JPH09219296A - Magnetic neutral discharge plasma source - Google Patents

Magnetic neutral discharge plasma source

Info

Publication number
JPH09219296A
JPH09219296A JP8023835A JP2383596A JPH09219296A JP H09219296 A JPH09219296 A JP H09219296A JP 8023835 A JP8023835 A JP 8023835A JP 2383596 A JP2383596 A JP 2383596A JP H09219296 A JPH09219296 A JP H09219296A
Authority
JP
Japan
Prior art keywords
vacuum chamber
magnetic
neutral line
magnetic field
field generating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8023835A
Other languages
Japanese (ja)
Inventor
Taijirou Uchida
岱二郎 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP8023835A priority Critical patent/JPH09219296A/en
Priority to EP00103256A priority patent/EP1006557B1/en
Priority to DE69737311T priority patent/DE69737311T2/en
Priority to EP97101903A priority patent/EP0789506B1/en
Priority to DE69732055T priority patent/DE69732055T2/en
Priority to US08/796,568 priority patent/US5804027A/en
Publication of JPH09219296A publication Critical patent/JPH09219296A/en
Pending legal-status Critical Current

Links

Landscapes

  • Plasma Technology (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the loss of plasma and damage to side walls by providing part of a magnetic field generating means in a vacuum chamber to form magnetic neutral conductors at a position where there is no magnetic field continuously existing in the chamber. SOLUTION: A treatment table 4 is arranged in a vacuum chamber 1 and a material to be treated is mounted thereon. Electromagnetic coils 6, 7 with the same size and structure are arranged outside the side walls of the vacuum chamber 1 and an electromagnetic coil 8 smaller than the electromagnetic coils 6, 7 is arranged in the vacuum chamber 1. A high frequency coil 9 is coaxially set up outside the upper wall of the vacuum chamber 1. When currents flow from respective power supplies to three coils 6, 7, 8 for excitation, concentric magnetic neutral conductors are formed inside the inner electromagnetic coil 8. High frequency discharge plasma is generated in the magnetic neutral conductors by a high frequency coil 9. Respective currents flowing in the electromagnetic coils 6, 7, 8 are controlled to change the diameters of the magnetic neutral conductors and a distance from the material 5 to be treated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、基板、ターゲット
等の被処理体にコーディング、エッチング、スパッタリ
ング、アッシング、CVD等の処理を行うのに利用され
る磁気中性線放電プラズマを発生する磁気中性線放電プ
ラズマ源に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic neutral line discharge plasma generating magnetic neutral line used for performing processing such as coding, etching, sputtering, ashing, and CVD on an object to be processed such as a substrate and a target. The present invention relates to a source of actinic radiation plasma.

【0002】[0002]

【従来の技術】従来、例えばプラズマエッチングは、化
学的に活性なガスを、低圧下での放電によってプラズマ
状態にし、それにより発生したイオンや中性ラジカル等
の活性種と被エッチング材料とを反応させて反応生成物
を気相中に脱離させるようにしたものであり、種々の形
式のものが知られている。例として真空容器内にエッチ
ングガスを導入し、直流電場とのマグネトロン放電を利
用したもの、マイクロ波(2.45GHz)との相互作用で電子
サイクロトロン共鳴(ECR)を起こさせて電子を加速
することにより低圧下で高電子エネルギーによるECR
プラズマ源を利用したもの、或いは13.56MHzの高周波電
力を印加してプラズマ状態にしたもの等がある。また、
RFプラズマ励起によってプラズマ状態を形成し、これ
により反応ガスの化学的結合を分解して活性化された粒
子間の反応により膜形成を行うプラズマCVDにも種々
の形式のものが提案されている。
2. Description of the Related Art Conventionally, for example, in plasma etching, a chemically active gas is turned into a plasma state by discharging under a low pressure, and active species such as generated ions and neutral radicals react with a material to be etched. The reaction product is desorbed into the gaseous phase, and various types are known. For example, by introducing an etching gas into a vacuum container and using magnetron discharge with a DC electric field, by accelerating electrons by causing electron cyclotron resonance (ECR) by interaction with microwaves (2.45 GHz) ECR due to high electron energy under low pressure
There are those that use a plasma source, and those that are in a plasma state by applying high-frequency power of 13.56 MHz. Also,
Various types of plasma CVD have also been proposed in which a plasma state is formed by RF plasma excitation, and thereby a chemical bond of a reaction gas is decomposed to form a film by a reaction between activated particles.

