や湿式
法等により後塩素化した塩化ビニル樹脂をいい、塩化ビ
ニル樹脂よりも耐熱性に優れているのが特徴の一つであ
る。この後塩素化には、通常、重合度が800〜120
0程度の塩化ビニル樹脂が使用される。
In the above and the present invention 3, as the chlorinated vinyl chloride resin, a chlorinated vinyl chloride resin or a mixture with other vinyl chloride resin is used. The chlorinated vinyl chloride resin is a vinyl chloride resin obtained by post-chlorinating a vinyl chloride resin by a dry method, a wet method or the like, and one of its features is that it is superior in heat resistance to the vinyl chloride resin. For the subsequent chlorination, the degree of polymerization is usually 800 to 120.
About 0 vinyl chloride resin is used.

【0014】本発明1〜4において、被覆層を形成する
塩化ビニル系樹脂としては、発泡成形体の素材として従
来から使用されているものであれば採用可能であり、例
えば、塩化ビニル単量体の単独重合体、塩化ビニル単量
体と塩化ビニル単量体以外の重合性単量体との共重合
体、塩化ビニル系樹脂以外の重合体に塩化ビニル単量体
をグラフトさせたグラフト重合体、塩素化塩化ビニル樹
脂、これらの樹脂の混合物等が使用される。
In the present inventions 1 to 4, the vinyl chloride-based resin forming the coating layer may be any as long as it has been conventionally used as a raw material for foamed molded articles. For example, vinyl chloride monomer. Homopolymers, copolymers of vinyl chloride monomers and polymerizable monomers other than vinyl chloride monomers, graft polymers obtained by grafting vinyl chloride monomers onto polymers other than vinyl chloride resins , Chlorinated vinyl chloride resins, mixtures of these resins and the like are used.

【0015】ところで、塩化ビニル系樹脂を用いて発泡
させた内層部を有する被覆層を形成するには、塩化ビニ
ル系樹脂に、熱分解型発泡剤や溶剤型発泡剤等の発泡剤
を加えたものが使用される。
By the way, in order to form a coating layer having an inner layer portion foamed from a vinyl chloride resin, a foaming agent such as a pyrolytic foaming agent or a solvent type foaming agent is added to the vinyl chloride resin. Stuff used.

【0016】熱分解型発泡剤としては、例えば、重炭酸
ナトリウム、重炭酸アンモニウム、炭酸アンモニウム等
の熱分解型無機発泡剤、N,N′─ジニトロソテレフタ
ルアミド等のニトロソ化合物、アゾジカルボンアミド、
アゾビスイソブチロニクリル等のアゾ化合物、ベンゼン
スルホニルヒドラジド、トルエンスルホニルヒドラジド
等のスルホニルヒドラジド化合物等の熱分解型有機発泡
剤等が挙げられる。
Examples of the heat-decomposable foaming agents include heat-decomposable inorganic foaming agents such as sodium bicarbonate, ammonium bicarbonate and ammonium carbonate, nitroso compounds such as N, N'-dinitrosoterephthalamide, azodicarbonamide, and the like.
Examples thereof include thermal decomposition type organic foaming agents such as azo compounds such as azobisisobutyronicryl, sulfonyl hydrazide compounds such as benzenesulfonyl hydrazide and toluene sulfonyl hydrazide, and the like.

【0017】溶剤型発泡剤としては、例えば、メタノー
ル、エタノール等のアルコール類等が挙げられる。これ
らの熱分解型又は溶剤型発泡剤は、単独で使用してもよ
く、2種以上併用してもよい。
Examples of the solvent-type foaming agent include alcohols such as methanol and ethanol. These thermal decomposition type or solvent type foaming agents may be used alone or in combination of two or more kinds.

【0018】前記のパイプ本体を形成する塩素化塩化ビ
ニル系樹脂や塩化ビニル系樹脂、及び、被覆層を成形す
る塩化ビニル系樹脂に発泡剤を加えたものには、更に必
要に応じて、熱安定剤、加工助剤、滑剤、衝撃改質剤、
充填剤、酸化防止剤、紫外線吸収剤、光安定剤、顔料等
が適宜添加されてもよい。
The chlorinated vinyl chloride resin or vinyl chloride resin forming the pipe body and the vinyl chloride resin forming the coating layer to which a foaming agent has been added may be further heated as necessary. Stabilizers, processing aids, lubricants, impact modifiers,
Fillers, antioxidants, ultraviolet absorbers, light stabilizers, pigments and the like may be added as appropriate.

【0019】このような被覆層の成形には幾つかの方法
があり、例えば、合成樹脂の低発泡押出成形法の一種で
あるセルカプロセス(Celka process)が
挙げられる。
There are several methods for molding such a coating layer, and for example, there is a Celka process which is a kind of low foaming extrusion molding method of synthetic resin.

【0020】本発明でいうセルカプロセスとは、フラン
スのユージンクールマン社が開発した合成樹脂の低発泡
押出成形法の一種であって、ダイの先端に特殊のセルカ
プロセス用サイジングダイ(通称「セルカフォーミング
チューブ」)を直結した装置を使用するのが特徴であ
る。
The cerca process referred to in the present invention is a kind of synthetic resin low foaming extrusion molding method developed by Eugene Coulman of France, in which a special cerca process sizing die (commonly known as "selca process" It is characterized by using a device that is directly connected to the forming tube.

【0021】このセルカプロセスを採用したときに得ら
れる発泡体は、発泡された内層部とその外周に形成され
る実質的に非発泡の硬質の表層部(=表皮、通称「セル
カ層」)とで形成される。従って、表層部の比重が大き
く内層部のそれが小さいことになり、又、内層部と表層
部とは強固に一体化したものが得られる。
The foam obtained when this selka process is adopted is composed of a foamed inner layer portion and a substantially non-foamed hard surface layer portion (= skin, commonly known as "selka layer") formed on the outer periphery thereof. Is formed by. Therefore, the specific gravity of the surface layer portion is large and that of the inner layer portion is small, and the inner layer portion and the surface layer portion are firmly integrated.

【0022】ここでいう実質的に非発泡とは、完全な無
発泡状態のものから、硬度が高く吸水が起こり難くな
る、いわゆる低発泡倍率のものを指す。又、内層部と表
層部との間には、明確な境界が形成されていてもよい
し、形成されていなくてもよく、内層部から表層部にか
けて発泡倍率が順次変化するような連続構造であっても
よい。
The term "substantially non-foamed" as used herein means a so-called low foaming ratio in which the hardness is high and water absorption hardly occurs from a completely non-foamed state. Further, a clear boundary may or may not be formed between the inner layer portion and the surface layer portion, and has a continuous structure in which the foaming ratio changes sequentially from the inner layer portion to the surface layer portion. It may be.

【0023】本発明における被覆層の厚みは特に限定は
なく、移送する流体の種類や温度、流量等によって適宜
に設定すればよいが、只、表層部の厚みは、あまり薄過
ぎると内層部の耐熱変形性が低下するので、少なくとも
0.2mm以上とするのが好ましい。
The thickness of the coating layer in the present invention is not particularly limited and may be appropriately set depending on the type of fluid to be transferred, temperature, flow rate, etc. However, if the thickness of the surface layer is too thin, Since the heat distortion resistance decreases, it is preferable that the thickness is at least 0.2 mm or more.

【0024】パイプ本体の外周面に、被覆層を設けるに
は、一つには各々別個に成形した後、被覆層材内にパイ
プ本体を内挿する方法がある。この場合、パイプ本体と
しては加熱拡径性を付与した成形体とするのが好まし
く、予めその表面に接着剤を塗布しておき、被覆層材に
内挿後、パイプ本体内に加熱流体を流して加熱・拡径
し、被覆層材に密着させる方法がある。
In order to provide the coating layer on the outer peripheral surface of the pipe body, there is a method of forming the coating layer separately and then inserting the pipe body into the coating layer material. In this case, it is preferable that the pipe body is a molded body having a heat-expanding property, an adhesive is applied to the surface of the pipe body in advance, and the heating fluid is flowed into the pipe body after being inserted into the coating layer material. There is a method of heating and expanding the diameter to bring it into close contact with the coating layer material.

