JPH09221562A - Production of expandable thermoplastic resin particle - Google Patents

Production of expandable thermoplastic resin particle

Info

Publication number
JPH09221562A
JPH09221562A JP2925896A JP2925896A JPH09221562A JP H09221562 A JPH09221562 A JP H09221562A JP 2925896 A JP2925896 A JP 2925896A JP 2925896 A JP2925896 A JP 2925896A JP H09221562 A JPH09221562 A JP H09221562A
Authority
JP
Japan
Prior art keywords
pressure
heating
particles
resin particles
thermoplastic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2925896A
Other languages
Japanese (ja)
Inventor
Hidenori Takenaka
秀徳 竹中
Fumihiko Morimoto
文彦 森本
Kensaku Matsuo
憲作 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP2925896A priority Critical patent/JPH09221562A/en
Publication of JPH09221562A publication Critical patent/JPH09221562A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain exactly spherical expandable resin particles which can give moldings having excellent quality by melt-kneading a thermoplastic resin and a blowing agent, extruding the melt into a heated pressurized liquid, cutting the extrudate and heating the cut extrudate in the presence of a dispersant. SOLUTION: These resin particles are produced by (1) melt-kneading a thermoplastic resin and a blowing agent at 130-300 deg.C, (2) extruding the melt from the extrusion holes of the die head into a liquid heated and pressurized to a temperature (40-100 deg.C) and a pressure (2-20kg/cm<2> ) at which the melt does not foam, instantaneously cutting the extrudate, (3) heating the obtained resin particles to 90-130 deg.C and (4) cooling the particles to a temperature not causing their foaming at ordinary temperature under a pressure of 2-30kg/cm<2> in the presence of a dispersant and/or a surfactant which function to inhibit the particles from agglomerating, decreasing the pressure to normal pressure and withdrawing the expandable resin particles.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、種々の包装容器、
緩衝材、断熱材等の用途において有用な発泡性熱可塑性
樹脂粒子の製造方法に関するものである。
TECHNICAL FIELD The present invention relates to various packaging containers,
The present invention relates to a method for producing expandable thermoplastic resin particles which is useful in applications such as cushioning materials and heat insulating materials.

【0002】[0002]

【従来の技術】従来より、熱可塑性樹脂の発泡成形品を
得る方法としては、例えば、懸濁重合によって得られる
熱可塑性樹脂粒子に易揮発性発泡剤を1〜20重量%含
浸させて発泡性熱可塑性樹脂粒子とし、かかる発泡性熱
可塑性樹脂粒子を水蒸気等により軟化点以上に加熱して
予備発泡粒子とした後、この予備発泡粒子を小さな孔や
スリットから水蒸気等で内部を加熱できる閉鎖型金型に
充填し、水蒸気等で加熱して、該予備発泡粒子同士を互
いに溶融融着させて、上記密閉型金型通りの多泡性熱可
塑性成形体(以下、発泡成形体と称す)とする方法が一
般的に行われている。ところが、この型内発泡成形に供
する発泡性樹脂粒子を作る懸濁重合法では粒径の均一な
ものが得られず、篩い分けによる粒度調整が不可欠であ
り、また水中での分散安定性を阻害する添加剤を用いる
製品の製造は制約が多く極めて困難であるという課題が
ある他、この方法では発泡成形体や品質規格に達しない
発泡性熱可塑性樹脂粒子等の回収品の製品への再生が不
可能である課題もあった。
2. Description of the Related Art Conventionally, as a method for obtaining a foamed molded article of a thermoplastic resin, for example, thermoplastic resin particles obtained by suspension polymerization are impregnated with 1 to 20% by weight of an easily volatile foaming agent to obtain foamability. A closed type in which thermoplastic resin particles are used, and after the expandable thermoplastic resin particles are heated to a softening point or higher with steam or the like to form pre-expanded particles, the interior of the pre-expanded particles can be heated with steam or the like through small holes or slits. Filling in a mold and heating with steam or the like to melt and fuse the pre-expanded particles to each other, and a multi-foamed thermoplastic molded article (hereinafter referred to as a foamed molded article) as in the closed mold. The method of doing is generally done. However, the suspension polymerization method for producing the expandable resin particles to be used for in-mold foam molding cannot obtain a uniform particle size, and it is essential to adjust the particle size by sieving, and it also hinders dispersion stability in water. In addition to the problem that production of products using additives that are subject to restrictions is extremely difficult, this method also makes it possible to recycle recovered products such as foamed molded products and expandable thermoplastic resin particles that do not reach quality standards into products. Some challenges were not possible.

【0003】そこで、上記懸濁重合による熱可塑性樹脂
粒子に代わるものとして、例えば、熱可塑性樹脂と発泡
剤とを押出機内で溶融混練し、発泡防止のため、加圧、
加熱された液中に吐出し、液中カットする所謂溶融押出
カット法が提案されている。
Therefore, as an alternative to the thermoplastic resin particles obtained by the suspension polymerization, for example, a thermoplastic resin and a foaming agent are melt-kneaded in an extruder and pressurized to prevent foaming,
A so-called melt extrusion cutting method has been proposed in which the material is discharged into a heated liquid and cut in the liquid.

【0004】[0004]

【発明が解決しようとする課題】この方法は原料樹脂か
ら一挙に発泡性樹脂粒子が製造出来るばかりでなく、連
続生産も可能となって生産性に著しく優れるものである
が、粒子の形成がカッティング刃による機械的切断によ
っているためにカッティングの跡が残ったり、不均一な
吐出やダイスゥェルによる膨れ等が原因となって真球状
の粒子とならないという課題がある。このような粒子を
発泡させると、変形度合いは更に拡大され、最終的には
この粒子を用いた発泡成形品の表面は平滑性が低下して
外観が悪くなるばかりでなく、引いては表面間隙の発生
が原因で強度低下や氷水に漬けたまま輸送される鮮魚用
の容器の場合には、水漏れが発生したりするという課題
があった。
According to this method, not only the expandable resin particles can be produced all at once from the raw material resin, but continuous production is also possible and the productivity is remarkably excellent. There is a problem in that particles are not formed into a true spherical shape due to residual marks of cutting due to mechanical cutting with a blade, uneven discharge, and swelling due to die swell. When such particles are foamed, the degree of deformation is further expanded, and finally the surface of the foamed molded product using the particles not only loses its smoothness and deteriorates in appearance, but it is also difficult to draw surface gaps. Due to the occurrence of water, there is a problem that water leakage occurs in the case of a container for fresh fish which is transported while being soaked in ice water while being weakened.

【0005】本発明が解決しようとする課題は、生産性
が良好な溶融押出カット法において、表面平滑性や融着
性等の品質特性に優れた発泡成形体が得られる真球状の
発泡性熱可塑性樹脂粒子の製造方法を提供することにあ
る。
The problem to be solved by the present invention is to obtain a spherical spherical foaming heat which can provide a foamed molded article having excellent quality characteristics such as surface smoothness and fusion bondability in the melt extrusion cutting method with good productivity. It is to provide a method for producing plastic resin particles.

【0006】[0006]

【課題を解決するための手段】本発明者等は、上記課題
を解決すべく鋭意研究を重ねた結果、熱可塑性樹脂に発
泡剤を溶融混練後、発泡しない温度、圧力下の加熱加圧
液中に吐出して、即時切断し、得られた樹脂粒子を加圧
下で、しかも樹脂粒子の凝集を阻止する分散剤及び又は
界面活性剤を含有する加熱加圧液中で更に加熱した後、
冷却、除圧して取り出せば、均一な予備発泡粒子及び表
面平滑性や融着性等の品質特性に優れた発泡成形体が得
られる事を見出し、本発明を完成するに至った。
Means for Solving the Problems The inventors of the present invention have conducted extensive studies to solve the above problems, and as a result, after melt-kneading a foaming agent with a thermoplastic resin, a heating and pressurizing liquid under a temperature and pressure at which foaming does not occur. Discharge into, immediately cut, after further heating the obtained resin particles under pressure, and further in a heating and pressure liquid containing a dispersant and / or a surfactant that prevents aggregation of the resin particles,
The present invention has been completed by finding that a uniform pre-expanded particle and a foamed molded article excellent in quality characteristics such as surface smoothness and fusion property can be obtained by cooling and depressurizing and taking out.

【0007】即ち、本発明は、熱可塑性樹脂(A)と、
発泡剤(B)とを溶融混練し(工程1)、これをダイヘ
ッドの押出孔から、熱可塑性樹脂(A)と発泡剤(B)
との溶融混練物が発泡しない温度圧力に加熱加圧された
加熱加圧液中に吐出して、即時切断し(工程2)、得ら
れた樹脂粒子を加圧下で、かつ、分散剤及び/又は界面
活性剤の存在下に更に加熱(工程3)した後、冷却、除
圧して取り出す(工程4)ことを特徴とする発泡性熱可
塑性樹脂粒子の製造方法に関する。
That is, the present invention provides a thermoplastic resin (A) comprising:
The foaming agent (B) is melt-kneaded (step 1), and this is extruded from the die head through the thermoplastic resin (A) and the foaming agent (B).
And melt-kneaded product is discharged into a heating / pressurizing liquid heated and pressed to a temperature and pressure at which it does not foam, and immediately cut (step 2), and the obtained resin particles are under pressure and a dispersant and / or Alternatively, the present invention relates to a method for producing expandable thermoplastic resin particles, which comprises further heating in the presence of a surfactant (step 3), cooling, depressurizing and taking out (step 4).

