JPH09218205A - Scanning type probe microscope - Google Patents

Scanning type probe microscope

Info

Publication number
JPH09218205A
JPH09218205A JP2649196A JP2649196A JPH09218205A JP H09218205 A JPH09218205 A JP H09218205A JP 2649196 A JP2649196 A JP 2649196A JP 2649196 A JP2649196 A JP 2649196A JP H09218205 A JPH09218205 A JP H09218205A
Authority
JP
Japan
Prior art keywords
probe
sample
stm
microscope
surface shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2649196A
Other languages
Japanese (ja)
Inventor
Kiyoshi Ogawa
潔 小河
Akira Kaimoto
亮 開本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2649196A priority Critical patent/JPH09218205A/en
Publication of JPH09218205A publication Critical patent/JPH09218205A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a scanning type probe microscope capable of accurately measuring not only the surface unevenness of a sample but also impurities such as foreign matter present on the surface of the sample. SOLUTION: The signal obtained from the probe part 1 for an AFM (interatomic force microscope) is processed by an AFM measuring circuit 4a to be stored in a surface shape memory part 4b. An STM (scanning type tunnel microscope) probe driving circuit 4c moves a probe 2a for an STM up and down along the surface shape of a sample on the basis of stored data according to the command of an operational control part 4b and the signal showing a tunnel current obtained from the probe part 2 for the STM is processed by an STM measuring circuit 4d to be successively stored in an STM signal memory part 4e. The operational control part 4f reads the measured data related to the tunnel current of a predetermined region from the STM signal memory part 4e and it is judged that impurities such as foreign matter are present at the position on the sample corresponding to the part where the read measured data is shifted from a predetermined value.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明が属する技術分野】本発明は、探針で試料表面を
走査することで、試料表面の形状を測定する走査型プロ
ーブ顕微鏡に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a scanning probe microscope for measuring the shape of a sample surface by scanning the sample surface with a probe.

【0002】[0002]

【従来技術】一般に、試料表面の形状を原子レベルで測
定するために走査型トンネル顕微鏡(STM)や原子間
力顕微鏡(AFM)が広く用いられている。
2. Description of the Related Art Generally, a scanning tunneling microscope (STM) and an atomic force microscope (AFM) are widely used to measure the shape of a sample surface at the atomic level.

【0003】走査型トンネル顕微鏡は、例えば、図9に
示されるように、試料101とこれに対向配置した探針
102との間に所定電圧を印加し、両者間に流れるトン
ネル電流が一定になるよう探針102を走査回路10
4、サーボ回路106、及びトンネル電流増幅回路10
7を介してピエゾ素子103を駆動し、探針102の上
下動を検知することでディスプレイ105に試料表面の
形状を原子レベルの分解能で表示するものである。
In a scanning tunneling microscope, for example, as shown in FIG. 9, a predetermined voltage is applied between a sample 101 and a probe 102 arranged opposite thereto, and a tunnel current flowing between the two becomes constant. The probe 102 to the scanning circuit 10
4, servo circuit 106, and tunnel current amplifier circuit 10
The shape of the sample surface is displayed on the display 105 with atomic level resolution by driving the piezoelectric element 103 via 7 and detecting the vertical movement of the probe 102.