【0025】又、もう一つの方法として、本発明4のよ
うなパイプ本体の押出成形とセルカプロセス法による被
覆層形成とを連結した方法が挙げられる。
As another method, there is a method in which the extrusion molding of the pipe body and the formation of the coating layer by the Celka process method are connected as in the present invention 4.

【0026】本発明2において、パイプ本体と被覆層間
の引張剪断強度は、0.001〜0.3kg/cm2
ある必要があり、この範囲にあるときに、パイプ本体上
から被覆層を容易に剥離したり、パイプ本体と剥離層間
を容易にずらすことができて、施工時にパイプ本体同士
を容易に接続することができる。
In the second aspect of the present invention, the tensile shear strength between the pipe body and the coating layer needs to be 0.001 to 0.3 kg / cm 2 , and when the tensile shear strength is in this range, the coating layer is easily formed on the pipe body. The pipe bodies can be easily peeled off or the pipe body and the peeling layer can be easily displaced from each other, so that the pipe bodies can be easily connected to each other during construction.

【0027】本発明2において、引張剪断強度とは、複
合パイプから、図5に示すような試験片を各5個ずつ作
成し、23℃の恒温室内に48時間放置した後、23℃
において500mm/分の速度で引っ張り、オートグラ
フにより界面の破壊時の引張剪断強度を測定し、得られ
た5個の測定値の平均値として算出したものをいう。
In the present invention 2, the term “tensile shear strength” means that 5 pieces of each test piece as shown in FIG. 5 are prepared from a composite pipe and left in a thermostatic chamber at 23 ° C. for 48 hours and then at 23 ° C.
Was pulled at a speed of 500 mm / min, the tensile shear strength at the time of breaking of the interface was measured by an autograph, and it was calculated as the average value of the five measured values obtained.

【0028】(作用)本発明1の複合パイプは、塩化ビ
ニル系樹脂からなるパイプ本体の外周面に、発泡体から
なる被覆層が設けられているから、被覆層の存在によっ
て、移送される高温流体が保温されると共に外部に対す
る断熱性が具備される。
(Function) In the composite pipe of the present invention 1, since the coating layer made of foam is provided on the outer peripheral surface of the pipe body made of vinyl chloride resin, the high temperature transferred due to the presence of the coating layer. The fluid is kept warm and the outside is insulated.

【0029】又、被覆層は、発泡体からなる内層部とそ
の外周に形成された実質的に非発泡の表層部とからな
り、両者が一体的に形成されているから、表層部によっ
て内層部が補強され、経時により内層部が熱変形したり
剥離したりすることが防止されると共に複合パイプ表面
に耐擦傷性が付与される。
The coating layer is composed of an inner layer portion made of foam and a substantially non-foamed surface layer portion formed on the outer periphery of the inner layer portion. Since both are integrally formed, the inner layer portion is formed by the surface layer portion. Is reinforced to prevent the inner layer portion from being thermally deformed or peeled off over time, and imparts scratch resistance to the surface of the composite pipe.

【0030】又、被覆層の表層部と内部層とを押出成形
により形成できるから、セルカプロセス法や押出被覆成
形法の採用が可能であり、該被覆層の表層部と内層部と
は一体化されたものを連続して成形することができ、被
覆層製造の生産性が向上する。
Further, since the surface layer portion and the inner layer of the coating layer can be formed by extrusion molding, it is possible to adopt the selka process method or the extrusion coating molding method, and the surface layer portion and the inner layer portion of the coating layer are integrated. The formed product can be continuously molded, and the productivity of producing the coating layer is improved.

【0031】本発明2の複合パイプは、塩化ビニル系樹
脂からなるパイプ本体の外周面に、発泡体からなる被覆
層が設けられているから、被覆層の存在によって、移送
される高温流体が保温されると共に外部に対する断熱性
が具備される。又、被覆層は、発泡体からなる内層部と
その外周面に形成された実質的に非発泡の表層部とから
なり、両者が一体的に形成されているから、表層部によ
って内層部が補強され、経時により内層部が熱変形した
り剥離したりすることが防止されると共に複合パイプ表
面に耐擦傷性が付与される。
In the composite pipe of the second aspect of the present invention, since the coating layer made of foam is provided on the outer peripheral surface of the pipe body made of vinyl chloride resin, the presence of the coating layer keeps the transferred high temperature fluid warm. In addition, it is provided with a heat insulating property to the outside. Further, the covering layer is composed of an inner layer portion made of foam and a substantially non-foamed surface layer portion formed on the outer peripheral surface thereof, and since both are integrally formed, the inner layer portion is reinforced by the surface layer portion. Thus, the inner layer portion is prevented from being thermally deformed or peeled off with the passage of time, and the composite pipe surface is provided with scratch resistance.

【0032】又、被覆層の表層部と内部層とは押出成形
により形成できるから、セルカプロセス法や押出被覆成
形法の採用が可能であり、該被覆層の表層部と内層部と
は一体化されたものを連続して成形することができ、被
覆層製造の生産性が向上する。
Further, since the surface layer portion and the inner layer of the coating layer can be formed by extrusion molding, it is possible to adopt a selka process method or an extrusion coating molding method, and the surface layer portion and the inner layer portion of the coating layer are integrated. The formed product can be continuously molded, and the productivity of producing the coating layer is improved.

【0033】又、パイプ本体と被覆層間の引張剪断強度
が0.001〜0.3kg/cm2であるから、パイプ
本体と被覆層との界面接着強度は、人手による剥離が可
能な程度に調整されたものである。
Further, since the tensile shear strength between the pipe body and the coating layer is 0.001 to 0.3 kg / cm 2 , the interfacial adhesive strength between the pipe body and the coating layer is adjusted to the extent that manual peeling is possible. It was done.

【0034】本発明3の複合パイプは、塩素化塩化ビニ
ル系樹脂からなるパイプ本体の外周面に、発泡体からな
る被覆層が設けられているから、高温流体と直接接する
パイプ本体は、耐熱性に優れた塩素化塩化ビニル系樹脂
の採用によって塩化ビニル系樹脂製のものよりも耐熱変
形性が向上し、又、被覆層の存在によって、移送される
高温流体が保温されると共に外部に対する断熱性が具備
される。
In the composite pipe of the third aspect of the present invention, since the covering layer made of foam is provided on the outer peripheral surface of the pipe body made of chlorinated vinyl chloride resin, the pipe body in direct contact with the high temperature fluid is heat resistant. By adopting excellent chlorinated vinyl chloride resin, the heat distortion resistance is improved compared to that made of vinyl chloride resin, and the presence of the coating layer keeps the high temperature fluid to be transferred warm and provides heat insulation to the outside. Is provided.