【0003】このようなプラズマ利用装置においては、
ほとんどの場合密度や温度の空間的非一様性や電場によ
る加速に伴う速度空間内の非一様性が存在しており、そ
のためこれらを用いて基板に目的の作用を行わせる場合
に効果の不均一性が生じ易く、特に荷電粒子のみならず
ラジカル(化学的活性種)が存在することによりしその
振舞いも考慮しなければならないエッチングのようなプ
ロセスでは、希望する分布、例えば均一性の確保は極め
て経験的に実現するしかないという問題点があった。ま
たスパッタリングにおいては、ターゲットの使用効率を
上げるためカソードの背面側に設けられる電磁石または
永久磁石を機械的に変移させてプラズマの位置を変えさ
せ、エロージョン領域をできるだけ拡く採れるようにし
たり、或いは電磁石または永久磁石の構成に工夫をして
エロージョン領域を少しでも拡げることが行われている
が、いずれの場合もカソードの使用効率の向上に苦し
み、装置自体が複雑になったり、かさばったりする等の
問題点があった。
In such a plasma utilizing apparatus,
In most cases, there are spatial inhomogeneities in density and temperature, and inhomogeneities in the velocity space associated with acceleration by an electric field. Inhomogeneity is likely to occur, especially in processes such as etching where the behavior of radicals (chemically active species) as well as charged particles must be taken into consideration. There was a problem that could only be realized empirically. In sputtering, the electromagnet or permanent magnet provided on the back side of the cathode is mechanically displaced to change the position of plasma to increase the efficiency of use of the target so that the erosion region can be expanded as much as possible, or the electromagnet can be used. Alternatively, the structure of the permanent magnet has been devised to expand the erosion area as much as possible, but in either case, it is difficult to improve the use efficiency of the cathode, and the device itself becomes complicated or bulky. There was a problem.