【0004】一方、原子間力顕微鏡は、例えば、図10
に示されるように、試料111に対向してカンチレバー
110に保持された探針112を配置して、コンピュー
タ118、微小変調回路117、圧電素子駆動回路11
6を介して圧電素子113を駆動し、レーザー光源11
4よりカンチレバー110に照射され反射したレーザを
レーザー光検出素子115で検出することで探針112
と試料111間に作用する原子間力に応じたカンチレバ
ー110の先端部の上下動を求め、求めた上下動から試
料表面の形状を原子レベルの分解能で観察するものであ
る。
On the other hand, the atomic force microscope is shown in FIG.
3, the probe 112 held by the cantilever 110 is arranged so as to face the sample 111, and the computer 118, the minute modulation circuit 117, the piezoelectric element drive circuit 11 are arranged.
The piezoelectric element 113 is driven via 6 and the laser light source 11
4, the laser beam emitted from the cantilever 110 and reflected by the laser beam detecting element 115 is detected by the probe 112.
The vertical movement of the tip portion of the cantilever 110 is determined according to the interatomic force acting between the sample 111 and the sample 111, and the shape of the sample surface is observed at the atomic level resolution from the determined vertical movement.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、走査型
トンネル顕微鏡を用いた場合、図11aに示されるよう
に、試料表面の凹凸のみならず、図11b,cに示され
るように試料表面に存在する異物等の不純物に対しても
トンネル電流が変動するため、試料表面に異物等の不純
物がある場合は、試料表面形状を正確に計測できず、ま
た、異物と不純物とを区別することもできない。
However, when the scanning tunneling microscope is used, not only the unevenness of the sample surface as shown in FIG. 11a but also the sample surface as shown in FIGS. 11b and 11c exist. Since the tunnel current also fluctuates with respect to impurities such as foreign substances, when the impurities such as foreign substances are present on the sample surface, the shape of the sample surface cannot be accurately measured, and the foreign substances and impurities cannot be distinguished.

【0006】一方、原子間力顕微鏡を用いた場合、図1
2aに示されるように試料表面の凹凸には反応するが、
図12bに示されるように試料表面に存在する異物等の
不純物には反応しないため、試料表面に存在する異物等
の不純物を計測できない。
On the other hand, when an atomic force microscope is used, FIG.
As shown in 2a, it reacts with the unevenness of the sample surface,
As shown in FIG. 12b, since it does not react with impurities such as foreign substances existing on the sample surface, impurities such as foreign substances existing on the sample surface cannot be measured.

【0007】そこで、本発明はこれらの問題点を解消す
るために創案されたものであって、試料表面の凹凸のみ
ならず試料表面に存在する異物等の不純物をも正確に計
測できる走査型プローブ顕微鏡の提供を目的とする。
Therefore, the present invention was devised in order to solve these problems, and it is a scanning probe capable of accurately measuring not only the unevenness of the sample surface but also impurities such as foreign substances existing on the sample surface. The purpose is to provide a microscope.

【0008】[0008]

【課題を解決するための手段】本発明は、走査型トンネ
ル顕微鏡用探針と原子間力顕微鏡用探針とを有し、走査
型トンネル顕微鏡と原子間力顕微鏡による試料表面形状
の計測をなしうる走査型プローブ顕微鏡であって、前記
走査型トンネル顕微鏡と前記原子間力顕微鏡による試料
表面形状の計測結果を比較することで、原子レベルの分
解能で試料表面の形状及び試料表面上に存在する不純物
情報を求める演算手段を備えたことを特徴とする。
The present invention has a probe for a scanning tunnel microscope and a probe for an atomic force microscope, and measures the sample surface shape by the scanning tunnel microscope and the atomic force microscope. A scanning probe microscope capable of comparing the measurement results of the sample surface shape by the scanning tunneling microscope and the atomic force microscope, and thereby the shape of the sample surface and impurities existing on the sample surface with atomic level resolution. It is characterized in that a calculation means for obtaining information is provided.

【0009】かかる演算手段は、前記走査型トンネル顕
微鏡と前記原子間力顕微鏡による試料表面形状の計測結
果を試料表面上の所定領域毎に比較し、その比較結果に
より、試料表面上の当該所定領域に存在する異物等の不
純物の有無を判断することを特徴とする。
The calculation means compares the measurement results of the sample surface shape by the scanning tunneling microscope and the atomic force microscope for each predetermined area on the sample surface, and based on the comparison result, the predetermined area on the sample surface. It is characterized in that the presence or absence of impurities such as foreign matter existing in the is determined.