【0035】本発明4の複合パイプの製造方法は、第1
押出機により溶融状態の塩化ビニル系樹脂を押し出した
後硬化させてパイプ本体を連続成形し、得られたパイプ
本体をクロスヘッドダイのパイプ本体通路に順次導入す
るとともに、そのクロスヘッドダイの被覆樹脂流路内に
第2押出機により溶融状態の発泡性塩化ビニル系樹脂を
供給し、クスヘッドダイに引き続いて設けられたセルカ
プロセス用サイジングダイ内で、発泡性塩化ビニル系樹
脂を被覆樹脂流路より押し出し、内径方向に膨出するよ
うに発泡させて、パイプ本体通路を通過したパイプ本体
の外周面に、順次被覆層を形成することにより、パイプ
本体の寸法精度の良いものが得られ、且つ、パイプ本体
と被覆層との界面接着強度は、人手による剥離が可能な
程度に調整されたものとなり、更に、該被覆層により、
移送される高温流体が保温されると共に外部に対して断
熱性が具備される。
The method for producing a composite pipe according to the fourth aspect of the present invention is the first
A molten vinyl chloride resin is extruded by an extruder and then cured to continuously form a pipe body, and the resulting pipe body is sequentially introduced into the pipe body passage of the crosshead die, and the crosshead die coating resin. The foamable vinyl chloride resin in a molten state is supplied into the flow channel by the second extruder, and the foamable vinyl chloride resin is extruded from the coating resin flow channel in the sizing die for selka process provided subsequently to the Kushead die. By foaming so as to swell in the inner diameter direction and sequentially forming a coating layer on the outer peripheral surface of the pipe body that has passed through the pipe body passage, it is possible to obtain a pipe body with good dimensional accuracy, and The interfacial adhesive strength between the main body and the coating layer is adjusted so that it can be peeled off manually, and further, by the coating layer,
The transferred high-temperature fluid is kept warm and has heat insulation to the outside.

【0036】又、セルカプロセル用サイジングダイの採
用により、被覆層は発泡体からなる内層部とその外周面
に形成される実質的に非発泡の表層部とからなり、両者
が一体的に形成されているから、表層部によって内層部
が補強され、高温流体移送中の経時により、内層部が熱
変形したり剥離したりすることが防止され、更に表面か
ら吸水性もないものとなる。
Further, by adopting the sizing die for celcaprocell, the coating layer is composed of an inner layer part made of foam and a substantially non-foamed surface layer part formed on the outer peripheral surface thereof, and both are integrally formed. Therefore, the inner layer portion is reinforced by the surface layer portion, so that the inner layer portion is prevented from being thermally deformed or peeled off due to the passage of time during the transfer of the high temperature fluid, and there is no water absorption from the surface.

【0037】又、パイプ本体や被覆層の成形材料として
塩化ビニル系樹脂を採用したので、この種樹脂が具有す
る品質特性を全て具備しており、パイプ本体成形材料も
しくは被覆層成形材料、又はその両成形材料に塩素化塩
化ビニル系樹脂を使用した場合は、更に耐熱性に優れた
ものが得られる。
Further, since a vinyl chloride resin is used as a molding material for the pipe body and the coating layer, it has all the quality characteristics possessed by this kind of resin. When a chlorinated vinyl chloride resin is used for both molding materials, a resin having even higher heat resistance can be obtained.

【0038】[0038]

【発明の実施の形態】以下、本発明の実施の形態を説明
する。図1は、本発明の複合パイプの一例を示す断面図
である。同図に示すように、複合パイプ1(P)は、塩
化ビニル系樹脂からなるパイプ本体11の外周面に、塩
化ビニル系樹脂からなる被覆層12が設けられており、
被覆層12は、発泡された内層部121とその外周に一
体的に形成された実質的に非発泡の表層部122とから
なる。
Embodiments of the present invention will be described below. FIG. 1 is a sectional view showing an example of the composite pipe of the present invention. As shown in the figure, in the composite pipe 1 (P), a coating layer 12 made of vinyl chloride resin is provided on the outer peripheral surface of a pipe body 11 made of vinyl chloride resin,
The coating layer 12 includes a foamed inner layer portion 121 and a substantially non-foamed surface layer portion 122 integrally formed on the outer periphery thereof.

【0039】尚、パイプ本体11は塩素化塩化ビニル系
樹脂を主体とするもので形成してもよい。複合パイプ1
(P)の外面形状としては、例えば、図2(a)〜
(g)に示すように、断面外形が、三角形、四角形、五
角形、六角形、八角形、1/4円形、半円形等のものが
挙げられる(構成は図1に示すものと同様であるので、
対応する符号を付してその説明を省略する)が、これら
に限定されるものではない。
The pipe body 11 may be formed mainly of chlorinated vinyl chloride resin. Composite pipe 1
As the outer surface shape of (P), for example, FIG.
As shown in (g), the cross-sectional outer shape includes a triangle, a quadrangle, a pentagon, a hexagon, an octagon, a quarter circle, a semicircle, etc. (Because the configuration is similar to that shown in FIG. ,
However, the present invention is not limited to these.

【0040】図3は本発明の複合パイプの製造方法の一
例の工程を説明する概略平面図である。同図において、
まず、使用する装置について説明する。31は第1押出
機であって、その先端にはパイプ本体成形用ダイ32が
付設されている。33は水槽からなる第1冷却装置であ
って、その入口にはサイジングダイ(図示しない)が付
設されており、パイプ本体成形用ダイ32から押し出さ
れた管状体11は、サイジングダイにより外寸法規制を
受けて水冷される。尚、冷却装置としては、この他に冷
却水を管状体11の表面にシャワーリングするものであ
ってもよい。
FIG. 3 is a schematic plan view for explaining the steps of an example of the method for manufacturing the composite pipe of the present invention. In the figure,
First, the device used will be described. Reference numeral 31 is a first extruder, and a pipe body molding die 32 is attached to the tip thereof. Reference numeral 33 denotes a first cooling device including a water tank, and a sizing die (not shown) is attached to the inlet of the first cooling device. The tubular body 11 extruded from the pipe body forming die 32 is regulated by the sizing die in outer dimensions. It is cooled with water. In addition to this, the cooling device may be one that showers cooling water on the surface of the tubular body 11.

【0041】34は環状のダクトを有し、温風の噴出が
可能な乾燥装置である。乾燥装置としては、この他に管
状体11の進行方向に沿って複数個の赤外線ランプを羅
列して乾燥・加熱帯域を形成したものであってもよい。
Reference numeral 34 is a drying device having an annular duct and capable of ejecting warm air. In addition to this, the drying device may be one in which a plurality of infrared lamps are arranged along the traveling direction of the tubular body 11 to form a drying / heating zone.

【0042】35は管状体11の進行方向に略直角をな
すように設置された第2押出機であって、その先端には
クロスヘッドダイ36が付設されている。37は短筒状
のセルカプロセス用サイジングダイであって、クロスヘ
ッドダイ36の先端に直結するように設けられ、その出
口側半部は、引き続いて配設される水槽からなる第2冷
却装置38の入口に内挿・取着されている。
Reference numeral 35 is a second extruder installed so as to be substantially perpendicular to the traveling direction of the tubular body 11, and a crosshead die 36 is attached to the tip thereof. 37 is a sizing die for selka process in the form of a short cylinder, which is provided so as to be directly connected to the tip of the crosshead die 36, and the outlet side half part thereof is a second cooling device 38 which is composed of a water tank that is continuously arranged. It is inserted and installed at the entrance of.

【0043】尚、セルカプロセス用サイジングダイとし
ては、その他二重筒構造とされた短筒の、内外筒壁間に
形成される環状空洞に、温度制御された冷却用流体を循
環するようにした構造のものでもよく、この場合は、第
2冷却装置38と間隔を隔てて配設される。
As a sizing die for the selka process, a temperature-controlled cooling fluid is circulated in an annular cavity formed between the inner and outer cylindrical walls of another short cylinder having a double cylinder structure. It may have a structure, and in this case, it is arranged at a distance from the second cooling device 38.