【0008】本発明で用いる熱可塑性樹脂(A)として
は、特に制限はなく、発泡剤により発泡可能な樹脂であ
ればよく、例えばポリスチレン、スチレンーブタジェン
共重合体(耐衝撃性ポリスチレン)、スチレン−(メ
タ)アクリル酸共重合体、スチレン−無水マレイン酸共
重合体、AS樹脂、ABS樹脂等の芳香族ビニル系樹
脂、塩化ビニル樹脂、塩化ビニリデン樹脂、塩化ビニル
−酢酸ビニル共重合体等の塩化ビニル系樹脂、ポリエチ
レン、ポリプロピレン等のオレフィン系樹脂、ポリ(メ
タ)アクリル酸メチル、ポリ(メタ)アクリル酸エチ
ル、メタクリル酸メチル−スチレン共重合体等のアクリ
ル系樹脂、ポリエチレンテレフタレート、ポリブチレン
テレフタレート、等のポリエステル系樹脂、ポリカプロ
ラクタム、ヘキサメチレンアジポアミド樹脂等のアミド
系樹脂、ポリウレタン、ポリカーボネート、ポリエーテ
ルイミド、ポリフェニレンエーテル等の単独あるいは混
合物が挙げられ、中でも芳香族ビニル系樹脂、オレフィ
ン系樹脂が好ましく、特に芳香族ビニル系樹脂が好まし
い。
The thermoplastic resin (A) used in the present invention is not particularly limited as long as it can be foamed with a foaming agent, and examples thereof include polystyrene and styrene-butadiene copolymer (impact-resistant polystyrene). Aromatic vinyl resins such as styrene- (meth) acrylic acid copolymers, styrene-maleic anhydride copolymers, AS resins, ABS resins, vinyl chloride resins, vinylidene chloride resins, vinyl chloride-vinyl acetate copolymers, etc. Vinyl chloride resin, olefin resin such as polyethylene and polypropylene, acrylic resin such as poly (meth) acrylate, ethyl poly (meth) acrylate, methyl methacrylate-styrene copolymer, polyethylene terephthalate, polybutylene Polyester resins such as terephthalate, polycaprolactam, hexamethylene Amide resins such as adipamide resin, polyurethane, polycarbonate, polyetherimide, alone or a mixture of polyphenylene ether and the like, among which an aromatic vinyl-based resin, preferably an olefin resin, particularly an aromatic vinyl resin is preferable.

【0009】本発明で用いる発泡剤(B)としては、例
えば脂肪族炭化水素系発泡剤、ハロゲン化炭化水素系発
泡剤等が挙げられ、通常大気圧下での沸点が95℃以下
のものが好ましい。
Examples of the foaming agent (B) used in the present invention include aliphatic hydrocarbon-based foaming agents and halogenated hydrocarbon-based foaming agents, which usually have a boiling point of 95 ° C. or less under atmospheric pressure. preferable.

【0010】上記脂肪族炭化水素系発泡剤としては、例
えばエタン、プロパン、プロピレン、ノルマルブタン、
イソブタン、イソブチレン、ノルマルペンタン、イソペ
ンタン、ネオペンタン、シクロペンタン、ヘキサン、シ
クロヘキサン、石油エーテル等が挙げられ、またハロゲ
ン化炭化水素系発泡剤としては、例えば塩化メチル、塩
化エチル、ジクロロエタン、クロロフォルム、フルオロ
メタン、ジフルオロメタン、トリフルオロメタン、ジフ
ルオロエタン、トリフルオロエタン、フルオロクロロメ
タン、フルオロクロロエタン、ジクロロジフルオロメタ
ン等の単独あるいは混合物が挙げられる。なかでも炭素
原子数3〜6の脂肪族炭化水素、特にノルマルブタン、
イソブタン、ノルマルペンタン、イソペンタンが適度な
沸点を有し発泡性に優れ、また、微分散性にも優れる点
から好ましい。
Examples of the above-mentioned aliphatic hydrocarbon-based foaming agents include ethane, propane, propylene, normal butane,
Isobutane, isobutylene, normal pentane, isopentane, neopentane, cyclopentane, hexane, cyclohexane, petroleum ether, and the like, and examples of the halogenated hydrocarbon-based foaming agent include methyl chloride, ethyl chloride, dichloroethane, chloroform, fluoromethane, Examples thereof include difluoromethane, trifluoromethane, difluoroethane, trifluoroethane, fluorochloromethane, fluorochloroethane, dichlorodifluoromethane and the like, alone or in a mixture. Among them, aliphatic hydrocarbons having 3 to 6 carbon atoms, particularly normal butane,
Isobutane, normal pentane, and isopentane are preferable because they have an appropriate boiling point, are excellent in foaming property, and are also excellent in fine dispersibility.

【0011】発泡剤(B)の使用量は、特に限定される
ものではないが、通常、熱可塑性樹脂100重量部に対
して、20重量部以下であり、なかでも粒子の凝集が無
く、均一なセル径が得られ易い点で2〜10重量部であ
ることが好ましい。
The amount of the foaming agent (B) used is not particularly limited, but is usually 20 parts by weight or less with respect to 100 parts by weight of the thermoplastic resin, and among them, there is no agglomeration of the particles and it is uniform. It is preferably from 2 to 10 parts by weight from the viewpoint that it is easy to obtain a large cell diameter.

【0012】尚、上記発泡剤(B)のうち、プロパン、
ノルマルブタン、イソブタン、ノルマルペンタン、イソ
ペンタン又はシクロヘキサン等を単独あるいは併用で使
用する場合、発泡剤含浸時に熱可塑性樹脂粒子を溶解す
る有機溶剤、所謂発泡助剤を併用するのが好ましい。か
かる発泡助剤の例としてはベンゼン、トルエン、キシレ
ン、エチルベンゼン等の芳香族炭化水素類;エチレンジ
クロライド、トリクロロエチレン、テトラクロロエチレ
ン等のハロゲン化炭化水素類;酢酸エチル、酢酸ブチル
等のエステル類などの公用慣用の溶剤を挙げる事が出来
る。
Among the above foaming agents (B), propane,
When normal butane, isobutane, normal pentane, isopentane, cyclohexane, or the like is used alone or in combination, it is preferable to use an organic solvent that dissolves the thermoplastic resin particles at the time of impregnating the foaming agent, that is, a so-called foaming auxiliary. Examples of such foaming aids are aromatic hydrocarbons such as benzene, toluene, xylene and ethylbenzene; halogenated hydrocarbons such as ethylene dichloride, trichloroethylene and tetrachloroethylene; esters such as ethyl acetate and butyl acetate, which are commonly used The solvent can be mentioned.

【0013】中でも、熱可塑性樹脂粒子(A)及び発泡
剤(B)との相溶性に優れ、発泡剤を効率よく熱可塑性
樹脂粒子中に取り入れる事が出来る点からトルエン及び
エチルベンゼンが好ましい。
Of these, toluene and ethylbenzene are preferable because they have excellent compatibility with the thermoplastic resin particles (A) and the foaming agent (B) and can efficiently incorporate the foaming agent into the thermoplastic resin particles.

【0014】この様な発泡助剤の使用量は、熱可塑性樹
脂100重量部に対して、通常0.1〜2重量%の範囲
が好ましい。
The amount of such a foaming aid used is usually in the range of 0.1 to 2% by weight based on 100 parts by weight of the thermoplastic resin.

【0015】本発明の製造方法は、上記の各成分を原料
成分とし、以下の各工程を経て目的とする発泡性熱可塑
性樹脂粒子を製造するものである。即ち、 1.熱可塑性樹脂(A)と発泡剤(B)を溶融混練し、
(工程1) 2.溶融混練の先端に取り付けられたダイヘッドの押出
孔から、加熱加圧液中に押出した後、切断して粒子と
し、(工程2) 3.工程2で切断された粒子と分散剤及び又は界面活性
剤を含んだ加熱加圧液を加圧下更に加熱して、樹脂粒子
を球状とし、(工程3) 4.冷却、除圧後、発泡性樹脂粒子を取り出す、(工程
4) 以上の工程1〜工程4を経ることにより目的とする発泡
性熱可塑性樹脂粒子が得られる。
The production method of the present invention is to produce the target expandable thermoplastic resin particles by using the above-mentioned components as raw material components and through the following steps. That is, 1. Melt and knead the thermoplastic resin (A) and the foaming agent (B),
(Step 1) 2. 2. Extrude into a heated and pressurized liquid from an extrusion hole of a die head attached to the tip of the melt-kneading, and then cut into particles (Step 2). 3. The heating and pressurizing liquid containing the particles cut in step 2 and a dispersant and / or a surfactant is further heated under pressure to make the resin particles spherical (step 3). After cooling and depressurization, the expandable resin particles are taken out (step 4) By the above steps 1 to 4, the desired expandable thermoplastic resin particles are obtained.