【0010】また、本発明は、走査型トンネル顕微鏡用
探針と原子間力顕微鏡用探針とを有し、走査型トンネル
顕微鏡と原子間力顕微鏡による試料表面形状の計測をな
しうる走査型プローブ顕微鏡であって、前記原子間力顕
微鏡による試料表面形状の計測で得られた試料表面形状
の情報を記憶する表面形状記憶手段と、前記記憶された
情報に基づき、求められた試料表面形状に沿って走査型
トンネル顕微鏡用探針を走査する探針走査手段と、前記
走査により得られた信号に基づき信号変化が生じた部分
を検知し、変化が生じた部分に対応する試料表面上に不
純物が存在すると判断する演算手段と、を備えたことを
特徴とする。
Further, the present invention has a scanning tunnel microscope probe and an atomic force microscope probe, and a scanning probe capable of measuring a sample surface shape by the scanning tunnel microscope and the atomic force microscope. A microscope, a surface shape storage means for storing information of the sample surface shape obtained by measurement of the sample surface shape by the atomic force microscope, and along the obtained sample surface shape based on the stored information Probe scanning means for scanning the probe for a scanning tunnel microscope, and a portion where a signal change occurs based on the signal obtained by the scanning, and impurities are detected on the sample surface corresponding to the changed portion. And a calculation unit that determines that there is an existing unit.

【0011】[0011]

【発明の実施の形態】以下、本発明の一実施例を図1〜
図8に基づいて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will now be described with reference to FIGS.
A description will be given based on FIG.

【0012】図1は、本発明にかかる走査型プローブ顕
微鏡の全体図を示したもので、AFM用探針1aとその
ホルダ1bからなるAFM用探針部1とSTM用探針2
aとそのホルダ2bからなるSTM用探針部2が試料1
1aに対向して並列に配設されている。
FIG. 1 is an overall view of a scanning probe microscope according to the present invention, in which an AFM probe portion 1 comprising an AFM probe 1a and its holder 1b and an STM probe 2 are provided.
The STM probe part 2 consisting of a and its holder 2b is the sample 1
It is arranged in parallel to face 1a.

【0013】試料11aは、Z軸微動機構12、X,Y
微動機構13によってXYZ軸方向に微動可能に試料ホ
ルダ11に載置されており、Z軸微動機構12及び、
X,Y微動機構13は、Z軸ドライバ12a、及びX,
Y走査ドライバ13aを介してデータ処理制御手段4に
よって駆動制御される。また、試料11aは、その位置
決めなどのために、X,Y粗動ドライバ14aを介して
X,Y粗動ステージ14によって粗動されるよう構成さ
れている。
The sample 11a comprises a Z-axis fine movement mechanism 12, X, Y.
It is mounted on the sample holder 11 so that it can be finely moved in the XYZ axis directions by the fine movement mechanism 13, and the Z axis fine movement mechanism 12 and
The X, Y fine movement mechanism 13 includes a Z-axis driver 12a and X, Y,
The drive is controlled by the data processing control means 4 via the Y scan driver 13a. Further, the sample 11a is configured to be coarsely moved by the X, Y coarse movement stage 14 via the X, Y coarse movement driver 14a for positioning and the like.

【0014】データ処理制御手段4は、それぞれAFM
又はSTMによる試料11aの表面形状の計測を行うた
めの走査制御等をAFM用探針部1とSTM用探針部2
に対してなし、計測された試料11aの表面形状等の計
測結果を表示部5に表示する。
The data processing control means 4 are respectively AFMs.
Alternatively, scanning control or the like for measuring the surface shape of the sample 11a by STM is performed by the AFM probe unit 1 and the STM probe unit 2.
On the other hand, the measurement result such as the measured surface shape of the sample 11a is displayed on the display unit 5.

【0015】図2は、データ処理制御手段4の詳細ブロ
ック図を示しており、AFM計測回路4aは、AFM用
探針部1からAFM走査により得られた信号を計測処理
し、表面形状記憶部4bは、AFM計測回路4aでの計
測処理結果を表面形状を示すデータとして一時的に記憶
する。
FIG. 2 is a detailed block diagram of the data processing control means 4, in which the AFM measuring circuit 4a measures the signal obtained by the AFM scanning from the AFM probe portion 1 and the surface shape storage portion. 4b temporarily stores the measurement processing result in the AFM measurement circuit 4a as data indicating the surface shape.