【0004】従来のプラズマ利用装置のこのような問題
点を解決するため、先に、真空チャンバ内でプラズマを
利用して被処理物を処理するための装置として、真空チ
ャンバ内に磁気中性線を形成する磁場発生手段と、この
磁場発生手段によって真空チャンバ内に形成された磁気
中性線に沿って電場を形成してこの磁気中性線に放電プ
ラズマを発生させる電場発生手段とを設けた放電プラズ
マ処理装置を提案した(特開平7-90632号公報参照)。
この提案により、磁場発生手段に対する励磁電流を制御
するだけで形成される磁気中性線の位置や大きさを随意
に調整でき、従ってプラズマの発生位置を容易に変位さ
せることができ、その結果プロセス処理上画期的な効果
を得ることができるようになった。
In order to solve such a problem of the conventional plasma utilizing apparatus, first, as a device for treating an object to be treated using plasma in the vacuum chamber, a magnetic neutral wire is provided in the vacuum chamber. And a magnetic field generating means for generating a discharge plasma in the magnetic neutral wire by forming an electric field along the magnetic neutral wire formed in the vacuum chamber by the magnetic field generating means. A discharge plasma processing device has been proposed (see Japanese Patent Laid-Open No. 7-90632).
According to this proposal, the position and size of the magnetic neutral line formed by merely controlling the exciting current to the magnetic field generating means can be arbitrarily adjusted, and therefore the plasma generating position can be easily displaced, resulting in the process It has become possible to obtain an epoch-making effect in processing.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、磁場零
の点が空間的に接続して形成される磁気中性線には原理
的に必ず中性線を横切る4本以上の磁力線が存在する。
電場を中性線に沿って印加することにより生成されたプ
ラズマの多くは、その周囲に電離に至らずに存在する圧
倒的な数の中性気体との衝突によって周辺に拡散してい
くが、生成されたプラズマの一部は磁気中性線で交差す
る上記の磁力線に沿って移動していく。この時、特に側
壁に突入または接触する磁力線に沿って移動するプラズ
マが側壁と衝突し、プラズマの一部が損失し、側壁が損
傷することが特にプラズマの温度を上げた時に問題とな
り得る。添附図面の図3には先に提案した放電プラズマ
処理装置を示し、真空チャンバA内をプラズマ発生室A1
と基板処理室A2とに分け、プラズマ発生室A1の外側に三
つの電磁コイルB、C、Dが設けられ、上下の電磁コイ
ルB、D二は同じ向きの電流を流し、中段の電磁コイル
Cには逆向きの電流を流すようにしている。また図3に
おいてEは高周波コイルであり、基板処理室A2内には、
プラズマ発生室A1内に発生したプラズマを利用して処理
されることなる基板Fが示されている。このような構成
の装置においては磁気中性ループを誘電体製のプラズマ
発生室A1内に形成させるために設置されている中段の電
磁コイルCがプラズマ発生室A1の外にあるため、図4に
示すように磁気中性線で交差する4本の磁力線のうちプ
ラズマ発生室の側壁に向かうものはプラズマ発生室を貫
いており、この磁力線に沿って流出するプラズマは明ら
かに側壁にぶつかり、プラズマの損失、側壁の損傷が生
じ得ることになる。そこで、本発明は、このような問題
点を解決した磁気中性線放電型プラズマ源を提供するこ
とを目的としている。
However, in principle, a magnetic neutral line formed by spatially connecting points of zero magnetic field always has four or more magnetic lines of force that cross the neutral line.
Most of the plasma generated by applying an electric field along the neutral line diffuses to the surroundings by collision with the overwhelming number of neutral gases existing around it, which do not lead to ionization, Part of the generated plasma moves along the magnetic lines of force intersecting with the magnetic neutral line. At this time, in particular, plasma moving along the magnetic field lines that rush into or contact the side wall collides with the side wall, a part of the plasma is lost, and the side wall is damaged, which may be a problem particularly when the temperature of the plasma is raised. FIG. 3 of the accompanying drawings shows the previously proposed discharge plasma processing apparatus, in which the inside of the vacuum chamber A is the plasma generation chamber A1.
And the substrate processing chamber A2, and three electromagnetic coils B, C, D are provided outside the plasma generation chamber A1. The upper and lower electromagnetic coils B, D2 flow currents in the same direction, and the middle electromagnetic coil C A reverse current is applied to the. Further, in FIG. 3, E is a high frequency coil, and in the substrate processing chamber A2,
A substrate F to be processed using the plasma generated in the plasma generation chamber A1 is shown. In the apparatus having such a configuration, the middle-stage electromagnetic coil C installed to form the magnetic neutral loop in the plasma generation chamber A1 made of a dielectric material is located outside the plasma generation chamber A1. As shown in the figure, among the four magnetic field lines that intersect at the magnetic neutral line, the one that goes to the side wall of the plasma generation chamber penetrates the plasma generation chamber, and the plasma flowing out along this line of magnetic force obviously hits the side wall and Losses and sidewall damage may occur. Therefore, an object of the present invention is to provide a magnetic neutral line discharge type plasma source that solves such problems.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明によれば、真空チャンバ内に磁気中性線放
電を利用してプラズマを発生するようにしたプラズマ源
において、真空チャンバ内に連続して存在する磁場ゼロ
の位置である磁気中性線を形成するようにした磁場発生
手段と、この磁場発生手段によって真空チェンバ内に形
成された磁気中性線に沿って電場を形成してこの磁気中
性線に放電プラズマを発生させる電場発生手段とを有
し、磁場発生手段の一部を真空チャンバ内に設けること
を特徴としている。
In order to achieve the above-mentioned object, according to the present invention, in a plasma source adapted to generate plasma by utilizing magnetic neutral line discharge in a vacuum chamber, the vacuum chamber A magnetic field generating means for forming a magnetic neutral line which is a position where the magnetic field is continuously present in the inside, and an electric field is formed along the magnetic neutral line formed in the vacuum chamber by the magnetic field generating means. The magnetic neutral wire has an electric field generating means for generating discharge plasma, and a part of the magnetic field generating means is provided in the vacuum chamber.

【0007】[0007]

