JPH0921953A - Zoom lens - Google Patents
Zoom lensInfo
- Publication number
- JPH0921953A JPH0921953A JP19126995A JP19126995A JPH0921953A JP H0921953 A JPH0921953 A JP H0921953A JP 19126995 A JP19126995 A JP 19126995A JP 19126995 A JP19126995 A JP 19126995A JP H0921953 A JPH0921953 A JP H0921953A
- Authority
- JP
- Japan
- Prior art keywords
- lens
- group
- conjugate point
- negative
- positive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Lenses (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明はズームレンズに関し、例
えば液晶表示素子やカラー液晶表示素子等に表示された
像をスクリーン面上に投影するようにした液晶プロジェ
クションテレビ用の投影レンズとして好適な全体として
2つのレンズ群より成るズームレンズに関するものであ
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a zoom lens, which is suitable as a projection lens for a liquid crystal projection television for projecting an image displayed on a liquid crystal display device or a color liquid crystal display device on a screen surface. Relates to a zoom lens composed of two lens groups.
【0002】[0002]
【従来の技術】従来より液晶表示素子や複数のカラー液
晶に表示されている像を光学的に重ね合わせて投影レン
ズによりスクリーン面上に投影するようにした液晶プロ
ジェクションが種々と提案されている。2. Description of the Related Art Conventionally, various liquid crystal projections have been proposed in which an image displayed on a liquid crystal display device or a plurality of color liquid crystals is optically superposed and projected on a screen surface by a projection lens.
【0003】一般に液晶プロジェクションに用いられて
いる投影レンズとしては最終レンズ面から液晶表示素子
までの間(バックフォーカス間)に反射ミラーやダイク
ロイックミラー等の各種の光学部材を配置する必要から
長いバックフォーカスを有し、かつ高い光学性能を有す
ることが要求されている。As a projection lens generally used for liquid crystal projection, it is necessary to dispose various optical members such as a reflection mirror and a dichroic mirror between the final lens surface and the liquid crystal display element (between back focus), so that a long back focus is required. In addition, it is required to have high optical performance.
【0004】液晶プロジェクション用のズームレンズと
して例えば特開平5−27174号公報では拡大側から
順にフォーカスのときのみ移動する正の第1群、変倍用
の負の第2群、変倍に伴う像面変動を補正する為の負の
第3群、そして固定の正の第4群の4つのレンズ群より
成る有限距離用のズームレンズが提案されている。As a zoom lens for liquid crystal projection, for example, in Japanese Unexamined Patent Publication No. 5-27174, a positive first group that moves only from the enlargement side when focusing is performed, a negative second group for zooming, and an image associated with zooming. A finite-distance zoom lens composed of four lens units, a negative third lens unit for correcting surface fluctuations and a fixed positive fourth lens unit, has been proposed.
【0005】[0005]
【発明が解決しようとする課題】一般に液晶表示素子を
スクリーン面上に種々の投影倍率で投影するには投影レ
ンズを広画角のズームレンズより構成するのが装置全体
を小型化にしつつ、かつ投影倍率を任意にしかも迅速に
変えることができるので便利である。しかしながら全変
倍範囲にわたり諸収差を良好に補正し、高い光学性能を
得るのは大変難しい。Generally, in order to project a liquid crystal display device on a screen surface at various projection magnifications, it is necessary to configure the projection lens with a wide-angle zoom lens while reducing the size of the entire device and This is convenient because the projection magnification can be changed arbitrarily and quickly. However, it is very difficult to satisfactorily correct various aberrations and obtain high optical performance over the entire zoom range.
【0006】前述の特開平5−27174号公報で提案
されているズームレンズでは広角端から中間のズーム位
置にかけて歪曲収差の変動が大きい。この為、例えば図
21(A),(B)に示すように投影像の明るさを向上
させる為に2台のプロジェクターA,Bを使用して2つ
の投影像SA,SBをスクリーン面S上で重ねて観察し
ようとすると2つの投影像SA,SBが画面周辺でずれ
てきて画質が低下してくるという問題点が生じてくる。In the zoom lens proposed in the above-mentioned Japanese Patent Laid-Open No. 5-27174, the variation of distortion aberration is large from the wide-angle end to the intermediate zoom position. Therefore, for example, as shown in FIGS. 21A and 21B, two projection images SA and SB are displayed on the screen surface S by using two projectors A and B in order to improve the brightness of the projection image. If two images are to be observed in superimposition with each other, the two projected images SA and SB will be displaced around the screen and the image quality will be degraded.
【0007】本発明は、全体として2つのレンズ群より
成り、各レンズ群のレンズ構成を適切に設定することに
より、投影画角が広く、かつ変倍に伴う収差変動を良好
に補正し、特に歪曲収差を良好に補正し、全変倍範囲に
わたり光学性能を良好に維持しつつ、長いバックフォー
カスが容易に得られる、例えば液晶プロジェクター用に
好適なズームレンズの提供を目的とする。The present invention is composed of two lens groups as a whole, and by appropriately setting the lens configuration of each lens group, the projection field angle is wide, and aberration fluctuations due to zooming are satisfactorily corrected. An object of the present invention is to provide a zoom lens that is suitable for, for example, a liquid crystal projector and that can easily obtain a long back focus while properly correcting distortion and maintaining good optical performance over the entire zoom range.
【0008】[0008]
【課題を解決するための手段】第1発明のズームレンズ
は、距離の長い方の第1共役点側から順に負の屈折力の
第1群と正の屈折力の第2群の2つのレンズ群を有し、
広角端から望遠端への変倍を双方のレンズ群間隔が単調
に減少するように双方のレンズ群を移動させて行い、該
第1群は最も大きなレンズ間隔を境にして第11群と第
12群の2つのレンズ群より成り、該第2群は最も長い
レンズ間隔を境にして第21群と第22群の2つのレン
ズ群より成り、該第11群は該第1共役点側から順に該
第1共役点側に凸面を向けたメニスカス状の2つの負レ
ンズL111,負レンズL112,該第1共役点側に強
い屈折面を持つ正レンズL113、そして両レンズ面が
凹面の負レンズL114の4つのレンズより成っている
ことを特徴としている。A zoom lens according to a first aspect of the present invention comprises two lenses, a first group having a negative refracting power and a second group having a positive refracting power, in order from a first conjugate point side having a longer distance. Have a group,
Zooming from the wide-angle end to the telephoto end is performed by moving both lens groups so that the distance between the two lens groups decreases monotonically, and the first lens group is separated from the eleventh lens group by the largest lens distance. The second lens group is composed of two lens groups of 12 groups, the second group is composed of two lens groups of a 21st group and a 22nd group with the longest lens interval as a boundary, and the 11th group is from the first conjugate point side. Two negative meniscus lenses L111 and N112 having a convex surface facing the first conjugate point side, a negative lens L112, a positive lens L113 having a strong refractive surface on the first conjugate point side, and a negative lens having both concave lens surfaces. It is characterized by being composed of four L114 lenses.
【0009】第2発明のズームレンズは、距離の長い方
の第1共役点側から順に負の屈折力の第1群と正の屈折
力の第2群の2つのレンズ群を有し、広角端から望遠端
への変倍を双方のレンズ群間隔が単調に減少するように
双方のレンズ群を移動させて行い、該第1群は最も大き
なレンズ間隔を境にして第11群と第12群の2つのレ
ンズ群より成り、該第2群は最も長いレンズ間隔を境に
して第21群と第22群の2つのレンズ群より成り、該
第11群は該第1共役点側から順に該第1共役点側に凸
面を向けたメニスカス状の負レンズL111,該第1共
役点側に凸面を向けたメニスカス状の正レンズL11
2,該第1共役点側に凸面を向けたメニスカス状の負レ
ンズL113,該第1共役点側に強い屈折面を持つ正レ
ンズL114、そして両レンズ面が凹面の負レンズL1
15の5つのレンズより成っていることを特徴としてい
る。The zoom lens according to the second aspect of the invention has two lens groups, a first lens group having a negative refractive power and a second lens group having a positive refractive power, in order from the first conjugate point side having the longer distance, and has a wide angle of view. The zooming from the end to the telephoto end is performed by moving both lens groups so that the distance between both lens groups monotonously decreases. The second lens unit is composed of two lens units of a 21st lens unit and a 22nd lens unit at the longest lens interval, and the 11th lens unit is arranged in order from the first conjugate point side. A meniscus negative lens L111 having a convex surface directed toward the first conjugate point side, and a meniscus positive lens L11 having a convex surface directed toward the first conjugate point side
2, a meniscus negative lens L113 having a convex surface facing the first conjugate point side, a positive lens L114 having a strong refracting surface on the first conjugate point side, and a negative lens L1 having both concave lens surfaces.
It is characterized by being made up of 5 lenses of 15.
【0010】第3発明のズームレンズは、距離の長い方
の第1共役点側から順に負の屈折力の第1群と正の屈折
力の第2群の2つのレンズ群を有し、広角端から望遠端
への変倍を双方のレンズ群間隔が単調に減少するように
双方のレンズ群を移動させて行い、該第1群は最も大き
なレンズ間隔を境にして第11群と第12群の2つのレ
ンズ群より成り、該第2群は最も長いレンズ間隔を境に
して第21群と第22群の2つのレンズ群より成り、該
第11群は該第1共役点側から順に両レンズ面が凸面の
正レンズL111,該第1共役点側に凸面を向けたメニ
スカス状の負レンズL112,そして該第1共役点側に
強い屈折面を持つ正レンズL113の3つのレンズより
成っていることを特徴としている。A zoom lens according to a third aspect of the invention has two lens groups, a first group having a negative refracting power and a second group having a positive refracting power, in order from the first conjugate point side having a longer distance, and has a wide angle. The zooming from the end to the telephoto end is performed by moving both lens groups so that the distance between both lens groups monotonously decreases. The second lens unit is composed of two lens units of a 21st lens unit and a 22nd lens unit at the longest lens interval, and the 11th lens unit is arranged in order from the first conjugate point side. It is composed of three lenses: a positive lens L111 having both convex lens surfaces, a meniscus negative lens L112 having a convex surface facing the first conjugate point side, and a positive lens L113 having a strong refractive surface on the first conjugate point side. It is characterized by
【0011】[0011]
【実施例】図1,図2は第1発明としての数値実施例
1,2の広角端のレンズ断面図、図3は第2発明として
の数値実施例3の広角端のレンズ断面図、図4,図5は
第3発明としての数値実施例4,5の広角端のレンズ断
面図である。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIGS. 1 and 2 are lens sectional views at the wide-angle end of Numerical Embodiments 1 and 2 as the first invention, and FIG. 3 is a lens sectional view at the wide-angle end of Numerical Embodiment 3 as the second invention. 4 and 5 are lens cross-sectional views at the wide-angle end of Numerical Embodiments 4 and 5 as the third invention.