【0044】次に、上記の装置を用いた本発明の複合パ
イプの製造方法の一例を説明する。まず、所定の配合組
成に従ってバイプ本体成形材料及び被覆層成形材料を調
製する。次いで、第1押出機31及び第2押出機35の
シリンダー温度を所定に温度に設定し、第1押出機31
を用いてパイプ本体成形用材料を溶融・混練し、パイプ
本体成形用ダイ32から管状体11を押し出し、第1冷
却装置33により冷却し、更に乾燥装置34内を通過さ
せてパイプ本体Sを押出成形する。
Next, an example of the method for manufacturing the composite pipe of the present invention using the above apparatus will be described. First, a vip body molding material and a coating layer molding material are prepared according to a predetermined composition. Next, the cylinder temperature of the first extruder 31 and the second extruder 35 is set to a predetermined temperature, and the first extruder 31
Is used to melt and knead the pipe body molding material, the tubular body 11 is extruded from the pipe body molding die 32, cooled by the first cooling device 33, and passed through the drying device 34 to extrude the pipe body S. Mold.

【0045】引き続き、図4に示すように、連続的に成
形されるパイプ本体Sをクロスヘッドダイ36のパイプ
本体通路36aに導入するともに、第2押出機35を用
いて被覆層成形材料を溶融・混練してクロスヘッドダイ
36の被覆樹脂流路36b内に供給する。
Subsequently, as shown in FIG. 4, the continuously molded pipe body S is introduced into the pipe body passage 36a of the crosshead die 36, and the coating material for the coating layer is melted by using the second extruder 35. -Knead and supply into the coating resin flow path 36b of the crosshead die 36.

【0046】クスヘッドダイ36に引き続いて設けられ
たセルカプロセス用サイジングダイ37内にて、発泡性
塩化ビニル系樹脂を被覆樹脂流路36bより押し出しつ
つ、内径方向に膨出するように押出発泡させて、パイプ
本体通路36aを通過したパイプ本体Sの外周面に被覆
層Rを形成し、これを第2冷却装置38により冷却し、
図示しない乾燥装置により乾燥させて同じく図示しない
引取機により引き取り、適宜長さに切断して複合パイプ
Pを得る。
In the sizing die 37 for the selka process, which is provided subsequent to the cus head die 36, the expandable vinyl chloride resin is extruded and foamed so as to swell in the inner diameter direction while being extruded from the coating resin channel 36b. A coating layer R is formed on the outer peripheral surface of the pipe body S that has passed through the pipe body passage 36a, and this is cooled by the second cooling device 38,
A composite pipe P is obtained by drying with a drying device (not shown), taking it with a take-up machine (not shown), and cutting it to an appropriate length.

【0047】本発明の実施の形態を、実施例により具体
的に説明する。 (実施例1)複合パイプの製造方法として、図3及び図
4を参照して説明した押出被覆成形法とセルカプロセス
法とを連結した方法を採用した。第1押出機31として
50mmφの押出成形機(プラスチック光学研究所社
製、型式BT─50)を用い、第2押出機35として3
0mmφの押出成形機(プラスチック光学研究所社製、
型式BT─30)を用いた。
The embodiment of the present invention will be specifically described with reference to examples. (Example 1) As a method of manufacturing a composite pipe, a method in which the extrusion coating molding method described with reference to FIGS. A 50 mmφ extrusion molding machine (Model BT-50, manufactured by Plastic Optical Laboratory Co., Ltd.) was used as the first extruder 31, and 3 was used as the second extruder 35.
Extruder with 0mmφ (Plastic Optical Laboratory Co.,
Model BT-30) was used.

【0048】次に、塩素含有率66重量%の塩素化塩化
ビニル樹脂100重量部に対して、錫系安定剤2重量
部、エステル系内滑剤1重量部、ポリエチンワックス系
外滑剤2重量部、アクリロニトリル─ブタジエン─スチ
レン共重合体(=ABS)系衝撃改質剤10重量部、顔
料1重量部を配合してなる塩素化塩化ビニル系樹脂組成
物からなるパイプ本体成形材料を調製し、併せて第1押
出機31のシリンダー温度を150〜190℃に設定し
た。
Next, with respect to 100 parts by weight of a chlorinated vinyl chloride resin having a chlorine content of 66% by weight, 2 parts by weight of a tin-based stabilizer, 1 part by weight of an ester-based internal lubricant, and 2 parts by weight of a polyethylene edible wax-based external lubricant. , Acrylonitrile-butadiene-styrene copolymer (= ABS) impact modifier and 10 parts by weight of a pigment, and 1 part by weight of a pigment were mixed to prepare a pipe body molding material made of a chlorinated vinyl chloride resin composition. The cylinder temperature of the first extruder 31 was set to 150 to 190 ° C.

【0049】次いで、このパイプ本体成形材料を用い
て、第1押出機31より管状体11を押し出し、第1冷
却装置33を通過させて連続的に冷却した後、引き続き
乾燥装置34内を通過させて乾燥し、かくして内径25
mm、外径32mmのパイプ本体Sを押出成形した。
Next, using this pipe body molding material, the tubular body 11 is extruded from the first extruder 31, passed through the first cooling device 33 and continuously cooled, and then passed through the inside of the drying device 34. To dry and thus 25
mm, the pipe body S having an outer diameter of 32 mm was extruded.

【0050】一方で、塩化ビニル樹脂(平均重合度=6
00)100重量部に対して、錫系安定剤2重量部、熱
分解型無機発泡剤2重量部、エステル系内滑剤2重量
部、ポリエチンワックス系外滑剤2重量部、顔料1重量
部を配合してなる発泡性塩化ビニル系樹脂組成物からな
る被覆層成形材料を調製し、併せて、第2押出機35の
シリンダー温度を140〜180℃に設定した。
On the other hand, vinyl chloride resin (average degree of polymerization = 6
00) 2 parts by weight of a tin-based stabilizer, 2 parts by weight of a thermal decomposition type inorganic foaming agent, 2 parts by weight of an ester-based internal lubricant, 2 parts by weight of a polyethylene wax-based external lubricant, and 1 part by weight of a pigment based on 100 parts by weight. A coating layer molding material made of the expandable vinyl chloride resin composition was prepared, and the cylinder temperature of the second extruder 35 was set to 140 to 180 ° C.

【0051】そして、連続的に成形されるパイプ本体S
をクロスヘッドダイ36のパイプ本体通路36a中を通
過させた。又、第2押出機35より被覆層成形材料の溶
融混練物をクロスヘッドダイ36の被覆樹脂流路16b
内に供給した。
Then, the pipe body S which is continuously molded
Was passed through the pipe body passage 36a of the crosshead die 36. Further, the melt-kneaded material of the coating layer molding material is fed from the second extruder 35 to the coating resin flow path 16b of the crosshead die 36.
Supplied within.

【0052】クロスヘッドダイ36に引き続いて設けら
れたセルカプロセス用サイジングダイ37内にて、発泡
性塩化ビニル系樹脂を被覆樹脂流路36bより押し出し
つつ、内径方向に膨出するように押出発泡させて、本体
パイプ通路36aを通過したパイプ本体Sの外周面に被
覆層Rを形成し、これを第2冷却装置38により冷却
し、図示しない乾燥装置により乾燥させて同じく図示し
ない引取機により引き取り、適宜長さに切断した。
In a selka process sizing die 37 provided subsequent to the crosshead die 36, a foamable vinyl chloride resin is extruded and foamed so as to swell in the inner diameter direction while being extruded from the coating resin flow path 36b. A coating layer R is formed on the outer peripheral surface of the pipe main body S that has passed through the main body pipe passage 36a, is cooled by a second cooling device 38, is dried by a drying device (not shown), and is taken by a take-up machine (not shown). Cut into appropriate lengths.

【0053】かくして、図1に示すような、パイプ本体
11の外周面に、内層部121の厚み7.4mm、表層
部122の厚み0.6mmからなる全体の厚みが8mm
の被覆層12が形成された外径48mmの複合パイプ1
(P)を得た。
Thus, as shown in FIG. 1, on the outer peripheral surface of the pipe body 11, the inner layer 121 has a thickness of 7.4 mm and the surface layer 122 has a thickness of 0.6 mm.
Composite pipe 1 having an outer diameter of 48 mm and having a coating layer 12 formed thereon
(P) was obtained.