【発明の実施の形態】本発明による磁気中性線放電型プ
ラズマ源においては、真空チャンバ内に連続して存在す
る磁場ゼロの位置である磁気中性線を形成するようにし
た磁場発生手段の一部を真空チャンバ内に設けたことに
より、磁気中性線で交差する磁力線の内2本を磁場発生
手段を取巻く形でつなげることができる。磁場発生手段
は、真空チャンバ外部に同軸上、間隔をおいて配列した
二つの磁場発生コイルと、真空チャンバ内部に真空チャ
ンバと同軸に配置した一つの磁場発生コイルとから成る
ことができる。真空チャンバ内部に真空チャンバと同軸
に配置した一つの磁場発生コイルは、常温超伝導コイル
から成ることができる。また本発明においては、磁場発
生手段が、真空チャンバの外部に同軸上、に間隔をおい
て配列した二つの磁場発生コイルに代わって二つの円筒
形中空磁石を用いることができる。電場発生手段は、高
周波コイルで構成することができる。また本発明の別の
特徴によれば、真空チャンバ内に形成される磁気中性線
の下方にウェハー等の被処理体をおく時、磁気中性線平
面より上方の真空容器外に電場発生手段が設けられる。
BEST MODE FOR CARRYING OUT THE INVENTION In a magnetic neutral line discharge type plasma source according to the present invention, a magnetic neutral line which is a position of a magnetic field zero continuously existing in a vacuum chamber is formed. By providing a part in the vacuum chamber, it is possible to connect two of the magnetic force lines intersecting at the magnetic neutral line in a form surrounding the magnetic field generating means. The magnetic field generating means may include two magnetic field generating coils coaxially arranged outside the vacuum chamber with a space therebetween, and one magnetic field generating coil disposed inside the vacuum chamber coaxially with the vacuum chamber. One magnetic field generating coil disposed inside the vacuum chamber and coaxial with the vacuum chamber may be a room temperature superconducting coil. Further, in the present invention, the magnetic field generating means may use two cylindrical hollow magnets in place of the two magnetic field generating coils coaxially arranged outside the vacuum chamber at intervals. The electric field generating means can be composed of a high frequency coil. According to another feature of the present invention, when an object to be processed such as a wafer is placed below the magnetic neutral line formed in the vacuum chamber, an electric field generating means is provided outside the vacuum container above the magnetic neutral plane. Is provided.

【0008】真空チャンバ内に設けられる電磁コイルに
電流を流す時、真空チャンバ壁から電磁コイル迄の導線
の存在及び電磁コイルへの巻き出し及び巻き戻し箇所の
存在が方位角方向の磁場の均一性を破っているためプラ
ズマ生成に若干の影響が出ることも考えられる。この対
策には常温超伝導体で制作したリング(輪)を用いるこ
とであり、常時リングに沿って電流が流れているのと同
一の磁場が形成されているので、上下の他の二つのコイ
ルに同じ向きに電流を流して中段の常温超伝導体リング
がもつ磁場と軸上で逆向きの磁場をつくれば、磁場の圧
力により常温超伝導体リングは中段の位置に自動的にセ
ットされることになる。この際、常温超伝導体リングの
自重のため若干下側に位置するが、これは軽い材料を使
うことによりことにより実用上問題はなくなる。
When an electric current is passed through the electromagnetic coil provided in the vacuum chamber, the presence of a conducting wire from the wall of the vacuum chamber to the electromagnetic coil and the presence of unwinding and unwinding points in the electromagnetic coil make the magnetic field uniform in the azimuth direction. It is also possible that the plasma generation will be slightly affected by violating the above condition. The countermeasure is to use a ring (ring) made of a normal temperature superconductor, and since the same magnetic field as the current is constantly flowing along the ring, the other two coils above and below are used. If a magnetic field is applied in the same direction in the same direction as the magnetic field of the middle temperature superconductor ring in the opposite direction to the magnetic field of the middle temperature superconductor ring, the room temperature superconductor ring is automatically set to the middle position by the pressure of the magnetic field. It will be. At this time, the room-temperature superconductor ring is positioned slightly below due to its own weight, but this is practically no problem due to the use of a light material.

【0009】中段のコイルを真空チャンバ中に設けた
時、その内側に形成される磁気中性ループに効率よく誘
導電場を印加するには、中段コイルと磁気中性ループの
間に電場発生手段として同軸同心状の高周波コイルを設
置することが要求されるが、それは、高周波コイルも真
空中に設けることになり構造の複雑さと中段コイルへの
高周波電磁誘導を招来することになる。この中段コイル
への高周波電場誘導対策としては既に特開平7-90632に
中段コイル断面を二重にし、内側を定常磁場用コイル導
体、外側を高周波用コイル導体として用いることを提案
した。高周波電流の表皮効果を積極的に利用したもので
あるが、本発明の場合には真空チャンバ内に設置される
ことのため、真空チャンバを貫いて高周波電源と接続す
るための工夫が必要となる。
In order to efficiently apply the induction electric field to the magnetic neutral loop formed inside the middle coil when the coil is provided in the vacuum chamber, an electric field generating means is provided between the middle coil and the magnetic neutral loop. A coaxial concentric high-frequency coil is required to be installed, but this also causes the high-frequency coil to be provided in a vacuum, resulting in complicated structure and high-frequency electromagnetic induction to the middle coil. As a measure against induction of a high frequency electric field to the middle coil, it has already been proposed in Japanese Patent Laid-Open No. 7-90632 that the middle coil has a double cross section, and the inside is used as a stationary magnetic field coil conductor and the outside as a high frequency coil conductor. Although the skin effect of the high frequency current is positively used, in the case of the present invention, since it is installed in the vacuum chamber, a device for penetrating the vacuum chamber and connecting to the high frequency power source is required. .