【0016】STM探針駆動回路4cは、表面形状記憶
部4bに記憶された表面形状を示すデータに基づいて、
或いは、演算制御部4fの指示に基づき、STM用探針
部2の上下動の動作を制御する。STM計測回路4d
は、STM走査によりSTM用探針部2から得られたト
ンネル電流に関する信号を計測処理し、STM信号記憶
部4eは当該STM走査による計測結果を一時的に記憶
する。
The STM probe drive circuit 4c, based on the surface shape data stored in the surface shape storage unit 4b,
Alternatively, the vertical movement operation of the STM probe unit 2 is controlled based on an instruction from the arithmetic control unit 4f. STM measuring circuit 4d
Performs measurement processing of a signal related to the tunnel current obtained from the STM probe unit 2 by STM scanning, and the STM signal storage unit 4e temporarily stores the measurement result by the STM scanning.

【0017】演算制御部4fは、AFM計測回路4a、
STM探針駆動回路4c、及びSTM計測回路4dの動
作制御を行うと共に、AFM及びSTMにより得られた
計測結果から、試料11aの表面形状及び試料11a表
面に存在する異物等の不純物を認識し、表示部5に表示
させる。
The arithmetic control unit 4f includes an AFM measuring circuit 4a,
The operation control of the STM probe drive circuit 4c and the STM measurement circuit 4d is performed, and the surface shape of the sample 11a and impurities such as foreign substances present on the surface of the sample 11a are recognized from the measurement results obtained by the AFM and STM. It is displayed on the display unit 5.

【0018】また、演算制御部4fは、図1で示したZ
軸ドライバ12aを介してZ軸微動機構12を駆動する
ことで、AFM用探針1a、STM用探針2aと試料1
1a間をそれぞれ表面形状の計測が可能な距離に調整す
ると共に、X,Y走査ドライバ13aを介してX,Y微
動機構13を駆動することで、試料11aをXY平面上
で微動させ、AFM用探針1a、STM用探針2aの試
料11a表面上での走査制御を行う。
Further, the arithmetic control unit 4f is provided with Z shown in FIG.
By driving the Z-axis fine movement mechanism 12 via the axis driver 12a, the AFM probe 1a, the STM probe 2a and the sample 1
The distance between 1a is adjusted to a distance capable of measuring the surface shape, and the X and Y fine movement mechanism 13 is driven via the X and Y scan driver 13a to finely move the sample 11a on the XY plane, for AFM. The scanning control of the probe 1a and the STM probe 2a on the surface of the sample 11a is performed.

【0019】次に、本発明の作用例を図1、図2及びデ
ータ処理制御手段4の動作を示す図3のフローチャート
に基づいて説明する。
Next, an operation example of the present invention will be described with reference to FIGS. 1 and 2 and a flow chart of FIG. 3 showing the operation of the data processing control means 4.

【0020】AFM用探針1a、STM用探針2aに対
して試料11aをZ軸ドライバ12a等を介して表面形
状の計測をなしうるよう位置決めした後、XY走査ドラ
イバ13aを介してX,Y微動機構13を走査し、AF
M用探針部1から得られる信号をAFM計測回路4aで
処理して試料11aの表面形状の計測を行う。そして、
計測されたデータは表面形状記憶部4bに逐一記憶され
る(S1)。
After the sample 11a is positioned with respect to the AFM probe 1a and the STM probe 2a so that the surface shape can be measured via the Z-axis driver 12a and the like, X and Y are transmitted via the XY scanning driver 13a. The fine movement mechanism 13 is scanned for AF
The signal obtained from the M probe portion 1 is processed by the AFM measuring circuit 4a to measure the surface shape of the sample 11a. And
The measured data is stored in the surface shape storage unit 4b one by one (S1).