【0016】更に具体的には、押出機と、該押出機のダ
イヘッドから吐出する樹脂を粒子状に切断し得る様に配
設されたカッターを有し、かつ、加熱加圧液が充満する
耐圧容器と、加熱冷却ジャケットが取り付けられた貯蔵
容器とから構成されており、かつ、耐圧容器と貯蔵容器
との間を前記加熱加圧液が循環し得る様に配管が設置さ
れた装置を用い、 1.熱可塑性樹脂(A)と、発泡剤(B)とを押出機に
導入して溶融混練し、(工程1) 2.次いでこれをダイヘッドの押出孔から、加熱加圧液
が充満された耐圧容器内に吐出され、該容器内で切断さ
れて樹脂粒子とし、(工程2) 3.前記加熱加圧液を配管を経由して耐圧容器と貯蔵容
器との間を循環させながら、樹脂粒子を加熱冷却ジャケ
ットが取り付けられた貯蔵容器へ移送し、次いで、該貯
蔵容器内において、分散剤及び/又は界面活性剤の存在
下、得られ た粒子を更に加熱し、(工程3) 4.次いで、常圧で発泡しない温度まで冷却し、圧力を
常圧に戻した後粒子を取り出す、(工程4) 以上の工程1〜工程4を経る方法が、目的とする発泡性
熱可塑性樹脂粒子を連続的に製造することが可能とな
り、生産性が著しく向上することから好ましい。
More specifically, it has an extruder and a cutter arranged so as to cut the resin discharged from the die head of the extruder into particles, and has a pressure resistance sufficient to fill the heating and pressurizing liquid. A container and a storage container to which a heating / cooling jacket is attached, and using a device in which piping is installed so that the heating and pressurizing liquid can circulate between the pressure resistant container and the storage container, 1. 1. The thermoplastic resin (A) and the foaming agent (B) are introduced into an extruder and melt-kneaded (Step 1). Next, this is discharged from the extrusion hole of the die head into a pressure-resistant container filled with a heating and pressurizing liquid, and cut into resin particles in the container (step 2). While circulating the heating and pressurizing liquid between the pressure-resistant container and the storage container via a pipe, the resin particles are transferred to a storage container provided with a heating and cooling jacket, and then, in the storage container, a dispersant. And / or further heating the obtained particles in the presence of a surfactant, (step 3) 4. Next, the pressure is returned to a temperature at which foaming does not occur at normal pressure, the pressure is returned to normal pressure, and then the particles are taken out (step 4). It is preferable because continuous production is possible and productivity is remarkably improved.

【0017】以下に、各工程について詳述する。工程1
においては、熱可塑性樹脂(A)と発泡剤(B)を溶融
混練する方法としては、例えば熱可塑性樹脂(A)と発
泡剤(B)を押出機を用いて、(A)の溶融温度以上で
溶融混練する方法が挙げられる。押出機としては、通常
は単軸押出機、二軸押出機、タンデム型押出機等の押出
機が用いられる。そのほかの押出機としては、スタティ
ックミキサーも用いることが出来る。例えば、スタッテ
ィックミキサーを用いる例としては、連続的に塊状又は
溶液重合法で得られる溶融化された熱可塑性樹脂を、重
合終了後脱揮槽内で未反応の単量体や溶媒を除去し、ギ
アポンプを経て付設されるスタティックミキサーで各種
添加剤と共に発泡剤を混合して溶融混練する方法が挙げ
られる。
Each step will be described in detail below. Step 1
In order to melt-knead the thermoplastic resin (A) and the foaming agent (B), for example, the thermoplastic resin (A) and the foaming agent (B) are melted and kneaded at a temperature not lower than the melting temperature of (A) by using an extruder. The method of melt-kneading may be mentioned. As the extruder, an extruder such as a single-screw extruder, a twin-screw extruder or a tandem type extruder is usually used. A static mixer can also be used as another extruder. For example, as an example of using a static mixer, a melted thermoplastic resin obtained by a continuous bulk or solution polymerization method is used to remove unreacted monomers and solvents in a devolatilization tank after completion of polymerization. A method in which a foaming agent is mixed with various additives in a static mixer attached via a gear pump and melt-kneaded.

【0018】また、発泡剤の導入時期は特に限定されな
いが、熱可塑性樹脂が半溶融ないし溶融しているとこ
ろ、例えば押出機の途中部分から、或いはスタティック
ミキサーを用いる場合にはその入口部分から圧入すると
好ましい。溶融混練の温度は、熱可塑性樹脂(A)が溶
融するような温度であればよく、特に制限されないが、
発泡剤(B)がより均一混合される点から130〜30
0℃の温度範囲が好ましい。
The time of introduction of the foaming agent is not particularly limited, but when the thermoplastic resin is semi-molten or melted, for example, from the middle of the extruder, or when using a static mixer, press-fit from the inlet. It is preferable. The temperature of melt kneading is not particularly limited as long as it is a temperature at which the thermoplastic resin (A) is melted,
130 to 30 from the point that the foaming agent (B) is more uniformly mixed
A temperature range of 0 ° C. is preferred.

【0019】次いで、工程2として熱可塑性樹脂(A)
と発泡剤(B)との溶融混練物は、溶融混練機の先端に
取り付けられたダイヘッドの押出孔から、加熱加圧液中
に吐出した後、切断して粒子とされる。ここで用いられ
るダイヘッドとしては、特に限定されないが、例えば直
径0.3〜3mm、好ましくは0.5〜1.5mmの押
出孔を有するものが挙げられる。また、押出した後切断
する切断装置は、特に限定されないが、例えばカッター
を内部に有し、内部に充填される加熱加圧液を配管を経
由して貯蔵容器と循環し得る導入口および排水口を有す
る耐圧容器(以後「カッティングボックス」と称する)
から構成され、ダイヘッドから押し出された発泡剤含有
熱可塑性樹脂を直ちにカッターで切断し得るようにダイ
ヘッドに固定されたものが挙げられる。
Next, in step 2, the thermoplastic resin (A)
The melt-kneaded product of the foaming agent (B) and the foaming agent (B) is discharged into the heating and pressurizing liquid from the extrusion hole of the die head attached to the tip of the melt-kneading machine, and then cut into particles. The die head used here is not particularly limited, but for example, a die head having an extrusion hole with a diameter of 0.3 to 3 mm, preferably 0.5 to 1.5 mm can be mentioned. The cutting device for cutting after extrusion is not particularly limited, but has, for example, a cutter inside, and an inlet port and a drain port through which the heated and pressurized liquid filled inside can be circulated with the storage container through the pipe. Pressure resistant container (hereinafter referred to as "cutting box")
And is fixed to the die head so that the foaming agent-containing thermoplastic resin extruded from the die head can be immediately cut with a cutter.

【0020】加熱加圧液としては、上記粒子の発泡を防
止できる圧力以上に加圧可能なものであればよく、特に
限定されないが例えば水、グリコール、エチレングリコ
ール、水とエチレングリコールの混合物等が挙げられ
る。なかでも加熱加圧液の温度コントロールが容易であ
り、また、該樹脂に対してより非溶性である点から加熱
加圧された水が好ましい。
The heating and pressurizing liquid is not particularly limited as long as it can pressurize at a pressure higher than that capable of preventing foaming of the particles, and examples thereof include water, glycol, ethylene glycol, and a mixture of water and ethylene glycol. Can be mentioned. Of these, water heated and pressurized is preferable because it is easy to control the temperature of the heated and pressurized liquid and is more insoluble in the resin.

【0021】ここで用いる加熱加圧液の温度条件は特に
限定されず、ダイスから溶融樹脂を押出し可能な程度に
加熱され、また、カッティングにより顆粒化可能温度範
囲であればよく、具体的には40〜100℃の範囲が好
ましい。より具体的には、例えば、熱可塑性樹脂(A)
がスチレン系樹脂であって、発泡剤(B)がブタン(ノ
ルマルブタンの各種異性体を含む)、若しくはペンタン
(ノルマルペンタンの各種異性体を含む)の場合、加熱
加圧液中で粒子化する温度は50〜85℃の範囲が好ま
しい。
The temperature condition of the heating and pressurizing liquid used here is not particularly limited, as long as it is heated to such an extent that the molten resin can be extruded from the die and can be granulated by cutting. The range of 40-100 degreeC is preferable. More specifically, for example, the thermoplastic resin (A)
Is a styrene-based resin and the foaming agent (B) is butane (including various isomers of normal butane) or pentane (including various isomers of normal pentane), particles are formed in a heated and pressurized liquid. The temperature is preferably in the range of 50 to 85 ° C.

【0022】また、加熱加圧液の圧力条件は、特に限定
されず、上述したカッティングボックス内の液温におい
て発泡性熱可塑性樹脂粒子が発泡しない圧力、即ち、通
常加熱加圧液の温度における発泡剤の飽和蒸気圧以上の
圧力であれはよいが、具体的には、カッティングボック
スに加熱加圧液を満たした場合で、2〜20Kg/cm
2であることが好ましい。
The pressure condition of the heated and pressurized liquid is not particularly limited, and the pressure at which the expandable thermoplastic resin particles do not foam at the liquid temperature in the cutting box, that is, the foaming at the temperature of the normally heated and pressurized liquid. It may be a pressure equal to or higher than the saturated vapor pressure of the agent, but specifically, it is 2 to 20 Kg / cm when the cutting box is filled with the heated and pressurized liquid.
It is preferably 2.