【0010】電場発生手段としての高周波コイルを磁気
中性線と同一平面又はその近傍より積極的に同軸上上部
又は下部に移動し、その大きさ(半径)を適宜選択する
ことについては既に特願平7-217967に提案されている
が、本発明ではこれを積極的に活かし、ウェハー等の被
処理物を磁気中性ループの下方にセットした時高周波コ
イルを磁気中性ループの上方真空容器外に設けてこれに
付勢する。同時に中段コイルには断面上薄い電導性の外
筒をつけていくことにより、高周波コイルによる誘導電
場の中段コイルへの浸透を防ぐことができる。
A patent application has already been made regarding the fact that a high-frequency coil as an electric field generating means is positively moved coaxially above or below the same plane as the magnetic neutral line or in the vicinity thereof and the size (radius) thereof is appropriately selected. Although it is proposed in Japanese Patent Laid-Open No. 7-217967, the present invention positively utilizes this, and when the object to be processed such as a wafer is set below the magnetic neutral loop, the high frequency coil is placed above the magnetic neutral loop and outside the vacuum container. It will be installed in and will be activated. At the same time, by attaching an outer cylinder having a thin cross-section to the middle coil, it is possible to prevent penetration of the induction electric field into the middle coil by the high frequency coil.

【0011】[0011]

【実施例】以下図1及び図2を参照して本発明の実施例
について説明する。図1には本発明の実施例を原理的に
示す。1は円筒状の誘電体で作られた真空チャンバで、
底部の排気口2より排気され、上部のガス導入口3より
使用ガスが導入されるように構成されている。真空チャ
ンバ1内には処理台4が配置され、その上に被処理物5
が装着されている。真空チャンバ1の側壁の外側には同
寸同一構造の電磁コイル6、7が配置され、これらの電
磁コイル6、7は直列に定電流電源(図示していない)
に接続されている。電磁コイル6、7の間のレベルで真
空チャンバ1内には、電磁コイル6、7により小型の電
磁コイル8が配置され、真空チャンバ1の内壁の3ヶ所
から出された細い支持棒(図示していない)により固定
され、その1つの支持棒内を通って外部の別の定電流電
源(図示していない)に接続されている。また真空チャ
ンバ1の上部壁の外側には同軸上に高周波コイル9が設
置され、13.56MHzの高周波電源(図示していない)に接
続されている。
Embodiments of the present invention will be described below with reference to FIGS. FIG. 1 shows in principle an embodiment of the present invention. 1 is a vacuum chamber made of a cylindrical dielectric,
The gas is exhausted from the exhaust port 2 at the bottom and the used gas is introduced from the gas inlet 3 at the top. A processing table 4 is arranged in the vacuum chamber 1, and an object 5 to be processed is placed thereon.
Is installed. Outside the side wall of the vacuum chamber 1, electromagnetic coils 6 and 7 of the same size are arranged, and these electromagnetic coils 6 and 7 are connected in series with a constant current power source (not shown).
It is connected to the. Inside the vacuum chamber 1 at a level between the electromagnetic coils 6 and 7, a small electromagnetic coil 8 is arranged by the electromagnetic coils 6 and 7, and thin support rods (shown in the figure) are provided from three positions on the inner wall of the vacuum chamber 1. (Not shown), and is connected to an external constant current power source (not shown) through one of the support rods. A high frequency coil 9 is coaxially installed outside the upper wall of the vacuum chamber 1 and connected to a 13.56 MHz high frequency power source (not shown).