【0012】図6,図7,図8は数値実施例1の広角
端,中間,望遠端の収差図、図9,図10,図11は数
値実施例2の広角端,中間,望遠端の収差図、図12,
図13,図14は数値実施例3の広角端,中間,望遠端
の収差図、図15,図16,図17は数値実施例4の広
角端,中間,望遠端の収差図、図18,図19,図20
は数値実施例5の広角端,中間,望遠端の収差図であ
る。FIGS. 6, 7, and 8 are aberration diagrams of the wide-angle end, the middle, and the telephoto end of Numerical Embodiment 1, and FIGS. 9, 10 and 11 show the wide-angle end, the middle, and the telephoto end of Numerical Embodiment 2. Aberration diagram, FIG.
FIGS. 13 and 14 are aberration diagrams at the wide-angle end, the middle, and the telephoto end of Numerical Example 3, and FIGS. 15, 16 and 17 are aberration diagrams at the wide-angle end, the middle, and the telephoto end of Numerical Example 4, and FIG. 19 and 20
[Fig. 4] is an aberration diagram at a wide-angle end, a middle end, and a telephoto end of Numerical Example 5.
【0013】図1〜図5のレンズ断面図においてL1は
負の屈折力の第1群、L2は正の屈折力の第2群であ
る。第1群L1は最も広い空気間隔(レンズ群間隔)を
境にして第11群L11と第12群L12の2つのレン
ズ群より成っている。又同様に第2群L2は最も広い空
気間隔を境にして第21群L21と第22群L22の2
つのレンズ群より成っている。Sはスクリーン面(投影
面)、Pは液晶表示素子やカラー液晶等の原画像(被投
影面)である。SPは絞り、LPは固定絞りである。In the lens sectional views of FIGS. 1 to 5, L1 is a first lens unit having a negative refractive power, and L2 is a second lens unit having a positive refractive power. The first lens unit L1 is composed of two lens units, that is, an eleventh lens unit L11 and a twelfth lens unit L12 with a widest air space (lens unit space) as a boundary. Similarly, the second group L2 is divided into the second group L21 and the second group L22 by the widest air gap.
It consists of two lens groups. S is a screen surface (projection surface), and P is an original image (projection surface) of a liquid crystal display element, a color liquid crystal or the like. SP is a diaphragm and LP is a fixed diaphragm.
【0014】スクリーン面Sと原画像Pとは共役関係に
あり、一般にはスクリーン面Sは距離の長い方の共役点
(第1共役点)に、原画像Pは距離の短い方の共役点
(第2共役点)に相当している。広角端から望遠端への
変倍は矢印で示すように第1群L1をスクリーン面S方
向へ、非直線的に移動させ又第2群L2をスクリーン面
S方向へ双方のレンズ群間隔が単調減少するように移動
させて行っている。The screen surface S and the original image P have a conjugate relationship. Generally, the screen surface S is at a conjugate point with a longer distance (first conjugate point), and the original image P is at a conjugate point with a shorter distance ( This corresponds to the second conjugate point). For zooming from the wide-angle end to the telephoto end, as shown by the arrow, the first lens unit L1 is moved non-linearly in the direction of the screen surface S, and the second lens unit L2 is moved in the direction of the screen surface S so that the distance between both lens groups is monotonous. We are moving to decrease.
【0015】図1,図2の第1発明では第11群L11
を該第1共役点側から順に該第1共役点側に凸面を向け
たメニスカス状の2つの負レンズL111,負レンズL
112,該第1共役点側に強い屈折面を持つ正レンズL
113、そして両レンズ面が凹面の負レンズL114の
4つのレンズより構成している。In the first invention of FIGS. 1 and 2, the eleventh group L11
Are two meniscus-shaped negative lenses L111 and L having convex surfaces facing the first conjugate point side in order from the first conjugate point side.
112, a positive lens L having a strong refractive surface on the side of the first conjugate point
113 and four negative lenses L114 each having a concave lens surface.
【0016】又、図3の第2発明では第11群L11を
該第1共役点側から順に該第1共役点側に凸面を向けた
メニスカス状の負レンズL111,該第1共役点側に凸
面を向けたメニスカス状の正レンズL112,該第1共
役点側に凸面を向けたメニスカス状の負レンズL11
3,該第1共役点側に強い屈折面を持つ正レンズL11
4、そして両レンズ面が凹面の負レンズL115の5つ
のレンズより構成している。In the second aspect of the invention shown in FIG. 3, the meniscus negative lens L111 having a convex surface facing the first conjugate point side of the eleventh group L11 is arranged in this order from the first conjugate point side to the first conjugate point side. A positive meniscus lens L112 having a convex surface, and a negative meniscus lens L11 having a convex surface on the side of the first conjugate point.
3, a positive lens L11 having a strong refractive surface on the side of the first conjugate point
4 and five negative lenses L115 each having a concave lens surface.
【0017】又、図4,図5の第3発明では第11群L
11を該第1共役点側から順に両レンズ面が凸面の正レ
ンズL111,該第1共役点側に凸面を向けたメニスカ
ス状の負レンズL112,そして該第1共役点側に強い
屈折面を持つ正レンズL113の3つのレンズより構成
している。In the third invention of FIGS. 4 and 5, the eleventh lens unit L
11 is a positive lens L111 whose lens surfaces are convex in order from the first conjugate point side, a meniscus negative lens L112 having a convex surface facing the first conjugate point side, and a strong refracting surface on the first conjugate point side. The positive lens L113 has three lenses.
【0018】これにより所定のバックフォーカスを確保
しつつ全変倍範囲にわたり、負レンズ群より発生する糸
巻き型の歪曲収差及びその他の諸収差を良好に補正して
いる。As a result, the pin-cushion distortion aberration and other various aberrations generated by the negative lens group are satisfactorily corrected over the entire zoom range while ensuring a predetermined back focus.
【0019】そして図1,図2の第1発明、そして図3
の第2発明では第12群を第1共役点側から順に両レン
ズ面が凹面の負レンズL121と両レンズ面が凸面の正
レンズL122の2つのレンズより構成している。The first invention of FIGS. 1 and 2, and FIG.
In the second invention, the twelfth lens group is composed of two lenses, in order from the first conjugate point side, a negative lens L121 having both concave lens surfaces and a positive lens L122 having both convex lens surfaces.
【0020】特に負レンズL121と正レンズL122
にアッベ数の異なる材質を用いている。又図4,図5の
第3発明では第12群を第1共役点側から順に距離の短
い方の第2共役点側に強い屈折面を持つ負レンズL12
1,第1共役点側に強い屈折面を持つ負レンズL12
2、そして第1共役点側に強い屈折面を持つ正レンズL
123の3つのレンズより構成している。特に負レンズ
に正レンズの材質のアッベ数よりも大きいアッベ数の材
質を用いている。これにより、変倍に伴う倍率色収差や
軸上色収差等の諸収差の変動を良好に補正し、全変倍範
囲にわたり高い光学性能を確保している。In particular, the negative lens L121 and the positive lens L122
Are made of materials with different Abbe numbers. In the third invention of FIGS. 4 and 5, the twelfth lens unit has a negative lens L12 having a strong refracting surface on the second conjugate point side, which is the shorter distance from the first conjugate point side.
1, a negative lens L12 having a strong refractive surface on the first conjugate point side
2, and a positive lens L having a strong refracting surface on the first conjugate point side
It is composed of three lenses 123. In particular, a material having an Abbe number larger than that of the material of the positive lens is used for the negative lens. This satisfactorily corrects variations in various aberrations such as lateral chromatic aberration and longitudinal chromatic aberration that accompany zooming, and ensures high optical performance over the entire zoom range.
【0021】第1,第2,第3発明において、第11群
中の負レンズ面に非球面がある場合、レンズ中心からレ
ンズ周辺にいくに従い、負の屈折力が弱くなる形状の非
球面を用いて、第11群の正レンズ面に非球面がある場
合、レンズ中心からレンズ周辺にいくに従い正の屈折力
が強くなる非球面を用いて歪曲収差を良好に補正してい
る。又第2群中の正レンズに非球面がある場合、レンズ
中心からレンズ周辺にいくに従い、正の屈折力が弱くな
る形状の非球面を用いて第2群中に負レンズに非球面が
ある場合、負の屈折力がレンズ中心から周辺にいくに従
い強くなる形状の非球面を用いて球面収差を良好に補正
している。In the first, second and third inventions, when the negative lens surface in the eleventh group has an aspherical surface, an aspherical surface having a shape in which the negative refractive power becomes weaker from the lens center to the lens periphery is used. In the case where the positive lens surface of the 11th group has an aspherical surface, distortion is satisfactorily corrected by using an aspherical surface in which the positive refractive power increases from the lens center to the lens periphery. Further, when the positive lens in the second group has an aspherical surface, the negative lens in the second group has an aspherical surface using an aspherical surface whose positive refractive power becomes weaker from the lens center to the lens periphery. In this case, the spherical aberration is satisfactorily corrected by using an aspherical surface having a shape in which the negative refracting power becomes stronger from the lens center toward the periphery.