【0023】工程3は、工程2で得られた熱可塑性樹脂
粒子を真球状に球状化する為の工程であり、この際、切
断されて得られた樹脂粒子は配管中か、又は、貯蔵容器
内で撹拌しながら加熱が行われるが、形状の均一性の点
から貯蔵容器内に移送後に加熱処理することが好まし
い。また、工程3の加熱加圧液の加熱処理においては、
既述の通り、粒子の凝集を阻止するために分散剤及び又
は界面活性剤が用いられれ、これは工程2におけるカッ
ティングボックス内に予め存在させておいてもよいが、
後処理の容易さ、及び、生産性の点から工程2で得られ
た樹脂粒子を貯蔵容器へ移送した後に分散剤及び又は界
面活性剤を圧入添加し、次いで加熱することが好まし
い。
The step 3 is a step for making the thermoplastic resin particles obtained in the step 2 into a spherical shape, in which the resin particles obtained by cutting are in a pipe or in a storage container. Although heating is carried out while stirring inside, it is preferable to carry out heat treatment after transferring to a storage container from the viewpoint of shape uniformity. Further, in the heat treatment of the heated and pressurized liquid in step 3,
As described above, a dispersant and / or a surfactant is used to prevent the particles from aggregating, which may be pre-existed in the cutting box in step 2,
From the viewpoint of easiness of post-treatment and productivity, it is preferable to transfer the resin particles obtained in step 2 to a storage container, add a dispersant and / or a surfactant under pressure, and then heat.

【0024】ここで分散剤としては、特に限定されるも
のではないが、例えば有機化合物として、部分鹸化ポリ
ビニルアルコール、ポリアクリル酸の塩、ポリビニルピ
ロリドン、カルボキシメチルセルローズ、メチルセルロ
ーズ等が挙げられ、無機化合物としては、カルシウム、
マグネシウム、バリウム等の燐酸塩、炭酸塩、硫酸塩や
酸化マグネシウム、あるいはベントナイト等が挙げられ
る。これらに対して以下の界面活性剤を併用することが
一般的であるが、凝集が生じなければ添加しなくとも良
い。
The dispersant is not particularly limited, and examples of the organic compound include partially saponified polyvinyl alcohol, polyacrylic acid salts, polyvinylpyrrolidone, carboxymethylcellulose, and methylcellulose. As the compound, calcium,
Examples thereof include phosphates such as magnesium and barium, carbonates, sulfates, magnesium oxide, and bentonite. The following surfactants are generally used in combination with these, but they may not be added unless aggregation occurs.

【0025】また、ここで界面活性剤とは、特に限定さ
れるものではないが、例えばアルキルベンゼンスルフォ
ン酸ナトリウム、C6〜C12のα−オレフィンスルフォ
ン酸ナトリウム、オレイン酸ナトリウムあるいはラウリ
ン酸ナトリウム等が挙げられる。
The surfactant used herein is not particularly limited, and examples thereof include sodium alkylbenzene sulfonate, sodium C6 to C12 α-olefin sulfonate, sodium oleate and sodium laurate. .

【0026】工程3における加熱加圧液中の樹脂粒子の
凝集を阻止し、分散を安定化させるものとして、pH調
節剤や電解質化合物等も使用でき、例えば、苛性ソー
ダ、塩化ナトリウム、硫酸ナトリウム等が挙げられる。
これらは上記した分散剤と併用する事が出来る。
In order to prevent the resin particles in the heated and pressurized liquid from aggregating and stabilizing the dispersion in the step 3, a pH adjusting agent, an electrolyte compound or the like can be used. For example, caustic soda, sodium chloride, sodium sulfate and the like can be used. Can be mentioned.
These can be used in combination with the above-mentioned dispersants.

【0027】工程3において樹脂粒子を含む加熱加圧液
は、分散剤及び又は界面活性剤が添加された状態で更に
加熱されるが、温度条件は発泡剤や各種添加剤を含んだ
樹脂の軟化温度及び溶融粘度により適宜最適な値を決め
らればよい。球状化を完全にするとともに処理時間を短
くするためにはより高い温度が望ましいが、適性を越え
た高い温度での処理は粒子の凝集を招き易くなる。この
様な諸々の効果及び制約を勘案した場合、90〜130
℃の範囲が好ましい。また、加熱加圧液の液圧力条件は
球状化処理中に発泡性熱可塑性樹脂粒子が発泡しない圧
力であればよいが、例えば2〜30Kg/cm2である
ことが好ましい。この様な条件下に球状化処理に要する
昇温後温度を保持する時間は、発泡性樹脂粒子の軟化温
度、加熱加圧液の温度そして撹拌の影響により変化する
が、昇温後5〜300分間であることが好ましい。
In step 3, the heated and pressurized liquid containing the resin particles is further heated with the dispersant and / or the surfactant added, but the temperature condition is such that the resin containing the foaming agent and various additives is softened. The optimum value may be appropriately determined depending on the temperature and the melt viscosity. Higher temperatures are desirable in order to complete spheroidization and shorten the treatment time, but treatment at higher than appropriate temperatures tends to lead to particle agglomeration. In consideration of such various effects and restrictions, 90 to 130
C. is preferred. Further, the liquid pressure condition of the heated and pressurized liquid may be a pressure at which the expandable thermoplastic resin particles do not foam during the spheroidizing treatment, but it is preferably, for example, 2 to 30 kg / cm 2. The time required to maintain the post-heating temperature required for the spheroidizing treatment under such conditions varies depending on the softening temperature of the expandable resin particles, the temperature of the heating / pressurizing liquid, and the effect of stirring, but after the heating, it is 5 to 300. It is preferably for minutes.

【0028】上記の工程2及び工程3における樹脂粒子
と加熱加圧液との存在比は特に制限されるものではない
が、工程2においては、加熱加圧液は発泡性樹脂粒子に
対して過剰量、具体的には、発泡性樹脂粒子/加熱加圧
液(重量比)=1/50〜1/300の範囲が、粒子の
凝集阻止及び配管内を移送する時の安定性の点で好まし
く、一方、工程3においては、貯蔵容器に移行する前に
樹脂粒子と液とを分離して、例えば、発泡性樹脂粒子/
加熱加圧液=1/1〜1/3(重量比)の範囲に樹脂粒
子の濃度を高めることが、分散剤を含んだ廃液の処理や
スラリー(樹脂粒子と加熱加圧液の混合物)の昇温冷却
速度の点で好ましい。そして分離された残りの加熱加圧
液は、カッティングボックスに戻して循環使用すること
が、連続生産を可能にする点から生産効率上好ましい。
The abundance ratio of the resin particles and the heating / pressurizing liquid in the above steps 2 and 3 is not particularly limited, but in the step 2, the heating / pressurizing liquid is excessive with respect to the expandable resin particles. Amount, specifically, the range of expandable resin particles / heating and pressurizing liquid (weight ratio) = 1/50 to 1/300 is preferable from the viewpoint of preventing aggregation of particles and stability during transfer in a pipe. On the other hand, in step 3, the resin particles and the liquid are separated before the transfer to the storage container, and, for example, the expandable resin particles /
Increasing the concentration of resin particles in the range of heating and pressurizing liquid = 1/1 to 1/3 (weight ratio) is effective for treating waste liquid containing a dispersant and for slurry (a mixture of resin particles and heating and pressurizing liquid). It is preferable in terms of temperature rising and cooling rate. Then, it is preferable in terms of production efficiency to return the separated heated and pressurized liquid to the cutting box and circulate it for continuous production.

【0029】続いて、工程4では、工程3での処理が終
了した発泡性熱可塑性樹脂粒子を含む加熱加圧液を系よ
り切り離し、バッチか又は連続的に、常圧で発泡しなく
なる温度まで、加圧下で冷却される。この「常圧で発泡
しなくなる温度」としては特に制限されないが、30℃
が一つの目安となる。冷却が終了した後に、系内の圧力
を常圧に戻し、発泡性熱可塑性樹脂粒子を系外に取り出
して、一連の製造操作が完了する。ここでも発泡性樹脂
粒子と分離された液は再度カッティングボックスへと循
環して再使用する事が好ましい。
Subsequently, in step 4, the heating and pressurizing liquid containing the expandable thermoplastic resin particles, which has been treated in step 3, is separated from the system and batchwise or continuously until the temperature at which no foaming occurs at atmospheric pressure. , Cooled under pressure. The "temperature at which foaming does not occur at normal pressure" is not particularly limited, but is 30 ° C.
Is one guide. After the cooling is completed, the pressure in the system is returned to normal pressure, the expandable thermoplastic resin particles are taken out of the system, and a series of manufacturing operations are completed. Also in this case, it is preferable that the liquid separated from the expandable resin particles is recycled to the cutting box and reused.