【0054】(実施例2)第2押出機35のシリンダー
温度を160〜190℃に設定し、被覆層成形材料にお
いて、塩化ビニル樹脂の代わりに、パイプ本体成形材料
に使用した塩素含有率66重量%の塩素化塩化ビニル樹
脂100重量部を使用し、同じくパイプ成形材料に使用
したABS系衝撃改質剤7重量部を追加したこと以外
は、実施例1と同様にして、内層部121の厚み約7.
5mm、表層部122の厚み約0.5mmからなる全体
の厚みが約8mmの被覆層12が形成された外径48m
mの図1に示すような複合パイプ1(P)を得た。
(Example 2) The cylinder temperature of the second extruder 35 was set to 160 to 190 ° C., and the chlorine content in the coating material of the coating layer was 66% by weight instead of the vinyl chloride resin. % Chlorinated vinyl chloride resin 100 parts by weight was used, and the thickness of the inner layer portion 121 was the same as in Example 1 except that 7 parts by weight of the ABS impact modifier used for the pipe molding material was also added. About 7.
An outer diameter of 48 m formed with a coating layer 12 having a total thickness of about 8 mm, which is 5 mm and the surface layer 122 has a thickness of about 0.5 mm.
A composite pipe 1 (P) as shown in FIG.

【0055】(比較例1)成形装置として、特開昭56
─155727号公報に記載の装置(図6参照)を使用
した。即ち、押出成形機aとして、実施例1の第1押出
機31と同じ押出成形機を用い、これによりパイプ本体
成形材料を、又押出機bとして実施例1の第2押出機3
5と同じ押出成形機を用い、これにり被覆層成形材料を
それぞれ溶融混練してダイc内に押し出し、ダイc内で
両溶融樹脂を溶着させてダイリップより押し出し、被覆
層成形材料を発泡させたこと以外は実施例1と同様にし
て、パイプ本体の厚み3.1mm、被覆層全体の厚み
8.4mm、内径25mm、外径48mmの複合パイプ
を得た。
(Comparative Example 1) As a molding apparatus, JP-A-56
The apparatus described in JP-A-155727 (see FIG. 6) was used. That is, the same extruder as the first extruder 31 of the first embodiment is used as the extruder a, whereby the pipe body molding material is used, and the extruder b is used as the second extruder 3 of the first embodiment.
Using the same extrusion molding machine as in No. 5, melt and knead the coating layer molding material and extrude into the die c. Then, both molten resins are welded in the die c and extruded from the die lip to foam the coating layer molding material. Except for the above, in the same manner as in Example 1, a composite pipe having a pipe body thickness of 3.1 mm, the entire coating layer thickness of 8.4 mm, an inner diameter of 25 mm, and an outer diameter of 48 mm was obtained.

【0056】(比較例2)成形装置として、比較例1と
同じ装置を使用したこと以外は実施例2と同様にして、
パイプ本体の厚み3.8mm、被覆層全体の厚み7.7
mm、内径25mm、外径48mmの複合パイプを得
た。上記各実施例1,2及び比較例1,2の配合組成を
表1に示す。
(Comparative Example 2) The same procedure as in Example 2 was repeated except that the same molding apparatus as Comparative Example 1 was used.
The thickness of the pipe body is 3.8 mm, and the thickness of the entire coating layer is 7.7.
mm, an inner diameter of 25 mm, and an outer diameter of 48 mm were obtained. Table 1 shows the compounding composition of each of Examples 1 and 2 and Comparative Examples 1 and 2.

【0057】[0057]

【表1】 [Table 1]

【0058】実施例1,2及び比較例1,2で得られた
複合パイプについて、後述する測定方法、評価方法に
て、耐熱変形性試験及び断熱性評価1を行った。その結
果を表2に示す。尚、市販の同じ内径の耐熱パイプ(積
水化学社製「エスロンHTパイプ」)につき、同様な評
価を行った。その結果を表2に併せて示す。
With respect to the composite pipes obtained in Examples 1 and 2 and Comparative Examples 1 and 2, a heat distortion resistance test and a heat insulation evaluation 1 were carried out by the measuring method and the evaluating method described later. Table 2 shows the results. The same evaluation was performed on a commercially available heat-resistant pipe having the same inner diameter (“Eslon HT Pipe” manufactured by Sekisui Chemical Co., Ltd.). The results are also shown in Table 2.

【0059】[0059]

【表2】 [Table 2]

【0060】(実施例3)複合パイプの製造方法とし
て、図3及び図4を参照して説明した押出被覆成形法と
セルカプロセス法とを連結した方法を採用した。第1押
出機31のシリンダー温度を150〜190℃に設定
し、パイプ本体成形用材料として、塩化ビニル樹脂(平
均重合度=1000)100重量部に対して、錫系安定
剤2重量部、エステル系内滑剤1重量部、ポリエチレン
ワックス系外滑剤2重量部、顔料1重量部を配合してな
る塩化ビニル系樹脂組成物を用いたこと以外は、実施例
1と同様にして、パイプ本体11の外周面に、内層部1
21の厚み約7.4mm、表層部122の厚み約0.6
mmからなる全体の厚みが約8mmの被覆層12が形成
された、外径48mmの図1に示すような複合パイプ1
(P)を得た。
(Example 3) As a method for producing a composite pipe, a method in which the extrusion coating method described with reference to FIGS. 3 and 4 and the Celka process method were connected was adopted. The cylinder temperature of the first extruder 31 is set to 150 to 190 ° C., and as a material for molding the pipe body, 2 parts by weight of a tin-based stabilizer and an ester are added to 100 parts by weight of a vinyl chloride resin (average degree of polymerization = 1000). In the same manner as in Example 1 except that a vinyl chloride resin composition prepared by mixing 1 part by weight of the internal lubricant, 2 parts by weight of the polyethylene wax external lubricant, and 1 part by weight of the pigment was used, Inner layer 1 on the outer peripheral surface
21 has a thickness of about 7.4 mm, and the surface layer 122 has a thickness of about 0.6.
A composite pipe 1 having an outer diameter of 48 mm and having a coating layer 12 having a total thickness of about 8 mm and having an outer diameter of 48 mm as shown in FIG.
(P) was obtained.

【0061】(実施例4)第1押出機31のシリンダー
温度を160〜200℃に設定し、パイプ本体成形材料
において、塩化ビニル樹脂の代わりに塩素含有率66重
量部の塩素化塩化ビニル樹脂100重量部を使用し、メ
チルメタクリレート─ブタジエン─スチレン共重合体系
(MBS)衝撃改質剤10重量部を追加したこと以外は
実施例3と同様にして、実施例3で得られた複合パイプ
と同様の寸法の図1に示すような複合パイプ1(P)を
得た。
Example 4 The cylinder temperature of the first extruder 31 was set to 160 to 200 ° C., and in the pipe body molding material, 100 parts by weight of a chlorinated vinyl chloride resin having a chlorine content of 66 parts by weight was used instead of the vinyl chloride resin. Same as Example 3 except that 10 parts by weight of methylmethacrylate-butadiene-styrene copolymer system (MBS) impact modifier was added, in the same manner as the composite pipe obtained in Example 3. A composite pipe 1 (P) having the dimensions of as shown in FIG. 1 was obtained.