【0022】本発明の目的とするズームレンズは、以上
の諸条件を満足することにより達成されるが、更に画面
全体の光学性能を良好に保つ為には次の条件のうち少な
くとも1つを満足させるのが良い。The zoom lens aimed at by the present invention can be achieved by satisfying the above-mentioned various conditions, but in order to keep the optical performance of the entire screen good, at least one of the following conditions is satisfied. It is good to let
【0023】(イ)第11群と第2群は各々少なくとも
1つの非球面を有していることである。特に、このよう
に軸外主光線の入射高の高いレンズ面に非球面を施すこ
とにより全変倍範囲にわたり歪曲収差を効果的に補正し
ている。(B) The eleventh lens group and the second lens group each have at least one aspherical surface. In particular, by providing an aspherical surface on the lens surface where the incident height of the off-axis chief ray is high in this way, distortion is effectively corrected over the entire zoom range.
【0024】(ロ)第22群は正屈折力のレンズ面に非
球面がある場合、レンズ中心からレンズ周辺にいくに従
い、正の屈折力が弱くなる形状の非球面を有し、負屈折
力のレンズ面に非球面がある場合、レンズ中心からレン
ズ周辺にいくに従い負屈折力が強くなる形状の非球面を
有していることである。これにより、全変倍範囲にわた
り歪曲収差及びその他の諸収差を良好に補正している。(B) When the lens surface having positive refracting power has an aspherical surface, the 22nd group has an aspherical surface having a shape in which the positive refracting power becomes weaker from the lens center to the lens periphery, and has a negative refracting power. If the lens surface has an aspherical surface, it means that the lens surface has an aspherical surface in which the negative refracting power becomes stronger from the lens center to the lens periphery. As a result, distortion and various other aberrations are well corrected over the entire zoom range.
【0025】(ハ)第21群は第1共役点側から順に正
レンズL211,距離の短い方の第2共役点側に凸面を
向けたメニスカス状の負レンズL212、そして正レン
ズL213の3つのレンズより成っていることである。
これにより、主に球面収差とコマ収差をバランス良く補
正している。(C) The twenty-first lens unit includes three lenses, in order from the first conjugate point side, a positive lens L211, a meniscus negative lens L212 having a convex surface facing the second conjugate point side having a shorter distance, and a positive lens L213. It consists of a lens.
As a result, spherical aberration and coma are mainly corrected in good balance.
【0026】(ニ)図1,図2の第1発明と図3の第2
発明では、第22群は第1共役点側から順に両レンズ面
が凹面の負レンズL221,両レンズ面が凸面の正レン
ズL222,第1共役点側に強い屈折面を持つ負レンズ
L223,距離の短い方の第2共役点側に強い屈折面を
持つ正レンズL224、そして両レンズ面が凸面の正レ
ンズL225の5つのレンズより構成することである。
これにより、主に球面収差とコマ収差を良好に補正して
いる。(D) The first invention of FIGS. 1 and 2 and the second invention of FIG.
In the invention, in the 22nd group, in order from the first conjugate point side, the negative lens L221 having both concave lens surfaces, the positive lens L222 having both convex lens surfaces, and the negative lens L223 having a strong refractive surface on the first conjugate point side Is a positive lens L224 having a strong refracting surface on the side of the second conjugate point which is shorter, and a positive lens L225 having both convex lens surfaces.
Thereby, the spherical aberration and the coma aberration are mainly corrected well.
【0027】(ホ)図4,図5の第3発明では、第22
群は第1共役点側から順に両レンズ面が凹面の負レンズ
L221,両レンズ面が凸面の正レンズL222,第1
共役点側に凸面を向けたメニスカス状の負レンズL22
3,距離の短い方の第2共役点側に強い屈折面を持つ2
つの正レンズL224,L225の5つのレンズより構
成することである。これにより、主に球面収差とコマ収
差を良好に補正している。(E) In the third invention of FIGS. 4 and 5, the 22nd invention
The group includes, in order from the first conjugate point side, a negative lens L221 having both concave lens surfaces, a positive lens L222 having both convex lens surfaces, and a first lens element L222.
A meniscus negative lens L22 having a convex surface on the conjugate point side
3, with a strong refracting surface on the second conjugate point side of the shorter distance 2
It is configured by five positive lenses L224 and L225. Thereby, the spherical aberration and the coma aberration are mainly corrected well.
【0028】(ヘ)第1共役点が無限遠のときの広角端
における該第2群の最終レンズ面から距離の短い方の第
2共役点までの距離をbfw、広角端における全系の焦
点距離をfw、該第1群と第2群の焦点距離を各々f
1,f2、広角端における該第1群と第2群の主点間隔
をewとしたとき 1.2<bfw/fw ‥‥‥(1) 0.3<−f1/f2<1.5 ‥‥‥(2) 0.3<−f1/fw<2 ‥‥‥(3) 0.5<f2/fw<1.8 ‥‥‥(4) 0.3<ew/fw<2 ‥‥‥(5) なる条件を満足することである。(F) The distance from the final lens surface of the second lens unit at the wide-angle end to the second conjugate point having the shorter distance at the wide-angle end when the first conjugate point is infinity is bfw, and the focal point of the entire system at the wide-angle end. The distance is fw, and the focal lengths of the first and second groups are f and f, respectively.
1, f2, where ew is the principal point distance between the first and second groups at the wide-angle end 1.2 <bfw / fw (1) 0.3 <-f1 / f2 <1.5 (2) 0.3 <-f1 / fw <2 (3) 0.5 <f2 / fw <1.8 (4) 0.3 <ew / fw <2 (5) To satisfy the following condition.
【0029】条件式(1)は広角端(短焦点端)のバッ
クフォーカスと広角端の全系の焦点距離の比について限
定したものである。条件式(1)の下限値を越える領域
ではバックフォースが短くなりすぎ、三色の液晶表示素
子から成る原画像を合成する為のダイクロイックミラー
等が入るスペースがなくなるため良くない。Conditional expression (1) limits the ratio between the back focus at the wide-angle end (short focal end) and the focal length of the entire system at the wide-angle end. In a region where the lower limit of conditional expression (1) is exceeded, the back force becomes too short, and there is no space for a dichroic mirror or the like for synthesizing original images composed of three-color liquid crystal display elements, which is not preferable.
【0030】条件式(2)は第1群と第2群の焦点距離
の比について限定したものである。条件式(2)の下限
値を越える領域では第1群の屈折力(パワー)が強くな
りすぎるため、像面湾曲がオーバーに、又歪曲収差がア
ンダーになってくる。又条件式(2)の上限値を越える
領域では第1群の焦点距離が長くなりすぎ、それにより
全系の焦点距離も長くなるので大きな投射像を得るため
の投射距離が長くなってしまうので良くない。Conditional expression (2) limits the ratio of the focal lengths of the first lens unit and the second lens unit. In a region where the lower limit of conditional expression (2) is exceeded, the refracting power (power) of the first group becomes too strong, so that the curvature of field becomes excessive and the distortion becomes under. Further, in the area exceeding the upper limit of the conditional expression (2), the focal length of the first lens unit becomes too long, and the focal length of the entire system also becomes long, so that the projection distance for obtaining a large projected image becomes long. Not good.
【0031】条件式(3)は第1群の焦点距離と広角端
の全系の焦点距離の比について限定したものである。条
件式(3)の下限値を越える領域では像面湾曲がオーバ
ーになり、又条件式(3)の上限値を越える領域では像
面湾曲がアンダーとなり良くない。Conditional expression (3) limits the ratio of the focal length of the first lens unit to the focal length of the entire system at the wide-angle end. The field curvature becomes excessive in a region exceeding the lower limit of the conditional expression (3), and the field curvature becomes under in a region exceeding the upper limit of the conditional expression (3), which is not good.
【0032】条件式(4)は第2群の焦点距離と広角端
の全系の焦点距離の比について限定したもので、条件式
(4)の下限値を越える領域では第2群の焦点距離が短
くなりすぎるためバックフォーカスが短くなり、又条件
式(4)の上限値を越える領域では第2群の焦点距離が
長くなりすぎるため、レンズ全長が大きくなってしまう
ため良くない。Conditional expression (4) limits the ratio of the focal length of the second lens group to the focal length of the entire system at the wide-angle end. In the region where the lower limit of conditional expression (4) is exceeded, the focal length of the second lens group is reduced. Is too short, the back focus becomes short, and in the region exceeding the upper limit of conditional expression (4), the focal length of the second lens unit becomes too long, which is not preferable because the total lens length becomes large.
【0033】条件式(5)は広角端の第1群と第2群の
主点間隔と広角端の全系の焦点距離の比について限定し
たものである。条件式(5)の下限値を越える領域では
変倍比が大きくとれず、又条件式(5)の上限値を越え
る領域ではレンズ全長が大きくなってしまうので良くな
い。Conditional expression (5) limits the ratio of the principal point distance between the first and second lens units at the wide-angle end and the focal length of the entire system at the wide-angle end. In the region where the lower limit of conditional expression (5) is exceeded, the zoom ratio cannot be large, and in the region where the upper limit of conditional expression (5) is exceeded, the total lens length becomes large, which is not good.
【0034】尚本発明において収差補正上、更に好まし
くは条件式(1)〜(5)の数値限定を次の如く設定す
るのが良い。In the present invention, in terms of aberration correction, it is more preferable to set the numerical limits of conditional expressions (1) to (5) as follows.