【0030】以上詳述した本発明の製造方法において、
その一連の製造工程の一例を第1図に示す工程図を基に
説明する。連結管5で結ばれた二台よりなるタンデム型
押出機の内、第1番目の押出機2のホッパー1に熱可塑
性樹脂成分を供給し、スクリューにより溶融した頃を見
計らい3及び4のラインより発泡剤がポンプにより圧入
され、混練性の良好な構造のスクリュ−で充分に溶融混
練される(工程1)、次いで、発泡剤が混練された溶融
樹脂は連結管5を通り第2番目の押出機6に移動し発泡
剤の混練を継続しながら最適な温度に冷却され多数の細
孔を有するダイヘッド7より吐出される。
In the manufacturing method of the present invention detailed above,
An example of the series of manufacturing steps will be described based on the process diagram shown in FIG. Of the two tandem type extruders connected by the connecting pipe 5, the thermoplastic resin component is supplied to the hopper 1 of the first extruder 2, and when the screw melts, it is possible to check the melting time from the lines 3 and 4. The foaming agent is pressed in by a pump and sufficiently melted and kneaded by a screw having a good kneading property (step 1). Then, the molten resin kneaded with the foaming agent passes through the connecting pipe 5 and is second extruded. It moves to the machine 6 and is cooled to an optimum temperature while continuing the kneading of the foaming agent and discharged from the die head 7 having a large number of pores.

【0031】吐出された樹脂は、ダイヘッド7と密着さ
れたカッティングボックス9内で高速回転するカッター
ブレード8により切断され球形の粒子にされた後、加熱
加圧液の過剰なスラリー状で(樹脂粒子/液=1/50
〜300)攪拌機17(または19)、および温度制御
のためのジャケットが装着された第1貯蔵容器16(ま
たは第2貯蔵容器18)に移送される。
The discharged resin is cut into spherical particles by a cutter blade 8 which rotates at a high speed in a cutting box 9 that is in close contact with the die head 7, and is then converted into an excessive slurry of heating and pressurizing liquid (resin particles). / Liquid = 1/50
˜300) It is transferred to the first storage container 16 (or second storage container 18) equipped with a stirrer 17 (or 19) and a jacket for temperature control.

【0032】この第1貯蔵容器16(または第2貯蔵容
器18)の底部にはフィルター20(または21)が装
着されており樹脂粒子と加熱加圧液がここで分離される
(工程2)。発泡剤を含有した樹脂粒子は貯蔵容器16
(または18)に溜められる。
A filter 20 (or 21) is attached to the bottom of the first storage container 16 (or the second storage container 18), and the resin particles and the heated and pressurized liquid are separated here (step 2). The resin particles containing the foaming agent are stored in the storage container 16
(Or 18).

【0033】一方、分離された加熱加圧液はバルブ22
(または23)を通り、貯蔵容器16(または18)内
のフィルター20(または21)を通過した微小樹脂粒
子をフィルター27で更に除去された後、常圧循環容器
28に入り常圧に戻される。この常圧の液はポンプ32
により送られ、熱交換器31を通過した加熱液により温
度制御され、また加圧ポンプ29により加圧されて再び
カッティングボックス9に供給され循環使用される。加
熱加圧液は加圧ポンプ29だけでなく圧力調整用液戻し
バルブ・ライン30により圧力の微調整を行う。
On the other hand, the separated heated and pressurized liquid is supplied to the valve 22.
After passing through (or 23) and passing through the filter 20 (or 21) in the storage container 16 (or 18), the fine resin particles are further removed by the filter 27, and then the normal pressure circulation container 28 is returned to normal pressure. . This normal pressure liquid is pump 32
Temperature is controlled by the heating liquid that has been sent by the heat exchanger 31 and has passed through the heat exchanger 31, and is pressurized by the pressurizing pump 29 and supplied again to the cutting box 9 for circulation and use. The pressure of the heated and pressurized liquid is finely adjusted not only by the pressurizing pump 29 but also by the pressure adjusting liquid return valve line 30.

【0034】また、貯蔵容器16(または18)に貯蔵
された樹脂粒子はバルブ10及びバルブ22を閉じて
[その際、圧力調整用バルブ12(または14)は開放
して圧力を保持する。]、循環される加熱加圧液から分
離された後、分散剤又は界面活性剤を圧入し設定された
温度に昇温後、所定時間保持され球状化処理が施され
る。処理後、ジャケット内に通された温水、冷却水、ま
たはチラー水により徐冷される。
The resin particles stored in the storage container 16 (or 18) close the valve 10 and the valve 22 [at that time, the pressure adjusting valve 12 (or 14) is opened to maintain the pressure). ] After being separated from the circulating heating and pressurizing liquid, a dispersant or a surfactant is press-fitted and the temperature is raised to a set temperature, which is then held for a predetermined time and subjected to a spheroidizing treatment. After the treatment, it is gradually cooled with warm water, cooling water, or chiller water passed through the jacket.

【0035】次に、発泡剤を含有した樹脂粒子が常圧で
発泡しない温度まで冷却された時点で圧力抜きバルブ1
3(または15)を開け[この際、バルブ12(または
14)は閉じる]圧力容器内の圧力を常圧に戻した後、
所定の温度に設定させ熟成工程にはいる。
Next, when the resin particles containing the foaming agent are cooled to a temperature at which they do not foam under normal pressure, the pressure relief valve 1
3 (or 15) is opened [the valve 12 (or 14) is closed at this time] After returning the pressure in the pressure vessel to normal pressure,
The temperature is set to a predetermined temperature and the aging process is started.

【0036】常圧下、所定の温度及び時間の熟成処理が
終了してから発泡性樹脂粒子排出バルブ24(または2
5)を開け樹脂粒子と液の混合物をサンプル取り出し容
器26に排出させる。[空になった圧力容器16(また
は18)は温水が満たされ、所定の圧力に加圧されて待
機状態に入る。]次いで、乾燥して目的とする発泡性熱
可塑性樹脂粒子が得られる。
After the aging treatment at a predetermined temperature and time under normal pressure is completed, the expandable resin particle discharge valve 24 (or 2).
5) is opened and the mixture of the resin particles and the liquid is discharged into the sample take-out container 26. [The emptied pressure vessel 16 (or 18) is filled with warm water, pressurized to a predetermined pressure, and enters a standby state. Next, the target expandable thermoplastic resin particles are obtained by drying.

【0037】この様にして得られる真球状の発泡性熱可
塑性樹脂粒子は、樹脂粒子表面に予備発泡時におけるブ
ロッキング防止剤等の公知の各種改質剤、成形時におけ
る成形サイクル向上剤、帯電防止剤等の公知の各種改質
剤を塗布させても良い。
The spherical spherical expandable thermoplastic resin particles thus obtained are various known modifiers such as an antiblocking agent at the time of prefoaming on the surface of the resin particles, a molding cycle improving agent at the time of molding, and an antistatic property. Various known modifiers such as agents may be applied.

【0038】本発明で得られる真球状の発泡性熱可塑性
樹脂粒子から成形体を得るまでの工程は、通常行われて
いる方法でよく、特に限定されるものではないが、例え
ば、予め85〜110℃の水蒸気を当てて、嵩倍率5〜
100倍に加熱発泡し予備発泡粒子とし、該予備発泡粒
子を大気に曝し、空気を粒子内に浸透させ、且つ粒子に
付着した水分を除去し、次いでこの熟成工程を経た予備
発泡粒子を小さな孔やスリットが設けられている閉鎖金
型の型内に充填し、更に水蒸気で加熱再発泡することに
より、個々の粒子を融着一体化した成形体とする方法を
挙げることが出来る。この様にして得られた発泡性熱可
塑性樹脂成形体は、良好な成形外観を有し、製品強度に
優れるとともに、しかも原材料である発泡性熱可塑性樹
脂粒子を、効率よく経済的にも有利に製造出来るという
効果を奏する。
The process from the spherical spherical expandable thermoplastic resin particles obtained in the present invention to obtaining a molded product may be a conventional method and is not particularly limited. Apply steam at 110 ° C to obtain a bulk ratio of 5
Heat-expanded 100 times to form pre-expanded particles, exposing the pre-expanded particles to the atmosphere, allowing air to penetrate into the particles, and removing moisture adhering to the particles, and then subjecting the pre-expanded particles to a small hole. A method can be mentioned in which a molded body in which individual particles are fused and integrated is filled by filling the inside of a closed mold having slits or slits and then re-foaming by heating with steam. The expandable thermoplastic resin molded body thus obtained has a good molding appearance and is excellent in product strength, and moreover, the expandable thermoplastic resin particles as a raw material are efficiently and economically advantageous. The effect of being able to manufacture is produced.

【0039】[0039]

【実施例】以下に実施例及び比較例を挙げて、本発明を
具体的に説明する。
The present invention will be specifically described below with reference to examples and comparative examples.