【0012】このように構成した図示装置の動作におい
て、三つ電磁コイル6、7、8にそれぞれの電源から電
流を流して励磁させることにより、内部の電磁コイル8
の内側に同心円状の磁気中性線が形成される。この磁気
中性線内に高周波コイル9によって高周波放電プラズマ
が生成されることになる。この場合高周波を用いている
ので、磁気中性線内より常にプラズマが生成され、湧き
でてくることになる。そして外部の上下二つの電磁コイ
ル6、7に流す電流及び内部の電磁コイル8に流す電流
をそれぞれ制御することによって、形成される同心円状
の磁気中性線のの径や被処理物5との距離を変化させる
ことができる。電磁コイルの励磁により発生される磁力
線に関して、図4に示すように中段の電磁コイルが外部
に設けられている場合には磁気中性線を横切る磁力線の
うち2本が中性線近傍で側壁と交叉するが、本発明にお
いては中段の電磁コイルが内部に設けられているので、
図2に示すように2つの磁力線は側壁とは交叉しないで
真空チャンバ1中で電磁コイル8の断面を取り囲んだ形
となって互いに繋がっている。すなわち、2本の磁力線
は電磁コイル8の導体断面を取り巻いて合流し、真空チ
ャンバ1の側壁との交叉、接触を避けることができ、プ
ラズマの損失、側壁の損傷を減らすことができる。
In the operation of the illustrated apparatus thus constructed, the internal electromagnetic coil 8 is generated by exciting the three electromagnetic coils 6, 7, 8 by supplying currents from the respective power sources.
A concentric magnetic neutral wire is formed inside the. A high frequency discharge plasma is generated by the high frequency coil 9 in the magnetic neutral line. In this case, since a high frequency is used, plasma is always generated from the magnetic neutral line and springs out. By controlling the currents flowing through the two upper and lower external electromagnetic coils 6 and 7 and the current flowing through the internal electromagnetic coil 8, respectively, the diameter of the concentric magnetic neutral wire and the object to be processed 5 The distance can be changed. Regarding the magnetic field lines generated by the excitation of the electromagnetic coil, when a middle-stage electromagnetic coil is provided outside as shown in FIG. 4, two of the magnetic field lines that cross the magnetic neutral line are adjacent to the side wall near the neutral line. Although they intersect, in the present invention, since the middle-stage electromagnetic coil is provided inside,
As shown in FIG. 2, the two lines of magnetic force are connected to each other in a shape surrounding the cross section of the electromagnetic coil 8 in the vacuum chamber 1 without crossing the side wall. That is, the two magnetic force lines merge around the conductor cross section of the electromagnetic coil 8 to avoid crossing and contact with the side wall of the vacuum chamber 1, and plasma loss and side wall damage can be reduced.

【0013】本発明の実施例による構成装置図1と図3
に示す先に提案した構造の装置とを使用してArガスによ
りSiO2スパッタリングをした結果、先に提案した装置に
おいて約五百回の処理によって中段のコイル近傍の側壁
は失透すると同時にエッチングレートも当初の約8割に
落ちたのに対し、本発明による装置においてそのいずれ
もなかった。
Component Device According to an Embodiment of the Present Invention FIGS. 1 and 3
As a result of performing SiO 2 sputtering with Ar gas using the device of the structure previously proposed as shown in Fig. 4, the sidewall of the coil near the middle stage is devitrified and the etching rate at the same time by the process of about 500 times in the device previously proposed. Also fell to about 80% of the initial value, whereas none of them was found in the device according to the present invention.

【0014】[0014]

【発明の効果】以上説明してきたように、本発明におい
ては真空チャンバ内に連続して存在する磁場ゼロの位置
である磁気中性線を形成するようにした磁場発生手段の
一部を真空チャンバ内に設けているので、磁気中性線を
横切る磁力線は中性線近傍で側壁と交叉したり接触する
ことがなく、プラズマの損失、側壁の損傷を減らすこと
ができるようになる。従って、本発明は、磁気中性線放
電プラズマの有効利用として必須な技術であり、特に不
純物の混入をきらう半導体製造等のためのスパッタリン
グ、エッチングの如きさまざまなプラズマ処理には欠か
すことのできない技術であると同時に、側壁や周壁の損
傷をさけることができることから装置として性能が一段
と向上し、保守の大幅な軽減を実現できる極めて有用な
磁気中性線放電型プラズマ源を提供することができる。
As described above, in the present invention, a part of the magnetic field generating means for forming the magnetic neutral line which is the position of the magnetic field zero continuously existing in the vacuum chamber is part of the vacuum chamber. Since the magnetic lines of force crossing the magnetic neutral line do not cross or contact the side wall in the vicinity of the neutral line, it is possible to reduce plasma loss and side wall damage. Therefore, the present invention is an indispensable technique for effective use of the magnetic neutral line discharge plasma, and is a technique indispensable for various plasma treatments such as sputtering and etching particularly for semiconductor manufacturing in which impurities are not mixed. At the same time, since the side wall and the peripheral wall can be prevented from being damaged, the performance of the apparatus can be further improved, and a very useful magnetic neutral line discharge type plasma source capable of realizing a great reduction in maintenance can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施例を原理的に示す概略図。FIG. 1 is a schematic diagram showing in principle an embodiment of the present invention.