【0035】 1.6<bfw/fw ‥‥‥(1a) 0.45<−f1/f2<1.2 ‥‥‥(2a) 0.5<−f1/fw<1.5 ‥‥‥(3a) 0.7<f2/fw<1.5 ‥‥‥(4a) 0.7<ew/fw<1.6 ‥‥‥(5a) (ト)前記第11群中の負レンズと正レンズの材質のア
ッベ数の平均値を各々ν11N,ν11P、前記第12
群中の負レンズと正レンズの材質のアッベ数の平均値を
各々ν12N,ν12Pとしたとき −15<ν11N−ν11P<15 ‥‥‥(6) 15<ν12N−ν12P<40 ‥‥‥(7) なる条件を満足することである。1.6 <bfw / fw (1a) 0.45 <-f1 / f2 <1.2 (2a) 0.5 <-f1 / fw <1.5 ((a)) 3a) 0.7 <f2 / fw <1.5 (4a) 0.7 <ew / fw <1.6 (5a) (g) Negative lens and positive lens in the 11th group The average values of the Abbe numbers of the materials are ν11N, ν11P,
When the average values of the Abbe numbers of the materials of the negative lens and the positive lens in the group are ν12N and ν12P, respectively, -15 <ν11N-ν11P <15 (6) 15 <ν12N-ν12P <40 (7) ) To satisfy the following condition.
【0036】条件式(6),(7)は主に倍率色収差を
良好に補正する為のものである。条件式(6)の下限値
を越える領域では、倍率色収差がアンダーとなり、又条
件式(6)の上限値を越える領域では軸外主光線の入射
高が高いところで、色消しを行うことになり、高次の倍
率色収差が多く発生してくるので良くない。The conditional expressions (6) and (7) are mainly for favorably correcting lateral chromatic aberration. In the area exceeding the lower limit of conditional expression (6), lateral chromatic aberration becomes under, and in the area exceeding the upper limit of conditional expression (6), achromatism is performed at a high incident height of the off-axis chief ray. However, this is not good because a lot of high-order chromatic aberration of magnification occurs.
【0037】条件式(7)の下限値を越える領域では倍
率色収差がアンダーとなり、又条件式(7)の上限値を
越える領域では倍率色収差がオーバーとなるので良くな
い。It is not preferable because the chromatic aberration of magnification becomes under in the range exceeding the lower limit value of the conditional expression (7), and the chromatic aberration of magnification becomes excessive in the range exceeding the upper limit value of the conditional expression (7).
【0038】尚、本発明において更に好ましくは条件式
(6),(7)の数値限定を次の如く設定するのが良
い。In the present invention, it is more preferable to set the numerical limits of conditional expressions (6) and (7) as follows.
【0039】 −12<ν11N−ν11P<10 ‥‥‥(6a) 18<ν12N−ν12P<32 ‥‥‥(7a) 次に本発明の数値実施例を示す。数値実施例においてR
iはスクリーン側より順に第i番目のレンズ面の曲率半
径、Diはスクリーン側より第i番目のレンズ厚及び空
気間隔、Niとνiは各々スクリーン側より順に第i番
目のレンズのガラスの屈折率とアッベ数である。又、前
述の各条件式と数値実施例における諸数値との関係を表
−1に示す。非球面形状は光軸方向にX軸、光軸と垂直
方向にH軸、光の進行方向を正とし、Rを近軸曲率半
径、K,A2 ,A3 ,A4 ,A5 ,A6 を各々非球面係
数としたとき-12 <ν11N-ν11P <10 (6a) 18 <ν12N-ν12P <32 (7a) Next, numerical examples of the present invention will be described. R in numerical examples
i is the radius of curvature of the i-th lens surface in order from the screen side, Di is the i-th lens thickness and air gap from the screen side, and Ni and νi are the refractive indices of the glass of the i-th lens in order from the screen side, respectively. And Abbe number. Table 1 shows the relationship between the above-mentioned conditional expressions and various numerical values in the numerical examples. The aspherical shape has an X axis in the optical axis direction, an H axis in the direction perpendicular to the optical axis, and a light traveling direction is positive, and R is a paraxial radius of curvature, K, A 2 , A 3 , A 4 , A 5 , A. When 6 is the aspherical coefficient,
【0040】[0040]
【数1】 なる式で表わしている。又、「D−0X」は「10-X」
を意味している。[Equation 1] It is represented by the following equation. Also, "D-0X" is "10 -X "
Means
【0041】 〈数値実施例1〉 f= 108.80 fno=1:3.6〜4.5 2ω= 45°〜30.8° R 1= 71.79 D 1= 5.00 N 1=1.51633 ν 1= 64.2 R 2= 49.50 D 2= 20.57 R 3= 94.29 D 3= 3.70 N 2=1.51633 ν 2= 64.2 R 4= 53.24 D 4= 5.20 R 5= 51.82 D 5= 8.10 N 3=1.51633 ν 3= 64.2 R 6= 156.15 D 6= 3.15 R 7= -566.78 D 7= 2.35 N 4=1.51633 ν 4= 64.2 R 8= 114.71 D 8= 28.86 R 9= -44.22 D 9= 2.30 N 5=1.60311 ν 5= 60.7 R10= 130.11 D10= 0.27 R11= 147.84 D11= 6.70 N 6=1.83400 ν 6= 37.2 R12= -129.68 D12= 可変 R13= 2232.65 D13= 5.25 N 7=1.51633 ν 7= 64.2 R14= -156.23 D14= 4.53 R15= -54.55 D15= 2.70 N 8=1.62299 ν 8= 58.2 R16= -74.79 D16= 0.20 R17= 74.79 D17= 12.40 N 9=1.48749 ν 9= 70.2 R18= -118.72 D18= 18.44 R19= -104.94 D19= 2.30 N10=1.78590 ν10= 44.2 R20= 142.25 D20= 1.21 R21= 253.00 D21= 9.50 N11=1.48749 ν11= 70.2 R22= -66.51 D22= 3.39 R23= -58.58 D23= 2.90 N12=1.78590 ν12= 44.2 R24= -158.79 D24= 0.20 R25= 774.64 D25= 8.70 N13=1.49700 ν13= 81.6 R26= -81.74 D26= 0.20 R27= 800.46 D27= 7.05 N14=1.48749 ν14= 70.2 R28= -110.00 D28= 可変 R29=固定絞り \焦点距離 108.80 136.10 163.40 可変間隔\ D12 27.91 13.18 3.37 D28 0.00 34.39 68.79 非球面R1面 R= 7.179 D+01 K= 8.253 D-01 A2= 2.505 D-07 A3= 4.381 D-12 A4= 8.135 D-14 A5=-4.999 D-17 A6= 1.856 D-20 非球面R28面 R=-1.100 D+02 K=-6.804 D-01 A2= 5.320 D-07 A3= 2.211 D-10 A4=-2.379 D-13 A5= 1.987 D-16 A6=-5.833 D-20 〈数値実施例2〉 f= 108.61 fno=1:3.6〜4.5 2ω= 45°〜30.8° R 1= 67.00 D 1= 5.00 N 1=1.51633 ν 1= 64.2 R 2= 47.64 D 2= 12.65 R 3= 91.73 D 3= 3.70 N 2=1.51633 ν 2= 64.2 R 4= 68.01 D 4= 8.77 R 5= 55.84 D 5= 7.68 N 3=1.51633 ν 3= 64.2 R 6= 128.14 D 6= 4.24 R 7= -537.03 D 7= 2.00 N 4=1.51633 ν 4= 64.2 R 8= 91.96 D 8= 34.82 R 9= -42.11 D 9= 2.30 N 5=1.60311 ν 5= 60.7 R10= 142.93 D10= 0.28 R11= 162.10 D11= 6.69 N 6=1.83400 ν 6= 37.2 R12= -119.41 D12= 可変 R13=(絞り) D13= 0.00 R14= 1113.64 D14= 6.36 N 7=1.51633 ν 7= 64.2 R15= -127.45 D15= 3.86 R16= -56.05 D16= 2.70 N 8=1.72000 ν 8= 50.3 R17= -81.29 D17= 0.19 R18= 75.45 D18= 12.47 N 9=1.51633 ν 9= 64.2 R19= -121.02 D19= 15.51 R20= -143.50 D20= 2.69 N10=1.78590 ν10= 44.2 R21= 124.51 D21= 1.73 R22= 283.43 D22= 9.09 N11=1.48749 ν11= 70.2 R23= -68.97 D23= 4.03 R24= -55.56 D24= 2.90 N12=1.80610 ν12= 41.0 R25= -173.15 D25= 0.20 R26= 1334.20 D26= 9.03 N13=1.48749 ν13= 70.2 R27= -75.61 D27= 0.20 R28= 837.60 D28= 7.38 N14=1.48749 ν14= 70.2 R29= -104.92 D29= 可変 R30=固定絞り \焦点距離 108.61 135.76 162.92 可変間隔\ D12 27.16 13.01 3.57 D29 0.00 34.45 68.90 非球面R1面 R= 6.700 D+01 K= 8.503 D-01 A2= 1.912 D-07 A3=-3.255 D-14 A4= 6.410 D-14 A5=-4.410 D-17 A6= 1.665 D-20 非球面R29面 R=-1.049 D+02 K=-2.264 D-01 A2= 5.806 D-07 A3= 2.177 D-10 A4=-1.886 D-13 A5= 1.482 D-16 A6=-3.475 D-20 〈数値実施例3〉 f= 107.98 fno=1:3.6〜4.5 2ω= 45.2°〜31° R 1= 64.45 D 1= 5.00 N 1=1.60311 ν 1= 60.7 R 2= 45.98 D 2= 5.56 R 