【0040】実施例1 ポリスチレン(重量平均分子量28万)100部を第1
段押出機と第2段押出機とからなるタンデム型押出機
(第1段押出機:50mm径スクリュー、L/D=28、第2
段押出機:65mm径スクリュー、L/D=28)のホッパー
より供給して押出し、次いでブタン5.0重量部を第1
段押出機後半の注入口より供給、更にシクロヘキサン
1.6重量部を発泡剤注入口とほとんど同じところにあ
る別の注入口より供給し、第1段押出機及び第2段押出
機でポリスチレンとブタン及びシクロヘキサンとを溶融
混練した。この時の押出機の設定温度は押出機前半部で
240℃、ダイス部直前では150℃とした。
Example 1 First, 100 parts of polystyrene (weight average molecular weight 280,000)
Tandem type extruder consisting of single-stage extruder and second-stage extruder (first-stage extruder: 50 mm diameter screw, L / D = 28, second
Stage extruder: 65 mm screw, L / D = 28) supplied from the hopper to extrude, and then 5.0 parts by weight of butane is the first
It was supplied from the injection port in the latter half of the single-stage extruder, and 1.6 parts by weight of cyclohexane was supplied from another injection port located almost at the same place as the foaming agent injection port, and polystyrene was mixed in the first-stage extruder and the second-stage extruder. Butane and cyclohexane were melt-kneaded. At this time, the set temperature of the extruder was 240 ° C. in the first half of the extruder and 150 ° C. just before the die part.

【0041】溶融混練した樹脂を、第2段押出機のダイ
ヘッド(押出孔0.5mmφ×100個)を通して、6
0℃、10Kg/cm2で、分散剤として燐酸三カルシウ
ム0.25重量%、界面活性剤としてジアルキルジフェ
ニルスルフォン酸ナトリウム8ppm(いずれも水+樹
脂量に対して)を添加した加熱加圧水で満たされたカッ
ターボックスの中に50Kg/Hrの割合(樹脂粒子/
加熱加圧液比=1/500重量比)で押出し、直ちにカ
ッターで水中カットし、1.0mmの発泡性樹脂粒子を
得た。
The melt-kneaded resin was passed through a die head (extrusion hole: 0.5 mmφ × 100 pieces) of a second stage extruder to obtain 6
Filled with heated and pressurized water at 0 ° C., 10 Kg / cm 2 with 0.25% by weight of tricalcium phosphate as a dispersant and 8 ppm of sodium dialkyldiphenylsulfonate as a surfactant (both relative to water + resin amount). Ratio of 50 kg / Hr in the cutter box (resin particles /
The mixture was extruded with a heating / pressurizing liquid ratio = 1/500 weight ratio) and immediately cut in water with a cutter to obtain 1.0 mm expandable resin particles.

【0042】生成した粒子は5m3/Hrの速度で加熱
加圧水(60℃、10Kg/cm2)により撹拌機の付
いた貯蔵容器へ移送される。加熱加圧液は容器の底部に
設けられたフィルターにより樹脂粒子と分離され、循環
使用される。樹脂粒子が圧力容器内に一定量貯められた
頃(樹脂粒子/加熱加圧液比=1/1重量比)を見計ら
い、系より切り離し、このスラリー(樹脂粒子と加熱加
圧液の混合物)を15Kg/cm2へ昇圧後120℃に
加熱して0.5時間撹拌処理した。この球状化処理の間
カッティングボックス内で切断される粒子は、別の圧力
容器内に移送、貯蔵される。
The produced particles are transferred to a storage vessel equipped with a stirrer with heated and pressurized water (60 ° C., 10 Kg / cm 2) at a rate of 5 m 3 / Hr. The heated and pressurized liquid is separated from the resin particles by a filter provided at the bottom of the container, and is circulated and used. At a time when a certain amount of resin particles were stored in the pressure vessel (resin particle / heating / pressurizing liquid ratio = 1/1 weight ratio), the system was separated from the system and this slurry (mixture of resin particles and heating / pressurizing liquid) was removed. After raising the pressure to 15 Kg / cm 2, the mixture was heated to 120 ° C. and stirred for 0.5 hour. The particles cut in the cutting box during the spheroidizing process are transferred and stored in another pressure vessel.

【0043】上記球状化処理が完了してから、スラリー
を加圧下(15Kg/cm2)40℃まで冷却して容器
内を常圧に戻した後、粒子を取り出し、遠心分離機で脱
水・乾燥し、発泡性ポリスチレン樹脂粒子を得た。
After the spheroidizing treatment was completed, the slurry was cooled to 40 ° C. under pressure (15 Kg / cm 2) to return the pressure inside the container to normal pressure, then the particles were taken out, dehydrated and dried by a centrifuge. , Expandable polystyrene resin particles were obtained.

【0044】こうして得られた粒子は、完全球状であ
り、ブタン含有量は4.5重量%、シクロヘキサンは
1.5重量%であった。また、球状化処理中の樹脂粒子
の凝集は全く発生しなかった。この樹脂粒子にステアリ
ン酸亜鉛をコーティングした後、水蒸気で加熱し、カサ
倍率60倍の予備発泡粒子とし、約一昼夜熟成後予備発
泡粒子を密閉金型に充填し、水蒸気で加熱して溶融・圧
着させ横290×長さ490×厚さ25(mm)の発泡
成形体を得、この成形品の表面平滑性、発泡粒子の融着
率等を測定した。発泡性ポリスチレン樹脂粒子、予備発
泡粒子、成形品の性状を表に示す。
The particles thus obtained were perfectly spherical, the butane content was 4.5% by weight, and cyclohexane was 1.5% by weight. Further, no aggregation of the resin particles occurred during the spheroidizing treatment. After coating these resin particles with zinc stearate, heat with steam to make pre-expanded particles with a bulk ratio of 60 times, and after aging for about one day and night, fill the pre-expanded particles in a closed mold and heat with steam to melt and press-bond. Then, a foamed molded product having a width of 290 × a length of 490 × a thickness of 25 (mm) was obtained, and the surface smoothness of this molded product, the fusion rate of the foamed particles, and the like were measured. The properties of expandable polystyrene resin particles, pre-expanded particles, and molded products are shown in the table.

【0045】尚、性状は以下の方法で測定または評価し
た。 発泡性粒子の平均粒子径 :100個の発泡性粒子の粒子径をダイヤルゲージ で測定し、その平均値を求めた。 発泡性粒子の発泡剤及び発泡助剤の含有量 :ガスクロマトグラフィーで測定した。 予備発泡粒子の発泡倍率 :ゲージ圧1Kg/cm2のスチームで加熱して嵩 倍 率約60倍の予備発泡粒子を得た。 成形品外観 :成形品表面の平滑性を目視により判定した。
The properties were measured or evaluated by the following methods. Average particle size of expandable particles: The particle size of 100 expandable particles was measured with a dial gauge, and the average value was obtained. Content of foaming agent and foaming aid in expandable particles: Measured by gas chromatography. Expansion ratio of pre-expanded particles: Heated with steam having a gauge pressure of 1 Kg / cm @ 2 to obtain pre-expanded particles having a bulk ratio of about 60 times. Appearance of molded product: The smoothness of the surface of the molded product was visually evaluated.

【0046】 ◎:表面に凹凸、空隙全くなし。 ○:表面に若干の空隙が認められるものの実用上 問題なし。⊚: No irregularities or voids on the surface. ◯: There are some voids on the surface, but there is no problem in practical use.

【0047】 △:表面に空隙目立つ。 ×:表面の凹凸著しい。 融着率 :発泡成形体(板状成形品)を中心部で折って破断 し、この破断面にある粒子の全ての数と粒子内部 で破断された数を計測し、以下の式で算出した。Δ: Voids are conspicuous on the surface. X: The surface has remarkable irregularities. Fusing rate: The foamed molded product (plate-shaped molded product) was broken at the center and fractured, and the total number of particles on this fracture surface and the number of fractures inside the particle were measured and calculated by the following formula .

【0048】 (粒子内部で破断された数)/(破断面にある全ての粒子の数)×100 水漏れの有無 :箱型成形品(290×490×25mm)に水を 張り1週間後に水漏れの有無を目視で判定した。 球状化度 :発泡性樹脂粒子の形状を目視で判定した。(Number of fractures inside the particles) / (Number of all particles on the fracture surface) × 100 Water leakage: Water was applied to the box-shaped molded product (290 × 490 × 25 mm), and after 1 week, water was added. The presence or absence of leakage was visually determined. Spheroidization: The shape of the expandable resin particles was visually determined.

【0049】 ○:球状 ×:偏平状直方体 粒子凝集の有無 :発泡性樹脂粒子の形状を目視で判定した。◯: Spherical ×: Flat rectangular parallelepiped Presence / absence of particle aggregation: The shape of the expandable resin particles was visually determined.

【0050】実施例2 樹脂粒子の凝集を阻止するために、分散剤及び界面活性
剤を系より切り離された球状化処理(工程3)用の貯蔵
容器内に添加すること(溶融混練された樹脂を切断する
工程2で用いる加熱加圧液中には添加しない)以外は、
実施例1と同様の操作を行って、真球状の発泡性スチレ
ン樹脂粒子を製造し、評価した。 その結果を表1に示
した。
Example 2 In order to prevent agglomeration of resin particles, a dispersant and a surfactant were added to the storage container for spheroidizing treatment (step 3) separated from the system (melt-kneaded resin). Except that it is not added to the heated and pressurized liquid used in the step 2 of cutting
By performing the same operation as in Example 1, spherical expandable styrene resin particles were produced and evaluated. The results are shown in Table 1.