【0062】(実施例5)第2押出機35のシリンダー
温度を160〜190℃に設定し、被覆層成形材料にお
いて、塩化ビニル樹脂の代わりに、塩素含有量66重量
%の塩素化塩化ビニル樹脂100重量部を使用し、AB
S衝撃改質剤7重量部を追加したこと以外は実施例4と
同様にして、実施例3で得られた複合パイプと同様の寸
法の図1に示すような複合パイプ1(P)を得た。
Example 5 The cylinder temperature of the second extruder 35 was set to 160 to 190 ° C., and in the coating layer molding material, instead of the vinyl chloride resin, a chlorinated vinyl chloride resin having a chlorine content of 66% by weight was used. 100 parts by weight, AB
A composite pipe 1 (P) as shown in FIG. 1 having the same dimensions as the composite pipe obtained in Example 3 was obtained in the same manner as in Example 4 except that 7 parts by weight of the S impact modifier was added. It was

【0063】(比較例3)成形装置として、特開昭56
─155727号公報に記載の装置(図6参照)を使用
した。即ち、押出機aとして、第1押出機31と同じ押
出機を配置し、これにより実施例3で使用のパイプ本体
成形材料を、又押出機bとして同じく第2押出機35と
同じ押出機を配置し、これにより被覆成形材料をそれぞ
れ溶融・混練してダイc内に押し出し、該ダイc内で両
溶融樹脂を溶着させたダイリップより押し出し、被覆層
成形材料を発泡させたこと以外は実施例3と同様にし
て、パイプ本体の厚み3.1mm、被覆層全体の厚み
8.4mm、内径25mm、外径48mmの複合パイプ
を得た。
(Comparative Example 3) As a molding apparatus, JP-A-56
The apparatus described in JP-A-155727 (see FIG. 6) was used. That is, as the extruder a, the same extruder as the first extruder 31 is arranged, whereby the pipe body molding material used in Example 3 is used, and the extruder b is also the same extruder as the second extruder 35. Example except that the coating layer molding material was placed, and the coating molding material was melted and kneaded thereby and extruded into the die c, and extruded from the die lip where both molten resins were welded in the die c to foam the coating layer molding material. In the same manner as in 3, a composite pipe having a pipe body thickness of 3.1 mm, the entire coating layer thickness of 8.4 mm, an inner diameter of 25 mm, and an outer diameter of 48 mm was obtained.

【0064】(比較例4)成形装置として、比較例3と
同じ装置を使用したこと以外は実施例5と同様にして、
パイプ本体の厚み3.8mm、被覆層全体の厚み7.7
mm、内径25mm、外径48mmの複合パイプを得
た。実施例3〜5及び比較例3,4の配合組成を表3に
示す。
(Comparative Example 4) The procedure of Example 5 was repeated, except that the same apparatus as in Comparative Example 3 was used as the molding apparatus.
The thickness of the pipe body is 3.8 mm, and the thickness of the entire coating layer is 7.7.
mm, an inner diameter of 25 mm, and an outer diameter of 48 mm were obtained. Table 3 shows the compounding compositions of Examples 3 to 5 and Comparative Examples 3 and 4.

【0065】[0065]

【表3】 [Table 3]

【0066】実施例3〜5及び比較例3,4が得られた
複合パイプの、後述する測定方法、評価方法にて、界面
接着強度、耐熱変形性及び寸法精度について測定評価し
た。その結果を表4に示す。
The composite pipes obtained in Examples 3 to 5 and Comparative Examples 3 and 4 were measured and evaluated for interfacial adhesion strength, heat distortion resistance and dimensional accuracy by the measuring method and evaluation method described later. The results are shown in Table 4.

【0067】[0067]

【表4】 [Table 4]

【0068】(実施例6)第1押出機31のシリンダー
温度を160〜190℃に設定し、パイプ本体成形材料
において、MBS衝撃改質剤10重量部を追加したこ
と、第2押出機35のシリンダー温度を160〜190
℃に設定し、被覆層成形材料において、MBS衝撃改質
剤10重量部を追加したこと以外は、実施例3と同様に
して実施例3で得られた複合パイプと同様の寸法の図1
に示すような複合パイプ1(P)を得た。
(Example 6) The cylinder temperature of the first extruder 31 was set to 160 to 190 ° C, and 10 parts by weight of the MBS impact modifier was added to the molding material for the pipe body. Cylinder temperature 160-190
1 with the same dimensions as the composite pipe obtained in Example 3 except that 10 parts by weight of MBS impact modifier was added to the coating layer molding material.
A composite pipe 1 (P) as shown in was obtained.

【0069】(比較例5)成形装置として、比較例3と
同じ装置を使用したこと以外は実施例6と同様にして、
パイプ本体の厚み3.8mm、被覆層全体の厚み7.7
mm、内径25mm、外径48mmの複合パイプを得
た。実施例6及び比較例5の配合組成を表5に示す。
(Comparative Example 5) The same procedure as in Example 6 was repeated except that the same apparatus as in Comparative Example 3 was used as the molding apparatus.
The thickness of the pipe body is 3.8 mm, and the thickness of the entire coating layer is 7.7.
mm, an inner diameter of 25 mm, and an outer diameter of 48 mm were obtained. Table 5 shows the compounding compositions of Example 6 and Comparative Example 5.

【0070】[0070]

【表5】 [Table 5]

【0071】実施例6及び比較例5が得られた複合パイ
プについて、後述する測定方法、評価方法にて、熱変形
性試験、断熱性評価2を行った。その結果を表6に示
す。尚、市販の同じ内径の耐熱パイプ(積水化学社製
「エスロンHTパイプ」)につき、同様な評価を行っ
た。その結果を表6に併せて示す。
The composite pipes obtained in Example 6 and Comparative Example 5 were subjected to a heat deformability test and a heat insulating property evaluation 2 by the measuring method and the evaluating method described later. Table 6 shows the results. The same evaluation was performed on a commercially available heat-resistant pipe having the same inner diameter (“Eslon HT Pipe” manufactured by Sekisui Chemical Co., Ltd.). The results are also shown in Table 6.

【0072】[0072]

【表6】 [Table 6]

【0073】尚、上記の測定乃至評価方法は次の通りで
ある。 (1)熱変形性試験 パイプ本体から被覆層を剥離して定尺の試験片を切り出
し、表層部を持つものはその表層部を、又持たないもの
は被覆層の外周面を上面にして、JIS K7206に
準拠し、ビカット軟化温度を測定した。
The above measurement and evaluation methods are as follows. (1) Thermal deformability test Peeling off the coating layer from the pipe body and cutting out a standard length test piece, those with the surface layer portion have the surface layer portion, and those without the surface layer have the outer peripheral surface of the coating layer as the upper surface, The Vicat softening temperature was measured according to JIS K7206.

【0074】(2)断熱性評価1 長さ20mの試料パイプに80℃の温湯を毎分5リット
ルの割合で移送し、熱水の出口温度を測定した。
(2) Adiabatic Evaluation 1 Hot water at 80 ° C. was transferred to a sample pipe having a length of 20 m at a rate of 5 liters per minute, and the outlet temperature of hot water was measured.

【0075】(3)断熱性評価2 保温性評価 外気温度0℃の条件下において、長さ50mの試料パイ
プに、40℃の温湯を毎分10リットルの割合で移送
し、湯温の出口温度を測定した。 保冷性評価 外気温度30℃の条件下において、長さ50mのパイプ
に4℃の温湯の毎分10リットルの割合で移送し、湯温
の出口温度を測定した。
(3) Thermal insulation evaluation 2 Thermal insulation evaluation Under the condition of the outside air temperature of 0 ° C., hot water of 40 ° C. was transferred at a rate of 10 liters per minute to a sample pipe having a length of 50 m, and the outlet temperature of the hot water temperature was measured. Was measured. Cooling property evaluation Under the condition of outside air temperature of 30 ° C., hot water of 4 ° C. was transferred to a pipe of 50 m at a rate of 10 liters / min, and the outlet temperature of the hot water temperature was measured.