3= 52.55 D 3= 5.84 N 2=1.51633 ν 2= 64.2 R 4= 68.69 D 4= 2.99 R 5= 96.15 D 5= 3.50 N 3=1.60311 ν 3= 60.7 R 6= 47.69 D 6= 11.78 R 7= 50.20 D 7= 8.00 N 4=1.51633 ν 4= 64.2 R 8= 169.18 D 8= 4.28 R 9= -335.38 D 9= 2.00 N 5=1.60311 ν 5= 60.7 R10= 134.11 D10= 26.27 R11= -43.63 D11= 2.00 N 6=1.60311 ν 6= 60.7 R12= 145.86 D12= 1.94 R13= 200.15 D13= 6.68 N 7=1.83400 ν 7= 37.2 R14= -118.67 D14= 可変 R15=(絞り) D15= 0.54 R16= 342.95 D16= 4.70 N 8=1.51633 ν 8= 64.2 R17= -166.09 D17= 5.76 R18= -58.80 D18= 2.50 N 9=1.77250 ν 9= 49.6 R19= -82.90 D19= 0.12 R20= 77.27 D20= 10.76 N10=1.51633 ν10= 64.2 R21= -117.30 D21= 17.65 R22= -119.91 D22= 2.33 N11=1.78590 ν11= 44.2 R23= 135.29 D23= 3.13 R24= 306.18 D24= 7.63 N12=1.48749 ν12= 70.2 R25= -76.20 D25= 3.46 R26= -59.14 D26= 2.80 N13=1.80610 ν13= 41.0 R27= -211.59 D27= 0.20 R28= 2391.07 D28= 7.89 N14=1.48749 ν14= 70.2 R29= -69.64 D29= 0.20 R30= 342.89 D30= 6.50 N15=1.48749 ν15= 70.2 R31= -110.00 D31= 可変 R32=固定絞り \焦点距離 107.98 134.98 161.97 可変間隔\ D14 27.57 12.72 2.83 D31 0.00 32.94 65.88 非球面R1面 R= 6.445 D+01 K= 7.311 D-01 A2= 1.539 D-07 A3= 3.127 D-11 A4= 2.531 D-14 A5=-2.369 D-17 A6= 1.169 D-20 非球面R31面 R=-1.100 D+02 K=-5.454 D-01 A2= 6.294 D-07 A3= 1.650 D-10 A4=-1.052 D-13 A5= 8.892 D-17 A6=-2.415 D-20 〈数値実施例4〉 f= 109.15 fno=1:3.6〜4.5 2ω= 44.8°〜30.8° R 1= 536.79 D 1= 5.12 N 1=1.51633 ν 1= 64.2 R 2=-1536.51 D 2= 0.20 R 3= 117.25 D 3= 4.50 N 2=1.60311 ν 2= 60.7 R 4= 61.61 D 4= 5.95 R 5= 90.81 D 5= 13.18 N 3=1.51633 ν 3= 64.2 R 6= -427.89 D 6= 16.68 R 7= 207.06 D 7= 3.00 N 4=1.60311 ν 4= 60.7 R 8= 36.39 D 8= 13.51 R 9= -59.95 D 9= 2.80 N 5=1.60311 ν 5= 60.7 R10= 320.32 D10= 0.20 R11= 83.62 D11= 4.96 N 6=1.83400 ν 6= 37.2 R12= 2522.71 D12= 可変 R13=(絞り) D13= 4.30 R14= 273.13 D14= 5.46 N 7=1.69680 ν 7= 55.5 R15= -202.55 D15= 3.87 R16= -59.08 D16= 3.00 N 8=1.78590 ν 8= 44.2 R17= -75.05 D17= 0.52 R18= 114.91 D18= 5.53 N 9=1.51823 ν 9= 59.0 R19= -436.85 D19= 15.77 R20= -161.36 D20= 2.97 N10=1.80610 ν10= 41.0 R21= 109.11 D21= 2.02 R22= 106.68 D22= 8.62 N11=1.49700 ν11= 81.6 R23= -133.59 D23= 0.20 R24= 287.05 D24= 2.97 N12=1.83400 ν12= 37.2 R25= 128.21 D25= 3.40 R26=-3067.63 D26= 5.65 N13=1.51633 ν13= 64.2 R27= -93.98 D27= 0.13 R28= -845.75 D28= 5.64 N14=1.51633 ν14= 64.2 R29= -102.21 D29= 可変 R30=固定絞り \焦点距離 109.16 136.45 163.74 可変間隔\ D12 43.99 15.58 26.95 D29 0.00 57.59 28.79 非球面R5面 R= 9.081 D+01 K=-9.936 D-02 A2= 8.342 D-09 A3=-1.715 D-11 A4=-1.296 D-15 A5=-3.102 D-19 非球面R18面 R= 1.149 D+02 K=-2.984 D+00 A2= 8.658 D-08 A3= 1.153 D-11 A4= 4.377 D-15 A5=-3.353 D-18 〈数値実施例5〉 f= 108.72 fno=1:3.6〜4.5 2ω= 45°〜30.8° R 1= 310.26 D 1= 6.23 N 1=1.51633 ν 1= 64.2 R 2=-5026.20 D 2= 0.20 R 3= 104.05 D 3= 4.50 N 2=1.60311 ν 2= 60.7 R 4= 54.60 D 4= 9.02 R 5= 107.96 D 5= 10.58 N 3=1.51633 ν 3= 64.2 R 6= -477.51 D 6= 18.50 R 7= 193.30 D 7= 3.00 N 4=1.60311 ν 4= 60.7 R 8= 38.86 D 8= 11.63 R 9= -61.77 D 9= 2.80 N 5=1.60311 ν 5= 60.7 R10= 223.90 D10= 0.20 R11= 82.79 D11= 5.11 N 6=1.83400 ν 6= 37.2 R12=-3717.41 D12= 可変 R13=(絞り) D13= 4.11 R14= 284.69 D14= 5.74 N 7=1.69680 ν 7= 55.5 R15= -165.89 D15= 3.47 R16= -59.23 D16= 3.00 N 8=1.78590 ν 8= 44.2 R17= -80.13 D17= 0.52 R18= 117.58 D18= 5.56 N 9=1.51823 ν 9= 59.0 R19= -445.97 D19= 16.97 R20= -161.61 D20= 2.97 N10=1.80610 ν10= 41.0 R21= 104.10 D21= 2.12 R22= 107.88 D22= 7.81 N11=1.49700 ν11= 81.6 R23= -140.97 D23= 0.20 R24= 276.79 D24= 2.97 N12=1.83400 ν12= 37.2 R25= 131.43 D25= 2.66 R26= 1419.51 D26= 5.87 N13=1.51633 ν13= 64.2 R27= -97.28 D27= 0.16 R28=-1325.52 D28= 5.80 N14=1.51633 ν14= 64.2 R29= -104.08 D29= 可変 R30=固定絞り \焦点距離 108.73 135.91 163.09 可変間隔\ D12 42.38 25.53 14.30 D29 0.00 28.95 57.91Numerical Example 1 f = 108.80 fno = 1: 3.6 to 4.5 2ω = 45 ° to 30.8 ° R 1 = 71.79 D 1 = 5.00 N 1 = 1.51633 ν 1 = 64.2 R 2 = 49.50 D 2 = 20.57 R 3 = 94.29 D 3 = 3.70 N 2 = 1.51633 ν 2 = 64.2 R 4 = 53.24 D 4 = 5.20 R 5 = 51.82 D 5 = 8.10 N 3 = 1.51633 ν 3 = 64.2 R 6 = 156.15 D 6 = 3.15 R 7 = -566.78 D 7 = 2.35 N 4 = 1.51633 ν 4 = 64.2 R 8 = 114.71 D 8 = 28.86 R 9 = -44.22 D 9 = 2.30 N 5 = 1.60311 ν 5 = 60.7 R10 = 130.11 D10 = 0.27 R11 = 147.84 D11 = 6.70 N 6 = 1.83400 ν 6 = 37.2 R12 = -129.68 D12 = Variable R13 = 2232.65 D13 = 5.25 N 7 = 1.51633 ν 7 = 64.2 R14 = -156.23 D14 = 4.53 R15 = -54.55 D15 = 2.70 N 8 = 1.62299 ν 8 = 58.2 R16 = -74.79 D16 = 0.20 R17 = 74.79 D17 = 12.40 N 9 = 1.48749 ν 9 = 70.2 R18 = -118.72 D18 = 18.44 R19 = -104.94 D19 = 2.30 N10 = 1.78590 ν10 = 44.2 R20 = 142.25 D20 = 1.21 R21 = 253.00 D21 = 9.50 N11 = 1.48749 ν11 = 70.2 R22 = -66.51 D22 = 3.39 R23 = -58.58 D23 = 2.90 N12 = 1.78590 ν12 = 44.2 R24 = -158.79 D24 = 0.20 R25 = 774.64 D25 = 8.70 N13 = 1.49700 ν13 = 81.6 R26 = -81.74 D26 = 0.20 R27 = 800.46 D27 = 7.05 N14 = 1.48749 ν14 = 70.2 R28 = -110.00 D28 = Variable R29 = Fixed Aperture \ Focal length 108.80 136.10 163.40 Variable spacing \ D12 27.91 13.18 3.37 D28 0.00 34.39 68.79 Aspheric R1 surface R = 7.179 D + 01 K = 8.253 D-01 A 2 = 2.505 D-07 A 3 = 4.381 D-12 A 4 = 8.135 D-14 A 5 = -4.999 D-17 A 6 = 1.856 D-20 Aspherical R28 surface R = -1.100 D + 02 K = -6.804 D- 01 A 2 = 5.320 D-07 A 3 = 2.211 D-10 A 4 = -2.379 D-13 A 5 = 1.987 D-16 A 6 = -5.833 D-20 <Numerical Example 2> f = 108.61 fno = 1 : 3.6 to 4.5 2 ω = 45 ° to 30.8 ° R 1 = 67.00 D 1 = 5.00 N 1 = 1.51633 ν 1 = 64.2 R 2 = 47.64 D 2 = 12.65 R 3 = 91.73 D 3 = 3.70 N 2 = 1.51633 ν 2 = 64.2 R 4 = 68.01 D 4 = 8.77 R 5 = 55.84 D 5 = 7.68 N 3 = 1.51633 ν 3 = 64.2 R 6 = 128.14 D 6 = 4.24 R 7 = -537.03 D 7 = 2.00 N 4 = 1.51633 ν 4 = 64.2 R 8 = 91.96 D 8 = 34.82 R 9 = -42.11 D 9 = 2.30 N 5 = 1.60311 ν 5 = 60.7 R10 = 142.93 D10 = 0.28 R11 = 162.10 D11 = 6.69 N 6 = 1.83400 ν 6 = 37.2 R12 = -119.41 D12 = Variable R13 = (Aperture) D13 = 0.00 R14 = 1113.64 D14 = 6.36 N 7 = 1.51633 ν 7 = 64.2 R15 = -127.45 D15 = 3.86 R16 = -56.05 D16 = 2.7 0 N 8 = 1.72000 ν 8 = 50.3 R17 = -81.29 D17 = 0.19 R18 = 75.45 D18 = 12.47 N 9 = 1.51633 ν 9 = 64.2 R19 = -121.02 D19 = 15.51 R20 = -143.50 D20 = 2.69 N10 = 1.78590 ν10 = 44.2 R21 = 124.51 D21 = 1.73 R22 = 283.43 D22 = 9.09 N11 = 1.48749 ν11 = 70.2 R23 = -68.97 D23 = 4.03 R24 = -55.56 D24 = 2.90 N12 = 1.80610 ν12 = 41.0 R25 = -173.15 D25 = 0.20 R26 = 1334.20 D26 = 9.03 N13 = 1.48749 ν13 = 70.2 R27 = -75.61 D27 = 0.20 R28 = 837.60 D28 = 7.38 N14 = 1.48749 ν14 = 70.2 R29 = -104.92 D29 = Variable R30 = Fixed Aperture \ Focal Length 108.61 135.76 162.92 Variable Distance \ D12 27.16 13.01 3.57 D29 0.00 34.45 68.90 Aspheric surface R1 surface R = 6.700 D + 01 K = 8.503 D-01 A 2 = 1.912 D-07 A 3 = -3.255 D-14 A 4 = 6.410 D-14 A 5 = -4.410 D-17 A 6 = 1.665 D-20 Aspheric surface R 29 surface R = -1.049 D + 02 K = -2.264 D-01 A 2 = 5.806 D-07 A 3 = 2.177 D-10 A 4 = -1.886 D-13 A 5 = 1.482 D-16 A 6 = -3.475 D-20 <Numerical Example 3> f = 107.98 fno = 1: 3.6 to 4.5 2ω = 45.2 ° to 31 ° R 1 = 64.45 D 1 = 5.00 N 1 = 1.60311 ν 1 = 60.7 R 2 = 45.98 D 2 = 5.56 R 3 = 52.55 D 3 = 5.84 N 2 = 1.51633 ν 2 = 64.2 R 4 = 68.69 D 4 = 2.99 R 5 = 96.15 D 5 = 3.50 N 3 = 1.60311 ν 3 = 60.7 R 6 = 47.69 D 6 = 11.78 R 7 = 50.20 D 7 = 8.00 N 4 = 1.51633 ν 4 = 64.2 R 8 = 169.18 D 8 = 4.28 R 9 = -335.38 D 9 = 2.00 N 5 = 1.60311 ν 5 = 60.7 R10 = 134.11 D10 = 26.27 R11 = -43.63 D11 = 2.00 N 6 = 1.60311 ν 6 = 60.7 R12 = 145.86 D12 = 1.94 R13 = 200.15 D13 = 6.68 N 7 = 1.83400 ν 7 = 37.2 R14 = -118.67 D14 = Variable R15 = (Aperture) D15 = 0.54 R16 = 342.95 D16 = 4.70 N 8 = 1.51633 ν 8 = 64.2 R17 =- 166.09 D17 = 5.76 R18 = -58.80 D18 = 2.50 N 9 = 1.77250 ν 9 = 49.6 R19 = -82.90 D19 = 0.12 R20 = 77.27 D20 = 10.76 N10 = 1.51633 ν10 = 64.2 R21 = -117.30 D21 = 17.65 R22 = -119.91 D22 = 2.33 N11 = 1.78590 ν11 = 44.2 R23 = 135.29 D23 = 3.13 R24 = 306.18 D24 = 7.63 N12 = 1.48749 ν12 = 70.2 R25 = -76.20 D25 = 3.46 R26 = -59.14 D26 = 2.80 N13 = 1.80610 ν13 = 41.0 R27 = -211.59 D27 = 0.20 R28 = 2391.07 D28 = 7.89 N14 = 1.48749 ν14 = 70.2 R29 = -69.64 D29 = 0.20 R30 = 342.89 D30 = 6.50 N15 = 1.48749 ν15 = 70.2 R31 = -110.00 D31 = Variable R32 = Fixed Aperture \ Focal Length 107.98 134.98 161.97 Yes Interval \ D14 27.57 12.72 2.83 D31 0.00 32.94 65.88 aspherical surface R1 R = 6.445 D + 01 K = 7.311 D-01 A 2 = 1.539 D-07 A 3 = 3.127 D-11 A 4 = 2.531 D14 A 5 = -2.369 D-17 A 6 = 1.169 D-20 Aspherical R31 surface R = -1.100 D + 02 K = -5.454 D-01 A 2 = 6.294 D-07 A 3 = 1.650 D-10 A 4 = -1.052 D -13 A 5 = 8.892 D-17 A 6 = -2.415 D-20 <Numerical Example 4> f = 109.15 fno = 1: 3.6 to 4.5 2 ω = 44.8 ° to 30.8 ° R 1 = 536.79 D 1 = 5.12 N 1 = 1.51633 ν 1 = 64.2 R 2 = -1536.51 D 2 = 0.20 R 3 = 117.25 D 3 = 4.50 N 2 = 1.60311 ν 2 = 60.7 R 4 = 61.61 D 4 = 5.95 R 5 = 90.81 D 5 = 13.18 N 3 = 1.51633 ν 3 = 64.2 R 6 = -427.89 D 6 = 16.68 R 7 = 207.06 D 7 = 3.00 N 4 = 1.60311 ν 4 = 60.7 R 8 = 36.39 D 8 = 13.51 R 9 = -59.95 D 9 = 2.80 N 5 = 1.60311 ν 5 = 60.7 R10 = 320.32 D10 = 0.20 R11 = 83.62 D11 = 4.96 N 6 = 1.83400 ν 6 = 37.2 R12 = 2522.71 D12 = Variable R13 = (Aperture) D13 = 4.30 R14 = 273.13 D14 = 5.46 N 7 = 1.69680 ν 7 = 55.5 R15 = -202.55 D15 = 3.87 R16 = -59.08 D16 = 3.00 N 8 = 1.78590 ν 8 = 44.2 R17 = -75.05 D17 = 0.52 R18 = 114.91 D18 = 5.53 N 9 = 1.51823 ν 9 = 59. 0 R19 = -436.85 D19 = 15.77 R20 = -161.36 D20 = 2.97 N10 = 1.80610 ν10 = 41.0 R21 = 109.11 D21 = 2.02 R22 = 106.68 D22 = 8.62 N11 = 1.49700 ν11 = 81.6 R23 = -133.59 D23 = 0.20 R24 = 287.05 D24 = 2.97 N12 = 1.83400 ν12 = 37.2 R25 = 128.21 D25 = 3.40 R26 = -3067.63 D26 = 5.65 N13 = 1.51633 ν13 = 64.2 R27 = -93.98 D27 = 0.13 R28 = -845.75 D28 = 5.64 N14 = 1.51633 ν14 = 64.2 R29 =- 102.21 D29 = Variable R30 = Fixed Aperture \ focal length 109.16 136.45 163.74 Variable spacing \ D12 43.99 15.58 26.95 D29 0.00 57.59 28.79 Aspherical R5 surface R = 9.081 D + 01 K = -9.936 D-02 A 2 = 8.342 D-09 A 3 = -1.715 D-11 A 4 = -1.296 D-15 A 5 = -3.102 D-19 Aspheric surface R18 surface R = 1.149 D + 02 K = -2.984 D + 00 A 2 = 8.658 D-08 A 3 = 1.153 D-11 A 4 = 4.377 D-15 A 5 = -3.353 D-18 <Numerical Example 5> f = 108.72 fno = 1: 3.6 to 4.5 2 ω = 45 ° to 30.8 ° R 1 = 310.26 D 1 = 6.23 N 1 = 1.51633 ν 1 = 64.2 R 2 = -5026.20 D 2 = 0.20 R 3 = 104.05 D 3 = 4.50 N 2 = 1.60311 ν 2 = 60.7 R 4 = 54.60 D 4 = 9.02 R 5 = 107.96 D 5 = 10.58 N 3 = 1.51633 ν 3 = 64.2 R 6 = -477.51 D 6 = 18.50 R 7 = 193.30 D 7 = 3.00 N 4 = 1.60311 ν 4 = 60.7 R 8 = 38.86 D 8 = 11.63 R 9 = -61.77 D 9 = 2.80 N 5 = 1.60311 ν 5 = 60.7 R10 = 223.90 D10 = 0.20 R11 = 82.79 D11 = 5.11 N 6 = 1.83400 ν 6 = 37.2 R12 = -3717.41 D12 = Variable R13 = (Aperture) D13 = 4.11 R14 = 284.69 D14 = 5.74 N 7 = 1.69680 ν 7 = 55.5 R15 = -165.89 D15 = 3.47 R16 = -59.23 D16 = 3.00 N 8 = 1.78590 ν 8 = 44.2 R17 = -80.13 D17 = 0.52 R18 = 117.58 D18 = 5.56 N 9 = 1.51823 ν 9 = 59.0 R19 = -445.97 D19 = 16.97 R20 = -161.61 D20 = 2.97 N10 = 1.80610 ν10 = 41.0 R21 = 104.10 D21 = 2.12 R22 = 107.88 D22 = 7.81 N11 = 1.49700 ν11 = 81.6 R23 = -140.97 D23 = 0.20 R24 = 276.79 D24 = 2.97 N12 = 1.83400 ν12 = 37.2 R25 = 131.43 D25 = 2.66 R26 = 1419.51 D26 = 5.87 N13 = 1.51633 ν13 = 64.2 R27 = -97.28 D27 = 0.16 R28 = -1325.52 D28 = 5.80 N14 = 1.51633 ν14 = 64.2 R29 = -104.08 D29 = variable R30 = fixed aperture \ focal length 108.73 135.91 163.09 variable spacing \ D12 42.38 25.53 14.30 D29 0.00 28.95 57.91
【0042】[0042]
【表1】 [Table 1]
【0043】[0043]
【発明の効果】本発明によれば以上のように、全体とし
て2つのレンズ群より成り、各レンズ群のレンズ構成を
適切に設定することにより、投影画角が広く、且つ変倍
に伴う収差変動を良好に補正し、特に歪曲収差を良好に
補正し、全変倍範囲にわたり光学性能を良好に維持しつ
つ、長いバックフォーカスが容易に得られ、例えば液晶
プロジェクター用に好適なズームレンズを達成すること
ができる。As described above, according to the present invention, as a whole, it is composed of two lens groups, and by appropriately setting the lens configuration of each lens group, the projection angle of view is wide and the aberration associated with zooming is large. Achieves a zoom lens suitable for liquid crystal projectors, for example, by correcting fluctuations satisfactorily, especially by correcting distortion aberrations, and easily maintaining a long back focus while maintaining good optical performance over the entire zoom range. can do.