【0051】実施例3 ブタン添加量を3.5重量%、分散剤及び界面活性剤を
球状化処理用圧力容器に添加、そして球状化処理温度・
時間を120℃、1時間にしたこと以外は、実施例1と
同様の操作を行って、真球状の発泡性スチレン樹脂粒子
を製造し、評価した。 その結果を表1に示した。
Example 3 Addition amount of butane was 3.5% by weight, a dispersant and a surfactant were added to a pressure vessel for spheroidization treatment, and the spheroidization treatment temperature
Except that the time was 120 ° C. and 1 hour, the same operation as in Example 1 was performed to produce and evaluate the true spherical expandable styrene resin particles. The results are shown in Table 1.

【0052】実施例4 熱可塑性樹脂を透明・耐熱性樹脂であるスチレン−メタ
クリル酸共重合樹脂(メタクリル酸含有量10重量%)
にし、樹脂粒子切断用の加熱加圧液の温度を80℃(工
程2)、そして球状化処理(工程3)を120℃、2時
間で行うこと以外は、実施例2と同様の操作を行って、
真球状の耐熱発泡性スチレン系樹脂粒子を製造し、評価
した。 その結果を表1に示した。
Example 4 Styrene-methacrylic acid copolymer resin (methacrylic acid content of 10% by weight), which is a transparent and heat-resistant resin, is used as the thermoplastic resin.
And the same operation as in Example 2 except that the temperature of the heated and pressurized liquid for cutting the resin particles is 80 ° C. (step 2) and the spheroidizing treatment (step 3) is 120 ° C. for 2 hours. hand,
The spherical heat-resistant expandable styrene resin particles were manufactured and evaluated. The results are shown in Table 1.

【0053】比較例1 貯蔵容器内での昇温並びに球状化処理(工程3)を行わ
ないこと以外は、実施例1と同様の操作を行って、発泡
性スチレン樹脂粒子を製造し、評価した。 その結果を
表に示した。
Comparative Example 1 Expandable styrene resin particles were produced and evaluated in the same manner as in Example 1 except that the temperature rising in the storage container and the spheroidizing treatment (step 3) were not performed. . The results are shown in the table.

【0054】比較例2 分散剤及び界面活性剤を添加しないで、球状化処理(工
程3)を120℃で2時間行うこと以外は、実施例1と
同様の操作を行って、発泡性スチレン樹脂粒子を製造し
ようとしたが、粒子が互いに凝集し、製品が得られなか
った。
Comparative Example 2 A foamable styrene resin was prepared in the same manner as in Example 1 except that the spheroidizing treatment (step 3) was carried out at 120 ° C. for 2 hours without adding a dispersant and a surfactant. An attempt was made to make particles, but the particles clumped together and no product was obtained.

【0055】[0055]

【表1】 (表1中、界面活性剤はト゛テ゛シルシ゛フェニルエーテルシ゛スルフォン酸ナトリウムであり、SMAA樹脂は 、スチレン−メタクリル酸共重合樹脂である。)[Table 1] (In Table 1, the surfactant is sodium dedecyl diphenyl ether disulfonate and the SMAA resin is a styrene-methacrylic acid copolymer resin.)

【0056】[0056]

【発明の効果】本発明によれば、生産性に優れる溶融押
出カット法を用いながらも真球状の発泡性熱可塑性樹脂
粒子が得られる。
According to the present invention, the spherical expandable thermoplastic resin particles can be obtained while using the melt extrusion cutting method which is excellent in productivity.

【0057】それ故、本発明で得られる発泡性熱可塑性
樹脂粒子を用いて得られる発泡成形体は、表面平滑性や
融着性等の品質特性に優れたものとなる。
Therefore, the foamed molded product obtained by using the expandable thermoplastic resin particles obtained in the present invention has excellent quality characteristics such as surface smoothness and fusion property.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1図は、本発明の発泡性スチレン系樹脂粒子
を連続的に製造するための工程を示す工程図である。 1:熱可塑性樹脂供給口(ホッパー)、 2:押出機(第1) 3:発泡剤供給ライン 4:発泡助剤供給ライン 5:連結管 6:押出機(第2) 7:ダイヘッド 8:カッターブレード 9:カッターボックス 10及び11:バルブ(循環液用管路) 12及び14:圧力調整用バルブ 13及び15:圧力抜き用バルブ 16:貯蔵容器(第1) 17及び19:攪拌機 18:貯蔵容器(第2) 20及び21:フィルター 22及び23:バルブ(循環液用管路) 24及び25:バルブ(発泡性樹脂粒子排出ライン) 26:発泡性熱可塑性樹脂粒子サンプル取り出し容器 27:フィルター 28:常圧循環液容器 29:加圧ポンプ 30:圧力調整用液戻し用バルブ・ライン、 31:熱交換器 32:加熱液供給用ポンプ
FIG. 1 is a process chart showing a process for continuously producing expandable styrenic resin particles of the present invention. 1: Thermoplastic resin supply port (hopper) 2: Extruder (1st) 3: Foaming agent supply line 4: Foaming auxiliary agent supply line 5: Connection pipe 6: Extruder (2nd) 7: Die head 8: Cutter Blade 9: Cutter box 10 and 11: Valve (circulating fluid line) 12 and 14: Pressure adjusting valve 13 and 15: Pressure release valve 16: Storage container (first) 17 and 19: Stirrer 18: Storage container (Second) 20 and 21: Filter 22 and 23: Valve (circulating fluid line) 24 and 25: Valve (expandable resin particle discharge line) 26: Expandable thermoplastic resin particle sample extraction container 27: Filter 28: Normal pressure circulating liquid container 29: Pressurizing pump 30: Pressure adjusting liquid return valve line, 31: Heat exchanger 32: Heating liquid supply pump

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B29K 105:04 C08L 25:06 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location B29K 105: 04 C08L 25:06