【図2】 図1に示す装置の動作を説明する概略拡大部
分断面図。
FIG. 2 is a schematic enlarged partial cross-sectional view explaining the operation of the apparatus shown in FIG.

【図3】 先に提案した装置を原理的に示す概略図。FIG. 3 is a schematic diagram showing in principle the previously proposed device.

【図4】 図3に示す装置の動作を説明する概略拡大部
分断面図。
4 is a schematic enlarged partial cross-sectional view explaining the operation of the apparatus shown in FIG.

【符号の説明】[Explanation of symbols]

1:真空チャンバ 2:排気口 3:ガス導入口 4:処理台 5:被処理物 6:電磁コイル 7:電磁コイル 8:電磁コイル 9:高周波コイル 1: Vacuum chamber 2: Exhaust port 3: Gas inlet port 4: Processing table 5: Object to be treated 6: Electromagnetic coil 7: Electromagnetic coil 8: Electromagnetic coil 9: High frequency coil

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 真空チャンバ内に磁気中性線放電を利用
してプラズマを発生するようにしたプラズマ源におい
て、真空チャンバ内に連続して存在する磁場ゼロの位置
である磁気中性線を形成するようにした磁場発生手段
と、この磁場発生手段によって真空チャンバ内に形成さ
れた磁気中性線に沿って電場を印加して、この磁気中性
線に放電プラズマを発生させる電場発生手段とを有し、
磁場発生手段の一部を真空チャンバ内に設けたことを特
徴とする磁気中性線放電プラズマ源。
1. A plasma source in which a plasma is generated by utilizing a magnetic neutral line discharge in a vacuum chamber, and a magnetic neutral line which is a position of a magnetic field zero continuously existing in the vacuum chamber is formed. And a magnetic field generating means for applying an electric field along the magnetic neutral line formed in the vacuum chamber by the magnetic field generating means to generate discharge plasma in the magnetic neutral line. Have,
A magnetic neutral line discharge plasma source characterized in that a part of a magnetic field generating means is provided in a vacuum chamber.
【請求項2】 磁場発生手段が、真空チャンバ外部に同
軸上、間隔をおいて配列した二つの磁場発生コイルと、
真空チャンバ内部に真空チャンバと同軸に配置した一つ
の磁場発生コイルとから成る請求項1に記載の磁気中性
線放電プラズマ源。
2. A magnetic field generating means, and two magnetic field generating coils coaxially arranged outside the vacuum chamber at intervals.
The magnetic neutral line discharge plasma source according to claim 1, comprising one magnetic field generating coil arranged coaxially with the vacuum chamber inside the vacuum chamber.
【請求項3】 真空チャンバ内部に真空チャンバと同軸
に配置した一つの磁場発生コイルが、常温超伝導コイル
から成る請求項2に記載の磁気中性線放電プラズマ源。
3. The magnetic neutral line discharge plasma source according to claim 2, wherein one magnetic field generating coil arranged coaxially with the vacuum chamber inside the vacuum chamber comprises a room temperature superconducting coil.
【請求項4】 磁場発生手段が、真空チャンバの外部に
同軸上、間隔をおいて配列した二つの円筒形中空磁石か
ら成る請求項1に記載の磁気中性線放電プラズマ源。
4. The magnetic neutral line discharge plasma source according to claim 1, wherein the magnetic field generating means comprises two cylindrical hollow magnets coaxially arranged outside the vacuum chamber at intervals.
【請求項5】 電場発生手段が高周波コイルから成る請
求項1に記載の磁気中性線放電プラズマ源。
5. The magnetic neutral line discharge plasma source according to claim 1, wherein the electric field generating means comprises a high frequency coil.
【請求項6】 真空チャンバ内に磁気中性線放電を利用
してプラズマを発生するようにしたプラズマ源におい
て、真空チャンバ内に連続して存在する磁場ゼロの位置
である磁気中性線を形成するようにした磁場発生手段
と、この磁場発生手段によって真空チャンバ内に形成さ
れた磁気中性線に沿って電場を印加して、この磁気中性
線に放電プラズマを発生させる電場発生手段とを有し、
磁場発生手段の一部を真空チャンバ内に設け、さらにこ
の真空チャンバ内に設置された磁場発生手段により真空
チャンバ内に形成される磁気中性線の位置とは異なる高
さの平面上に電場発生手段を設けたことを特徴とする磁
気中性線放電プラズマ源。
6. A plasma source configured to generate a plasma by utilizing a magnetic neutral line discharge in a vacuum chamber, which forms a magnetic neutral line which is a position of a magnetic field zero continuously existing in the vacuum chamber. And a magnetic field generating means for applying an electric field along the magnetic neutral line formed in the vacuum chamber by the magnetic field generating means to generate discharge plasma in the magnetic neutral line. Have,
A part of the magnetic field generating means is provided in the vacuum chamber, and the electric field is generated on a plane having a height different from the position of the magnetic neutral line formed in the vacuum chamber by the magnetic field generating means installed in the vacuum chamber. A magnetic neutral line discharge plasma source characterized by comprising means.
【請求項7】 電場発生手段が、被処理体と磁気中性線
を形成する平面を介して相対峙する位置でしかも真空容
器外に設けられる請求項6に記載の磁気中性線放電プラ
ズマ源。
7. The magnetic neutral line discharge plasma source according to claim 6, wherein the electric field generating means is provided at a position facing the object to be processed through a plane forming the magnetic neutral line and outside the vacuum container. .
JP8023835A 1996-02-09 1996-02-09 Magnetic neutral discharge plasma source Pending JPH09219296A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP8023835A JPH09219296A (en) 1996-02-09 1996-02-09 Magnetic neutral discharge plasma source
EP00103256A EP1006557B1 (en) 1996-02-09 1997-02-06 Apparatus for generating magnetically neutral line discharge type plasma
DE69737311T DE69737311T2 (en) 1996-02-09 1997-02-06 Device for generating a plasma with discharge along a magnetic-neutral line
EP97101903A EP0789506B1 (en) 1996-02-09 1997-02-06 Apparatus for generating magnetically neutral line discharge type plasma
DE69732055T DE69732055T2 (en) 1996-02-09 1997-02-06 Device for generating a plasma with discharge along a magnetically neutral line
US08/796,568 US5804027A (en) 1996-02-09 1997-02-06 Apparatus for generating and utilizing magnetically neutral line discharge type plasma