【図1】本発明の数値実施例1の広角端のレンズ断面図FIG. 1 is a sectional view of a lens at a wide angle end according to Numerical Embodiment 1 of the present invention.
【図2】本発明の数値実施例2の広角端のレンズ断面図FIG. 2 is a lens cross-sectional view at a wide-angle end according to Numerical Example 2 of the present invention.
【図3】本発明の数値実施例3の広角端のレンズ断面図FIG. 3 is a lens cross-sectional view at a wide-angle end according to Numerical Example 3 of the present invention.
【図4】本発明の数値実施例4の広角端のレンズ断面図FIG. 4 is a lens cross-sectional view at a wide-angle end according to Numerical Example 4 of the present invention.
【図5】本発明の数値実施例5の広角端のレンズ断面図FIG. 5 is a lens cross-sectional view at a wide-angle end according to Numerical Example 5 of the present invention.
【図6】本発明の数値実施例1の広角端の収差図FIG. 6 is an aberration diagram at a wide-angle end according to Numerical Example 1 of the present invention.
【図7】本発明の数値実施例1の中間の収差図FIG. 7 is an intermediate aberration diagram of Numerical Example 1 of the present invention.
【図8】本発明の数値実施例1の望遠端の収差図FIG. 8 is an aberration diagram at a telephoto end according to Numerical Example 1 of the present invention.
【図9】本発明の数値実施例2の広角端の収差図FIG. 9 is an aberration diagram at a wide-angle end according to Numerical Example 2 of the present invention.
【図10】本発明の数値実施例2の中間の収差図FIG. 10 is an intermediate aberration diagram of Numerical example 2 of the present invention.
【図11】本発明の数値実施例2の望遠端の収差図FIG. 11 is an aberration diagram at a telephoto end according to Numerical Example 2 of the present invention.
【図12】本発明の数値実施例3の広角端の収差図FIG. 12 is an aberration diagram at a wide-angle end according to Numerical Example 3 of the present invention.
【図13】本発明の数値実施例3の中間の収差図FIG. 13 is an intermediate aberration diagram of Numerical Example 3 of the present invention.
【図14】本発明の数値実施例3の望遠端の収差図FIG. 14 is an aberration diagram at a telephoto end according to Numerical Example 3 of the present invention.
【図15】本発明の数値実施例4の広角端の収差図FIG. 15 is an aberration diagram at a wide-angle end according to Numerical Example 4 of the present invention.
【図16】本発明の数値実施例4の中間の収差図FIG. 16 is an intermediate aberration diagram of Numerical example 4 of the present invention.
【図17】本発明の数値実施例4の望遠端の収差図FIG. 17 is an aberration diagram at a telephoto end according to Numerical Example 4 of the present invention.
【図18】本発明の数値実施例5の広角端の収差図FIG. 18 is an aberration diagram at a wide-angle end according to Numerical Example 5 of the present invention.
【図19】本発明の数値実施例5の中間の収差図FIG. 19 is an intermediate aberration diagram of Numerical Example 5 of the present invention.
【図20】本発明の数値実施例5の望遠端の収差図FIG. 20 is an aberration diagram at a telephoto end according to Numerical Example 5 of the present invention.
【図21】投影レンズに歪曲収差があるときの投影画像
のズレの説明図FIG. 21 is an explanatory diagram of deviation of a projected image when the projection lens has distortion.
L1 第1群 L2 第2群 L21 第21群 L22 第22群 S スクリーン P 原画像 S サジタル像面 M メリディオナル像面 d d線 F F線 C C線 S.C 正弦条件 L1 1st group L2 2nd group L21 21st group L22 22nd group S screen P original image S sagittal image surface M meridional image surface d d line FF line C C line C sine condition
Claims (13)
の屈折力の第1群と正の屈折力の第2群の2つのレンズ
群を有し、広角端から望遠端への変倍を双方のレンズ群
間隔が単調に減少するように双方のレンズ群を移動させ
て行い、該第1群は最も大きなレンズ間隔を境にして第
11群と第12群の2つのレンズ群より成り、該第2群
は最も長いレンズ間隔を境にして第21群と第22群の
2つのレンズ群より成り、該第11群は該第1共役点側
から順に該第1共役点側に凸面を向けたメニスカス状の
2つの負レンズL111,負レンズL112,該第1共
役点側に強い屈折面を持つ正レンズL113、そして両
レンズ面が凹面の負レンズL114の4つのレンズより
成っていることを特徴とするズームレンズ。1. A first lens unit having a negative refractive power and a second lens unit having a positive refractive power are arranged in this order from the first conjugate point side having a longer distance, and a lens unit from a wide-angle end to a telephoto end is provided. The zooming is performed by moving both lens groups so that the distance between the two lens groups monotonously decreases, and the first lens group has two lens groups, the 11th lens group and the 12th lens group, with the largest lens distance as a boundary. The second group is composed of two lens groups, a 21st group and a 22nd group, with the longest lens interval as a boundary, and the 11th group is arranged in order from the first conjugate point side to the first conjugate point side. It is composed of two meniscus negative lenses L111 having convex surfaces facing to each other, a negative lens L112, a positive lens L113 having a strong refracting surface on the side of the first conjugate point, and a negative lens L114 having both concave lens surfaces. A zoom lens that is characterized by
の屈折力の第1群と正の屈折力の第2群の2つのレンズ
群を有し、広角端から望遠端への変倍を双方のレンズ群
間隔が単調に減少するように双方のレンズ群を移動させ
て行い、該第1群は最も大きなレンズ間隔を境にして第
11群と第12群の2つのレンズ群より成り、該第2群
は最も長いレンズ間隔を境にして第21群と第22群の
2つのレンズ群より成り、該第11群は該第1共役点側
から順に該第1共役点側に凸面を向けたメニスカス状の
負レンズL111,該第1共役点側に凸面を向けたメニ
スカス状の正レンズL112,該第1共役点側に凸面を
向けたメニスカス状の負レンズL113,該第1共役点
側に強い屈折面を持つ正レンズL114、そして両レン
ズ面が凹面の負レンズL115の5つのレンズより成っ
ていることを特徴とするズームレンズ。2. The optical system has two lens groups, a first lens group having a negative refractive power and a second lens group having a positive refractive power, which are arranged in order from the first conjugate point side having a longer distance, and are arranged from a wide-angle end to a telephoto end. The zooming is performed by moving both lens groups so that the distance between the two lens groups monotonously decreases, and the first lens group has two lens groups, the 11th lens group and the 12th lens group, with the largest lens distance as a boundary. The second group is composed of two lens groups, a 21st group and a 22nd group, with the longest lens interval as a boundary, and the 11th group is arranged in order from the first conjugate point side to the first conjugate point side. A negative meniscus lens L111 having a convex surface facing the first conjugate point, a positive meniscus lens L112 having a convex surface facing the first conjugate point side, a negative meniscus lens L113 having a convex surface facing the first conjugate point side, A positive lens L114 having a strong refracting surface on the one conjugate point side, and a negative lens having concave surfaces on both lens surfaces. A zoom lens characterized by being made up of five lenses, L115.
の屈折力の第1群と正の屈折力の第2群の2つのレンズ
群を有し、広角端から望遠端への変倍を双方のレンズ群
間隔が単調に減少するように双方のレンズ群を移動させ
て行い、該第1群は最も大きなレンズ間隔を境にして第
11群と第12群の2つのレンズ群より成り、該第2群
は最も長いレンズ間隔を境にして第21群と第22群の
2つのレンズ群より成り、該第11群は該第1共役点側
から順に両レンズ面が凸面の正レンズL111,該第1
共役点側に凸面を向けたメニスカス状の負レンズL11
2,そして該第1共役点側に強い屈折面を持つ正レンズ
L113の3つのレンズより成っていることを特徴とす
るズームレンズ。3. A first lens unit having a negative refractive power and a second lens unit having a positive refractive power are arranged in this order from the first conjugate point side having a longer distance, and the two lens units are provided from a wide-angle end to a telephoto end. The zooming is performed by moving both lens groups so that the distance between the two lens groups monotonously decreases, and the first lens group has two lens groups, the 11th lens group and the 12th lens group, with the largest lens distance as a boundary. The second group is composed of two lens groups of a 21st group and a 22nd group with a longest lens interval as a boundary, and the 11th group has a convex surface on both lens surfaces in order from the first conjugate point side. Positive lens L111, the first
A meniscus negative lens L11 having a convex surface facing the conjugate point
2, and a zoom lens comprising three lenses of a positive lens L113 having a strong refracting surface on the side of the first conjugate point.