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 熱可塑性樹脂(A)と、発泡剤(B)と
を溶融混練し(工程1)、これをダイヘッドの押出孔か
ら、熱可塑性樹脂(A)と発泡剤(B)との溶融混練物
が発泡しない温度圧力に加熱加圧された加熱加圧液中に
吐出して、即時切断し(工程2)、得られた樹脂粒子を
加圧下で、かつ、分散剤及び/又は界面活性剤の存在下
に、更に加熱(工程3)した後、冷却、除圧して取り出
す(工程4)ことを特徴とする発泡性熱可塑性樹脂粒子
の製造方法。
1. A thermoplastic resin (A) and a foaming agent (B) are melted and kneaded (step 1), and the thermoplastic resin (A) and the foaming agent (B) are extruded through an extrusion hole of a die head. The melted and kneaded product is discharged into a heated and pressurized liquid which is heated and pressurized to a temperature and pressure at which the resin is not cut (step 2), and the obtained resin particles are under pressure, and the dispersant and / or the interface are added. A method for producing expandable thermoplastic resin particles, which comprises heating (step 3) in the presence of an activator, cooling, depressurizing and taking out (step 4).
【請求項2】 押出機と、該押出機のダイヘッドから吐
出する樹脂を粒子状に切断し得る様に配設されたカッタ
ーを有し、かつ、加熱加圧液が充満する耐圧容器と、加
熱冷却ジャケットが取り付けられた貯蔵容器とから構成
されており、かつ、耐圧容器と貯蔵容器との間を前記加
熱加圧液が循環し得る様に配管が設置された装置を用
い、熱可塑性樹脂(A)と、発泡剤(B)とを前記押出
機に導入して溶融混練し(工程1)、次いでこれをダイ
ヘッドの押出孔から、加熱加圧液が充満された耐圧容器
内に吐出され、該容器内で切断されて樹脂粒子(工程
2)とし、次いで、前記加熱加圧液を配管を経由して耐
圧容器と貯蔵容器との間を循環させながら、樹脂粒子を
加熱冷却ジャケットが取り付けられた貯蔵容器へ移送
し、次いで、該貯蔵容器内において、分散剤及び/又は
界面活性剤の存在下、得られた粒子を更に加熱し(工程
3)、次いで、常圧で発泡しない温度まで冷却し、圧力
を常圧に戻した後粒子を取り出す(工程4)請求項1記
載の製造方法。
2. A pressure-resistant container having an extruder, a cutter arranged so as to cut the resin discharged from the die head of the extruder into particles, and a pressure vessel filled with a heating and pressurizing liquid, and heating. A storage container having a cooling jacket attached thereto, and a device in which a pipe is installed so that the heated and pressurized liquid can circulate between the pressure resistant container and the storage container, and a thermoplastic resin ( A) and the foaming agent (B) are introduced into the extruder and melt-kneaded (step 1), and then the mixture is discharged from the extrusion hole of the die head into the pressure vessel filled with the heating and pressurizing liquid, The resin particles are cut into resin particles (step 2) in the container, and then the resin particles are fitted with a heating / cooling jacket while circulating the heating / pressurizing liquid between the pressure resistant container and the storage container through a pipe. To the storage container, and then in the storage container In, the obtained particles are further heated in the presence of a dispersant and / or a surfactant (step 3), and then cooled to a temperature at which atmospheric pressure does not cause foaming, the pressure is returned to atmospheric pressure, and then the particles are taken out. (Step 4) The manufacturing method according to claim 1.
【請求項3】 工程3において、貯蔵容器に樹脂粒子を
移送させた後、該貯蔵容器内に分散剤又は界面活性剤を
導入し、次いで加熱する請求項2記載の製造方法。
3. The production method according to claim 2, wherein in step 3, after the resin particles are transferred to the storage container, a dispersant or a surfactant is introduced into the storage container and then heating is performed.
【請求項4】 工程2における加熱加圧液が、2〜20
Kg/cm2 に加圧されたものである請求項1、2又は
3記載の製造方法。
4. The heating and pressurizing liquid in the step 2 is 2 to 20.
The production method according to claim 1, 2 or 3, wherein the pressure is Kg / cm 2 .
【請求項5】 工程2における加熱加圧液が、40〜1
00℃に加熱されたものである請求項1、2、3又は4
記載の製造方法。
5. The heating and pressurizing liquid in the step 2 is 40 to 1
It is what was heated at 00 degreeC, 1, 2, 3 or 4.
The manufacturing method as described.
【請求項6】 工程3において、90〜130℃まで昇
温し、そのまま保持して球状化処理する請求項1〜5の
何れか1つに記載の製造方法。
6. The manufacturing method according to claim 1, wherein in step 3, the temperature is raised to 90 to 130 ° C., the temperature is maintained as it is, and the spheroidizing treatment is performed.
【請求項7】 工程3における加熱並びに保持を、2〜
30Kg/cm2 の圧力条件下で行う請求項6記載の製
造方法。
7. The heating and holding in step 3 is 2 to
The production method according to claim 6, which is carried out under a pressure condition of 30 kg / cm 2 .
【請求項8】 工程1における熱可塑性樹脂(A)と、
発泡剤(B)との溶融混練を、130〜300℃の温度
範囲で行う請求項1〜7の何れか1つに記載の製造方
法。
8. A thermoplastic resin (A) in step 1,
The manufacturing method according to any one of claims 1 to 7, wherein the melt-kneading with the foaming agent (B) is performed in a temperature range of 130 to 300 ° C.
【請求項9】 工程4における冷却を、工程3における
貯蔵容器内の加熱加圧液の温度から発泡性熱可塑性樹脂
粒子が常圧で発泡しない温度以下で、且つ40℃以下の
温度まで行う請求項1〜8の何れか1つに記載の製造方
法。
9. The cooling in step 4 is carried out from the temperature of the heating and pressurizing liquid in the storage container in step 3 to a temperature at which the expandable thermoplastic resin particles do not foam at atmospheric pressure and a temperature of 40 ° C. or less. Item 9. The manufacturing method according to any one of items 1 to 8.
【請求項10】 熱可塑性樹脂(A)が芳香族ビニル系
樹脂である請求項1〜9の何れか1つに記載の製造方
法。
10. The production method according to claim 1, wherein the thermoplastic resin (A) is an aromatic vinyl resin.
JP2925896A 1996-02-16 1996-02-16 Production of expandable thermoplastic resin particle Pending JPH09221562A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2925896A JPH09221562A (en) 1996-02-16 1996-02-16 Production of expandable thermoplastic resin particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2925896A JPH09221562A (en) 1996-02-16 1996-02-16 Production of expandable thermoplastic resin particle

Publications (1)

Publication Number Publication Date
JPH09221562A true JPH09221562A (en) 1997-08-26

Family

ID=12271260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2925896A Pending JPH09221562A (en) 1996-02-16 1996-02-16 Production of expandable thermoplastic resin particle

Country Status (1)

Country Link
JP (1) JPH09221562A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002046285A1 (en) * 2000-12-08 2002-06-13 Pool Abdul Kader Electromagnetic energy adaptation material
EP1555102A1 (en) * 2004-01-13 2005-07-20 JSP Corporation Process for preparing thermoplastic resin pellets
JP2007514027A (en) * 2003-12-12 2007-05-31 ビーエーエスエフ アクチェンゲゼルシャフト Foam molding for molding composed of pelletized foaming filler-containing thermoplastic polymer material
JP2008127562A (en) * 2006-11-23 2008-06-05 Sulzer Chemtech Ag Method and plant for producing polymer particle
JP2009292015A (en) * 2008-06-04 2009-12-17 Sekisui Plastics Co Ltd Methods of producing foamable thermoplastic resin particle, foamedthermoplastic resin particle and foamed thermoplastic resin molded product
US7776244B2 (en) 2002-06-14 2010-08-17 Basf Aktiengesellschaft Method for producing expandable polystyrene
JP2013022911A (en) * 2011-07-25 2013-02-04 Kaneka Corp Method for producing foamable thermoplastic resin grain
US8795562B2 (en) 2006-03-22 2014-08-05 Basf Se Method and device for granulating polymer melts containing blowing agent
JP2017177550A (en) * 2016-03-30 2017-10-05 積水化成品工業株式会社 Method for producing resin particle

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002046285A1 (en) * 2000-12-08 2002-06-13 Pool Abdul Kader Electromagnetic energy adaptation material
US7344661B2 (en) * 2000-12-08 2008-03-18 Scott Allan Kuehl Electromagnetic energy adaptation material
US7776244B2 (en) 2002-06-14 2010-08-17 Basf Aktiengesellschaft Method for producing expandable polystyrene
JP2007514027A (en) * 2003-12-12 2007-05-31 ビーエーエスエフ アクチェンゲゼルシャフト Foam molding for molding composed of pelletized foaming filler-containing thermoplastic polymer material
EP1555102A1 (en) * 2004-01-13 2005-07-20 JSP Corporation Process for preparing thermoplastic resin pellets
CN100460177C (en) * 2004-01-13 2009-02-11 株式会社Jsp Thermoplastic resin pellet, process for preparing thermoplastic resin pellets and expanded thermoplastic resin bead
US8795562B2 (en) 2006-03-22 2014-08-05 Basf Se Method and device for granulating polymer melts containing blowing agent
EP1998948B2 (en) 2006-03-22 2017-06-07 Basf Se Method and device for granulating polymer melts containing blowing agent
JP2008127562A (en) * 2006-11-23 2008-06-05 Sulzer Chemtech Ag Method and plant for producing polymer particle
JP2009292015A (en) * 2008-06-04 2009-12-17 Sekisui Plastics Co Ltd Methods of producing foamable thermoplastic resin particle, foamedthermoplastic resin particle and foamed thermoplastic resin molded product
JP2013022911A (en) * 2011-07-25 2013-02-04 Kaneka Corp Method for producing foamable thermoplastic resin grain
JP2017177550A (en) * 2016-03-30 2017-10-05 積水化成品工業株式会社 Method for producing resin particle

Similar Documents

Publication Publication Date Title
TWI457379B (en) Expandable polystyrene type resin particle and production method thereof, and molded form
TWI529205B (en) Expandable polystyrene type resin particle and production method thereof, polystyrene type resin pre-expanded particle, polystyrene type resin expanded form
JP4990438B2 (en) Method for producing expandable propylene polymer beads
CA2418103C (en) Extruded vinyl aromatic foam with hfc-134a and alcohol as blowing agent
JPH09221562A (en) Production of expandable thermoplastic resin particle
AU2001264643A1 (en) Extruded vinyl aromatic foam with 134A and alcohol as blowing agent
CA2786516C (en) Method to start-up a process to make expandable vinyl aromatic polymers
JP5796390B2 (en) Method for producing foamable thermoplastic resin particles
CA2399239C (en) Extruded foam product with reduced surface defects
US6342540B1 (en) Method for producing water expandable styrene polymers
JPH10175249A (en) Thermoplastic resin foam and its manufacture
JP2002302567A (en) Method for continuous production of pre-expanded bead of biodegradable polyester-based resin
JPH07314438A (en) Production of foamable thermoplastic resin granule
JPH0598062A (en) Foamable styrene resin granule and production thereof
JPH09208734A (en) Production of foamable styrene-based resin particle
JPH07316335A (en) Production of expandable thermoplastic resin particle
JPH06298983A (en) Production of expandable thermoplastic resin particle
JP3507699B2 (en) Method for producing polypropylene resin pre-expanded particles
JP2004115690A (en) Method for manufacturing expandable particle of styrene type resin
JP2798572B2 (en) Method for producing recycled expanded polystyrene resin molded article
JP2006116818A (en) Method for producing foamed polyolefin resin molding using waste foamed polyolefin resin molding and its molding
JP2003089728A (en) Recyclable expandable styrene-based resin particle and resin molded product using the same
JPH0687973A (en) Production of globular regenerated foamable styrene-based resin particle
JP2003306571A (en) Expandable particle made of recycled styrene resin and its manufacturing process
JP2004292489A (en) Styrenic resin expandable particle, method for producing the same, expanded particle and expansion molded product

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040720

A131 Notification of reasons for refusal

Effective date: 20040727

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20041130

Free format text: JAPANESE INTERMEDIATE CODE: A02