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8023835A JPH09219296A (en) 1996-02-09 1996-02-09 Magnetic neutral discharge plasma source

Publications (1)

Publication Number Publication Date
JPH09219296A true JPH09219296A (en) 1997-08-19

Family

ID=12121458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8023835A Pending JPH09219296A (en) 1996-02-09 1996-02-09 Magnetic neutral discharge plasma source

Country Status (1)

Country Link
JP (1) JPH09219296A (en)

Similar Documents

Publication Publication Date Title
EP0148504B1 (en) Method and apparatus for sputtering
EP0413282B1 (en) Method and apparatus for producing magnetically-coupled planar plasma
US5451259A (en) ECR plasma source for remote processing
KR100238627B1 (en) Plasma processing apparatus
US5401351A (en) Radio frequency electron cyclotron resonance plasma etching apparatus
JPH0770532B2 (en) Plasma processing device
JPH07221078A (en) Plasma apparatus and plasma treatment method using it
US20010008171A1 (en) Plasma processing apparatus for semiconductors
JP3254069B2 (en) Plasma equipment
US6475333B1 (en) Discharge plasma processing device
US5804027A (en) Apparatus for generating and utilizing magnetically neutral line discharge type plasma
JPH11135297A (en) Plasma generator
JP3294839B2 (en) Plasma processing method
JPH11283926A (en) Plasma processor
JP2705897B2 (en) Discharge plasma processing equipment
JPS6094725A (en) Dry etching device
JPH09219296A (en) Magnetic neutral discharge plasma source
JP4384295B2 (en) Plasma processing equipment
JP3205542B2 (en) Plasma equipment
JP3088504B2 (en) Microwave discharge reactor
JP2687867B2 (en) Semiconductor manufacturing equipment
JPH0578849A (en) High magnetic field microwave plasma treating device
JPH03158471A (en) Microwave plasma treating device
JPH0963792A (en) Magnetic neutral beam discharging plasma source
JPH07263190A (en) Discharge plasma treatment device

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040106