レンズ面が凹面の負レンズL121と両レンズ面が凸面
の正レンズL122の2つのレンズより成っていること
を特徴とする請求項1又は2のズームレンズ。4. The twelfth lens unit comprises, in order from the first conjugate point side, two lenses, a negative lens L121 having both concave lens surfaces and a positive lens L122 having both convex lens surfaces. Item 1 or 2 zoom lens.
離の短い方の第2共役点側に強い屈折面を持つ負レンズ
L121,第1共役点側に強い屈折面を持つ負レンズL
122、そして第1共役点側に強い屈折面を持つ正レン
ズL123の3つのレンズより成っていることを特徴と
する請求項3のズームレンズ。5. The negative lens L121 having a strong refractive surface on the side of the second conjugate point, which is the shorter distance from the first conjugate point side, and the negative lens having a strong refractive surface on the side of the first conjugate point, in the twelfth group. L
4. The zoom lens according to claim 3, wherein the zoom lens comprises three lenses 122, and a positive lens L123 having a strong refractive surface on the first conjugate point side.
1つの非球面を有していることを特徴とする請求項1か
ら5の何れか1項のズームレンズ。6. The zoom lens according to claim 1, wherein each of the 11th group and the 2nd group has at least one aspherical surface.
球面がある場合、レンズ中心からレンズ周辺にいくに従
い負の屈折力が弱くなる非球面を有し、正屈折力のレン
ズ面に非球面がある場合、レンズ中心からレンズ周辺に
いくに従い正の屈折力が強くなる非球面を有することを
特徴とする請求項6のズームレンズ。7. The eleventh group has an aspherical surface whose negative refracting power becomes weaker from the lens center to the lens periphery when the lens surface having a negative refracting power has an aspherical surface. 7. The zoom lens according to claim 6, wherein when the lens has an aspherical surface, the aspherical surface has a positive refractive power that increases from the lens center to the lens periphery.
球面がある場合、レンズ中心からレンズ周辺にいくに従
い、正の屈折力が弱くなる形状の非球面を有し、負屈折
力のレンズ面に非球面がある場合は、レンズ中心からレ
ンズ周辺にいくに従い負の屈折力が強くなる形状の非球
面を有していることを特徴とする請求項6又は7のズー
ムレンズ。8. If the lens surface having a positive refracting power has an aspherical surface, the 22nd group has an aspherical surface having a shape in which the positive refracting power becomes weaker from the center of the lens to the periphery of the lens. 8. The zoom lens according to claim 6, wherein the lens surface has an aspherical surface in which the negative refracting power becomes stronger from the lens center to the lens periphery.
レンズL211,距離の短い方の第2共役点側に凸面を
向けたメニスカス状の負レンズL212、そして正レン
ズL213の3つのレンズより成っていることを特徴と
する請求項1〜8の何れか1項のズームレンズ。9. The twenty-first lens group includes three lenses, a positive lens L211, a meniscus negative lens L212 having a convex surface directed toward the second conjugate point side having a shorter distance, and a positive lens L213 in order from the first conjugate point side. 9. The zoom lens according to claim 1, wherein the zoom lens comprises a lens.
両レンズ面が凹面の負レンズL221,両レンズ面が凸
面の正レンズL222,第1共役点側に強い屈折面を持
つ負レンズL223,距離の短い方の第2共役点側に強
い屈折面を持つ正レンズL224、そして両レンズ面が
凸面の正レンズL225の5つのレンズより成っている
ことを特徴とする請求項1,2,4,6,7,8又は9
のズームレンズ。10. The negative lens L221 having concave surfaces on both lens surfaces in order from the first conjugate point side, the positive lens L222 having convex surfaces on both lens surfaces, and the negative lens having a strong refractive surface on the first conjugate point side. 4. A lens L223, a positive lens L224 having a strong refracting surface on the side of the second conjugate point having a shorter distance, and a positive lens L225 having a convex surface on both lens surfaces, which are five lenses. , 4, 6, 7, 8 or 9
Zoom lens.
両レンズ面が凹面の負レンズL221,両レンズ面が凸
面の正レンズL222,第1共役点側に凸面を向けたメ
ニスカス状の負レンズL223,距離の短い方の第2共
役点側に強い屈折面を持つ2つの正レンズL224,L
225の5つのレンズより成っていることを特徴とする
請求項3,5,6,7,8又は9のズームレンズ。11. The meniscus-shaped lens element having a negative lens L221 having concave surfaces on both sides, a positive lens L222 having convex surfaces on both lens surfaces, and a convex surface facing the first conjugate point, in the order from the first conjugate point side. Negative lens L223, two positive lenses L224, L having a strong refracting surface on the side of the second conjugate point having a shorter distance.
The zoom lens according to claim 3, 5, 6, 7, 8 or 9, wherein the zoom lens comprises five lenses of 225.
おける該第2群の最終レンズ面から距離の短い方の第2
共役点までの距離をbfw、広角端における全系の焦点
距離をfw、該第1群と第2群の焦点距離を各々f1,
f2、広角端における該第1群と第2群の主点間隔をe
wとしたとき 1.2<bfw/fw 0.3<−f1/f2<1.5 0.3<−f1/fw<2 0.5<f2/fw<1.8 0.3<ew/fw<2 なる条件を満足することを特徴とする請求項1から11
の何れか1項のズームレンズ。12. A second lens having a shorter distance from the final lens surface of the second lens unit at the wide-angle end when the first conjugate point is at infinity.
The distance to the conjugate point is bfw, the focal length of the entire system at the wide-angle end is fw, and the focal lengths of the first group and the second group are f1,
f2, the distance between the principal points of the first group and the second group at the wide-angle end is e
When w is set, 1.2 <bfw / fw 0.3 <-f1 / f2 <1.5 0.3 <-f1 / fw <2 0.5 <f2 / fw <1.8 0.3 <ew / 12. The condition of fw <2 is satisfied, which is characterized in that
The zoom lens according to any one of 1.
の材質のアッベ数の平均値を各々ν11N,ν11P、
前記第12群中の負レンズと正レンズの材質のアッベ数
の平均値を各々ν12N,ν12Pとしたとき −15<ν11N−ν11P<15 15<ν12N−ν12P<40 なる条件を満足することを特徴とする請求項1から12
の何れか1項のズームレンズ。13. The average values of the Abbe numbers of the materials of the negative lens and the positive lens in the 11th group are v11N and v11P, respectively.
When the average values of the Abbe numbers of the materials of the negative lens and the positive lens in the twelfth group are ν12N and ν12P, respectively, the condition of -15 <ν11N-ν11P <15 15 <ν12N-ν12P <40 is satisfied. Claims 1 to 12
The zoom lens according to any one of 1.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19126995A JPH0921953A (en) | 1995-07-04 | 1995-07-04 | Zoom lens |
US08/509,933 US5781349A (en) | 1994-08-05 | 1995-08-01 | Zoom lens |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19126995A JPH0921953A (en) | 1995-07-04 | 1995-07-04 | Zoom lens |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0921953A true JPH0921953A (en) | 1997-01-21 |
Family
ID=16271740
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19126995A Pending JPH0921953A (en) | 1994-08-05 | 1995-07-04 | Zoom lens |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0921953A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6508555B1 (en) | 1999-09-09 | 2003-01-21 | Canon Kabushiki Kaisha | Image projection system that enables almost complete superposition without any image shift in superposition projection of original images a plurality of image projection apparatuses |
US8830592B2 (en) | 2010-06-23 | 2014-09-09 | Nikon Corporation | Zoom lens, imaging apparatus, and method for manufacturing zoom lens |
JP2014232248A (en) * | 2013-05-30 | 2014-12-11 | リコーイメージング株式会社 | Zoom lens system |
-
1995
- 1995-07-04 JP JP19126995A patent/JPH0921953A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6508555B1 (en) | 1999-09-09 | 2003-01-21 | Canon Kabushiki Kaisha | Image projection system that enables almost complete superposition without any image shift in superposition projection of original images a plurality of image projection apparatuses |
US8830592B2 (en) | 2010-06-23 | 2014-09-09 | Nikon Corporation | Zoom lens, imaging apparatus, and method for manufacturing zoom lens |
US9354430B2 (en) | 2010-06-23 | 2016-05-31 | Nikon Corporation | Zoom lens, imaging apparatus, and method for manufacturing zoom lens |
JP2014232248A (en) * | 2013-05-30 | 2014-12-11 | リコーイメージング株式会社 | Zoom lens system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6094312A (en) | Rear focusing zoom lens | |
US6124972A (en) | Zoom lens having an image stabilizing function | |
US5179473A (en) | Zoom lens | |
US5600490A (en) | Zoom lens for projecting video image | |
JP3008580B2 (en) | Zoom lens | |
US6147810A (en) | Zoom lens having focusing subunit in second lens unit and optical apparatus equipped with the same | |
US6028715A (en) | Variable magnification optical system | |
JPH07253542A (en) | Zoom lens | |
JPH11305124A (en) | Zoom lens and optical instrument using the zoom lens | |
US6084719A (en) | Projection lens | |
US5781349A (en) | Zoom lens | |
JP3102200B2 (en) | Zoom lens | |
JP6084016B2 (en) | Zoom lens and image projection apparatus having the same | |
JPH1164732A (en) | Zoom lens | |
JPH07181382A (en) | High variable power ratio two-group zoom lens | |
JPH11190821A (en) | Zoom lens | |
JPH09189862A (en) | Zoom lens | |
JPH06230285A (en) | Zoom lens | |
JPH11101941A (en) | Rear focus type zoom lens | |
JPH08179214A (en) | Zoom lens | |
JP2020030251A (en) | Zoom lens and image capturing device having the same | |
JP2002287027A (en) | Zoom lens and optical equipment using it | |
JPH0921953A (en) | Zoom lens | |
JP2850560B2 (en) | Zoom lens | |
JP2000338402A (en) | Zoom lens |