【0076】(4)界面接着強度 各複合パイプから図5に示すような試験片を各5個ずつ
作成し、23℃の恒温室中に48時間放置した後、23
℃において500mm/分の速度で引っ張り、オートグ
ラフにより界面の破壊時の引張剪断強度を測定し、得ら
れた各5個の測定値の平均値を算出した。
(4) Interfacial adhesion strength Five pieces of each composite pipe as shown in FIG. 5 were prepared and left in a thermostatic chamber at 23 ° C. for 48 hours, and then, 23
The sample was pulled at a rate of 500 mm / min at 0 ° C., the tensile shear strength at the time of breaking of the interface was measured by an autograph, and the average value of the obtained five measured values was calculated.

【0077】(5)寸法精度 各複合パイプから被覆層を剥離・除去してパイプ本体の
外径と内径とをそれぞれ測定した。
(5) Dimensional accuracy The coating layer was peeled and removed from each composite pipe, and the outside diameter and inside diameter of the pipe body were measured.

【0078】[0078]

【発明の効果】本発明1の複合パイプは、上記の如き構
成とされているので、被覆層の製造が安価であると共
に、表層部の存在により被覆層の熱変形防止性が助長さ
れて、経時による断熱・保温機能が維持され、耐擦傷性
も付与される。塩化ビニル系樹脂製パイプが本来具有す
る品質特性を全て具備している。
EFFECTS OF THE INVENTION Since the composite pipe of the present invention 1 is constructed as described above, the production of the coating layer is inexpensive, and the presence of the surface layer portion promotes the thermal deformation preventing property of the coating layer. The heat insulation and heat retention functions are maintained over time, and scratch resistance is also imparted. The vinyl chloride resin pipe has all the quality characteristics originally possessed.

【0079】本発明2の複合パイプは、上記の如き構成
とされているので、パイプ本体と被覆層との界面接着強
度は、被覆層による断熱・保温機能を犠牲にすることな
く、人手による剥離が可能な程度となり、継手の接続作
業に優れるものとなる。本発明3の複合パイプは、上記
の如き構成とされているので、パイプ本体が耐熱変形性
に優れ、ひいては被覆層の熱変形をも防止することがで
きる。
Since the composite pipe of the second aspect of the present invention is constructed as described above, the interfacial adhesion strength between the pipe body and the coating layer can be peeled off manually without sacrificing the heat insulation / heat retaining function of the coating layer. It is possible to improve the connection work of the joint. Since the composite pipe of the third aspect of the present invention is configured as described above, the pipe body is excellent in thermal deformation resistance, and in turn, thermal deformation of the coating layer can be prevented.

【0080】本発明4の複合パイプの製造方法は、上記
の如き構成とされているので、パイプ本体と被覆層との
界面接着強度は、被覆層による断熱・保温機能を犠牲に
することなく、人手による剥離が可能な程度となり、継
手の接続作業に優れる複合パイプを製造することができ
る。又、セルカプロセス用サイジングダイの採用によ
り、被覆層は発泡体からなる内部層とその外周に形成さ
れた実質的に非発泡の表層部とを有する構造となり、し
かも両者が一体化されているので、熱変形防止性、非吸
収性に優れ、断熱・保温機能に優れたものが得られる。
Since the composite pipe manufacturing method of the fourth aspect of the present invention is configured as described above, the interfacial adhesive strength between the pipe body and the coating layer does not sacrifice the heat insulating / heat retaining function of the coating layer. Since it can be peeled off manually, it is possible to manufacture a composite pipe having excellent joint connection work. Further, by adopting the sizing die for the selka process, the coating layer has a structure having an inner layer made of foam and a substantially non-foamed surface layer portion formed on the outer periphery thereof, and both are integrated. , Excellent in heat deformation prevention and non-absorption, and excellent in heat insulation and heat retention function can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の複合パイプの一例を示す断面図であ
る。
FIG. 1 is a sectional view showing an example of a composite pipe of the present invention.

【図2】本発明の複合パイプの断面外形を説明する断面
図であり、(a)は三角形、(b)は四角形、(c)は
五角形、(d)は六角形、(e)は八角形、(f)は1
/4円形、(g)は半円形のものをぞれぞれ示す断面図
である。
FIG. 2 is a cross-sectional view for explaining the cross-sectional outer shape of the composite pipe of the present invention, where (a) is a triangle, (b) is a quadrangle, (c) is a pentagon, (d) is a hexagon, and (e) is an octagon. Square, (f) is 1
/ 4 circle, (g) is a cross-sectional view showing a semicircle, respectively.

【図3】本発明の複合パイプの製造方法の一例の工程を
説明する一部断面図である。
FIG. 3 is a partial cross-sectional view illustrating steps of an example of a method for manufacturing a composite pipe of the present invention.

【図4】図3の要部を拡大して示す断面図である。FIG. 4 is a cross-sectional view showing an enlarged main part of FIG.

【図5】本発明の引張剪断強度を測定する試験片の説明
図であり、(a)はその正面図、(b)はその平面図で
ある。
FIG. 5 is an explanatory view of a test piece for measuring the tensile shear strength of the present invention, (a) is a front view thereof, and (b) is a plan view thereof.

【図6】従来の複合パイプの製造方法の一例を説明する
断面図である。
FIG. 6 is a cross-sectional view illustrating an example of a conventional method for manufacturing a composite pipe.

【符号の説明】[Explanation of symbols]

1,P 複合パイプ S パイプ本体 11 パイプ本体 12,R 被覆層 31 第1押出機 32 パイプ本体成形用ダイ 33 第1冷却装置 34 乾燥装置 35 第2押出機 36 クロスヘッドダイ 37 セルカプロセス用サイジングダイ 38 第2冷却装置 121 内層部 122 表層部 1, P Composite pipe S Pipe body 11 Pipe body 12, R Coating layer 31 First extruder 32 Pipe body forming die 33 First cooling device 34 Drying device 35 Second extruder 36 Crosshead die 37 Celca process sizing die 38 2nd cooling device 121 Inner layer part 122 Surface layer part

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 塩化ビニル系樹脂からなるパイプ本体の
外周面に、塩化ビニル系樹脂発泡体からなる被覆層が設
けられた複合パイプであって、該被覆層が、発泡された
内層部とその外周に形成された実質的に非発泡の表層部
とからなり、且つ内層部と表層部とが一体的に形成され
てなることを特徴とする複合パイプ。
1. A composite pipe in which a coating layer made of a vinyl chloride resin foam is provided on an outer peripheral surface of a pipe body made of a vinyl chloride resin, wherein the coating layer has a foamed inner layer portion and its inner layer portion. A composite pipe comprising a substantially non-foamed surface layer portion formed on the outer circumference, and an inner layer portion and a surface layer portion being integrally formed.
【請求項2】 塩化ビニル系樹脂からなるパイプ本体の
外周面に、塩化ビニル系樹脂発泡体からなる被覆層が設
けられた複合パイプであって、該被覆層が、発泡された
内層部とその外周に形成された実質的に非発泡の表層部
とからなり、且つ内層部と表層部とが一体的に形成され
てなり、パイプ本体と被覆層間の引張剪断強度が0.0
01〜0.3kg/cm2 であることを特徴とする複合
パイプ。
2. A composite pipe in which a coating layer made of a vinyl chloride resin foam is provided on an outer peripheral surface of a pipe body made of a vinyl chloride resin, the coating layer comprising a foamed inner layer portion and a foamed inner layer portion thereof. It is composed of a substantially non-foamed surface layer portion formed on the outer periphery, and an inner layer portion and a surface layer portion are integrally formed, and the tensile shear strength between the pipe body and the coating layer is 0.0.
A composite pipe characterized in that it is from 01 to 0.3 kg / cm 2 .
【請求項3】 前記パイプ本体が塩素化塩化ビニル系樹
脂からなることを特徴とする請求項1又は請求項2に記
載の複合パイプ。
3. The composite pipe according to claim 1, wherein the pipe body is made of chlorinated vinyl chloride resin.
【請求項4】 第1押出機により溶融状態の塩化ビニル
系樹脂を押し出した後硬化させてパイプ本体を連続成形
し、得られたパイプ本体をクロスヘッドダイのパイプ本
体通路に順次導入するとともに、そのクロスヘッドダイ
の被覆樹脂流路内に第2押出機により溶融状態の発泡性
塩化ビニル系樹脂を供給し、クロスヘッドダイに引き続
いて設けられたセルカプロセス用サイジングダイ内で、
発泡性塩化ビニル系樹脂を被覆樹脂流路より押し出し、
内径方向に膨出するように発泡させて、パイプ本体通路
を通過したパイプ本体の外周面に、順次被覆層を形成す
ることを特徴とする複合パイプの製造方法。
4. A molten vinyl chloride resin is extruded by a first extruder and then cured to continuously form a pipe body, and the obtained pipe body is sequentially introduced into a pipe body passage of a crosshead die, The expandable vinyl chloride resin in a molten state is supplied by the second extruder into the coating resin flow path of the crosshead die, and in the sizing die for selka process which is provided subsequently to the crosshead die,
Extruding expandable vinyl chloride resin from the coating resin channel,
A method for producing a composite pipe, which comprises foaming so as to bulge in an inner diameter direction and sequentially forming a coating layer on the outer peripheral surface of the pipe body that has passed through the pipe body passage.
JP18207696A 1995-11-22 1996-07-11 Composite pipe and its manufacture Withdrawn JPH09222185A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18207696A JPH09222185A (en) 1995-11-22 1996-07-11 Composite pipe and its manufacture

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP30474395 1995-11-22
JP7-324341 1995-12-13
JP32434195 1995-12-13
JP7-304743 1995-12-13
JP18207696A JPH09222185A (en) 1995-11-22 1996-07-11 Composite pipe and its manufacture

Publications (1)

Publication Number Publication Date
JPH09222185A true JPH09222185A (en) 1997-08-26

Family

ID=27325115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18207696A Withdrawn JPH09222185A (en) 1995-11-22 1996-07-11 Composite pipe and its manufacture

Country Status (1)

Country Link
JP (1) JPH09222185A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002156074A (en) * 2000-11-20 2002-05-31 Sekisui Chem Co Ltd Covered pipe and manufacturing method therefor
KR20030006868A (en) * 2001-07-16 2003-01-23 하보덕 Production method for composite pipe
KR100427242B1 (en) * 1997-10-02 2004-09-18 현대자동차주식회사 Air intake hose and production method thereof to integrally form nipple and hose by inserting injection-molded nipple and using polybutylene terephthalate resin
WO2005090847A1 (en) * 2004-03-19 2005-09-29 Sanoh Kogyo Kabushiki Kaisha Resin tube for fuel piping
JP2007130969A (en) * 2005-11-14 2007-05-31 Brother Ind Ltd Ink tube and its usage method
KR100877201B1 (en) * 2008-06-17 2009-01-07 주식회사 고리 A method of high tensile stress impact plastic pipe
JP2009103396A (en) * 2007-10-25 2009-05-14 Dakkusu:Kk Manufacturing method of duct tube, duct tube, and duct tube connection structure
JP2010026391A (en) * 2008-07-23 2010-02-04 Olympus Corp Endoscope guide tube and endoscope system
JP2015160289A (en) * 2014-02-28 2015-09-07 極東工業株式会社 Pipe cutter
JP2020056476A (en) * 2018-10-04 2020-04-09 古河電気工業株式会社 Composite pipe and joining method for composite pipe
JP2020067143A (en) * 2018-10-25 2020-04-30 株式会社Screenホールディングス Tube and processing device

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100427242B1 (en) * 1997-10-02 2004-09-18 현대자동차주식회사 Air intake hose and production method thereof to integrally form nipple and hose by inserting injection-molded nipple and using polybutylene terephthalate resin
JP2002156074A (en) * 2000-11-20 2002-05-31 Sekisui Chem Co Ltd Covered pipe and manufacturing method therefor
KR20030006868A (en) * 2001-07-16 2003-01-23 하보덕 Production method for composite pipe
US7497235B2 (en) 2004-03-19 2009-03-03 Sanoh Kogyo Kabushiki Kaisha Resin tube for fuel piping
WO2005090847A1 (en) * 2004-03-19 2005-09-29 Sanoh Kogyo Kabushiki Kaisha Resin tube for fuel piping
KR100730430B1 (en) * 2004-03-19 2007-06-19 산오고교 가부시키가이샤 Resin tube for fuel piping
CN100422620C (en) * 2004-03-19 2008-10-01 三樱工业株式会社 Resin tube for fuel piping
JP2007130969A (en) * 2005-11-14 2007-05-31 Brother Ind Ltd Ink tube and its usage method
JP2009103396A (en) * 2007-10-25 2009-05-14 Dakkusu:Kk Manufacturing method of duct tube, duct tube, and duct tube connection structure
KR100877201B1 (en) * 2008-06-17 2009-01-07 주식회사 고리 A method of high tensile stress impact plastic pipe
WO2009154347A1 (en) * 2008-06-17 2009-12-23 주식회사 고리 Method for manufacturing synthetic resin pipe with high tension and impact resistance
JP2010026391A (en) * 2008-07-23 2010-02-04 Olympus Corp Endoscope guide tube and endoscope system
JP2015160289A (en) * 2014-02-28 2015-09-07 極東工業株式会社 Pipe cutter
JP2020056476A (en) * 2018-10-04 2020-04-09 古河電気工業株式会社 Composite pipe and joining method for composite pipe
JP2020067143A (en) * 2018-10-25 2020-04-30 株式会社Screenホールディングス Tube and processing device
WO2020085176A1 (en) * 2018-10-25 2020-04-30 株式会社Screenホールディングス Tube and treatment device
CN112955687A (en) * 2018-10-25 2021-06-11 株式会社斯库林集团 Pipe and processing apparatus

Similar Documents

Publication Publication Date Title
US2519375A (en) Method and apparatus for molding tubing
JP5161481B2 (en) Polypropylene resin foam molding with skin
JPH09222185A (en) Composite pipe and its manufacture
JPH0450889B2 (en)
JP2002514524A (en) Extrusion of foamable melts consisting of mixed polyolefin and rubber copolymer
JP4346579B2 (en) Manufacturing method of composite pipe
JP3900082B2 (en) Foam rubber sponge roller manufacturing method and foam extrusion molding apparatus used therefor
JPS61244522A (en) Method of extruding foaming plastic material
JP2002530232A (en) Apparatus and method for co-extruding materials at different temperatures
JPS6039917B2 (en) Expandable tube for covering objects
JPH11227028A (en) Production of composite pipe
JP4256536B2 (en) Method for producing hollow foam blow molded article
JP4956028B2 (en) Compound pipe
JP2001009896A (en) Molding method for chlorinated vinyl chloride resin pipe
JP2002264202A (en) Method for manufacturing thermoplastic resin tube
JP2007333062A (en) Composite tube
JP2004044733A (en) Composite tube and its manufacturing method
JP2000238113A (en) Manufacture of thermoplastic resin pipe
JP4278233B2 (en) Extrusion molding method and extruded product of fiber-containing thermoplastic resin
JP3984460B2 (en) Pressure roll for fixing
JP2002283436A (en) Method for extrusion-molding foamed vinyl chloride resin tube
JPH1016035A (en) Forming device and manufacture of tubular thermoplastic resin foam using this device
JPS6085920A (en) Continuous manufacture of thick foam
JPH09277347A (en) Production of tubular thermoplastic resin foam and extrusion mold
JPH0890651A (en) Embossing method of coated foamed resin tube and heat insulating cylinder

Legal Events

Date Code Title Description
A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20040319