【0021】かかるAFM計測が計測対象となる試料1
1aの全領域について終了すると、STM探針駆動回路
4cは、演算制御部4fの指示に従い、表面形状記憶部
4bに記憶されたAFMによる試料11aの表面形状の
データを逐一読み出し、読み出した表面形状のデータに
基づき、STM用探針2aをその表面形状に沿って上下
動させる。これと併せて、演算制御部4fは、表面形状
記憶部4bから読み出された表面形状のデータが得られ
た試料11a上の特定位置にSTM用探針2aが位置す
るよう適宜XY走査ドライバ13a,X,Y微動機構1
3を介して試料11aを移動させる(S2)。なお、A
FM用探針1aとSTM用探針2aは上述したように、
所定間隔をおいて並列配置され、AFM用探針1aに対
するSTM用探針2aの位置が既知であるため、当該A
FMにより表面形状のデータが得られた試料11a上の
特定位置にSTM用探針2aを位置させることが可能と
なる。
Sample 1 to be measured by such AFM measurement
When the entire area of 1a is completed, the STM probe drive circuit 4c reads the surface shape data of the sample 11a by the AFM stored in the surface shape storage section 4b one by one according to the instruction of the arithmetic control section 4f, and reads the read surface shape. Based on the above data, the STM probe 2a is moved up and down along its surface shape. At the same time, the arithmetic control unit 4f appropriately sets the XY scanning driver 13a so that the STM probe 2a is positioned at a specific position on the sample 11a where the surface shape data read from the surface shape storage unit 4b is obtained. , X, Y fine movement mechanism 1
The sample 11a is moved through 3 (S2). Note that A
As described above, the FM probe 1a and the STM probe 2a are
Since the positions of the STM probe 2a with respect to the AFM probe 1a are arranged in parallel at a predetermined interval, the A
It becomes possible to position the STM probe 2a at a specific position on the sample 11a where the surface shape data was obtained by FM.

【0022】そして、STM用探針部2から走査につれ
て逐一得られるトンネル電流を示す信号をSTM計測回
路4dで処理し、計測処理されたデータをSTM信号記
憶部4eに逐一記憶する(S3)。
Then, the STM measuring circuit 4d processes the signal indicating the tunnel current obtained by scanning from the STM probe section 2 one by one, and the measured data is stored in the STM signal storage section 4e one by one (S3).

【0023】かかるSTM計測が計測対象となる試料1
1aの全領域について終了すると、演算制御部4fは、
STM信号記憶部4eから試料11aの所定領域におい
て得られたトンネル電流に関する計測データを読み出
し、読み出した計測データが所定値から外れる部分があ
るか否かを判断する(S4)。
Sample 1 to be measured by such STM measurement
When all the areas of 1a are completed, the arithmetic control unit 4f
The measurement data regarding the tunnel current obtained in the predetermined region of the sample 11a is read from the STM signal storage unit 4e, and it is determined whether or not there is a portion where the read measurement data deviates from the predetermined value (S4).

【0024】そして、所定値から外れる部分がない場合
は、異物や不純物がないものと判断して、試料11aの
当該所定領域のAFM計測データを表面形状記憶部4b
から読み出し、表示部5に、当該所定領域の表面形状を
表示する(S5)。
If there is no portion that deviates from the predetermined value, it is determined that there is no foreign matter or impurities, and the AFM measurement data of the predetermined area of the sample 11a is stored in the surface shape storage section 4b.
The surface shape of the predetermined area is displayed on the display unit 5 (S5).

【0025】ここで、図4は、試料表面に凹凸が存在す
るが異物は存在しない場合の例を示しており、この場
合、上述したAFM計測では凸部に応じた計測データが
得られるが、上述したSTM計測では、STM用探針2
aがAFM計測で得られた表面形状に従って走査される
ため、STM用探針2aと試料1a間が常に一定距離に
保たれ、両者間に流れるトンネル電流は一定となり、得
られる計測データは試料表面上の凸部に無関係に一定値
となる。このため、上述したSTMで得られた計測デー
タが一定値となる場合は、試料表面に異物や不純物が存
在しないものと判断される。
Here, FIG. 4 shows an example in which irregularities are present on the surface of the sample but no foreign matter is present. In this case, in the above-described AFM measurement, measurement data corresponding to the convex portion can be obtained. In the STM measurement described above, the STM probe 2
Since a is scanned according to the surface shape obtained by the AFM measurement, the STM probe 2a and the sample 1a are always kept at a constant distance, the tunnel current flowing between them is constant, and the obtained measurement data is the sample surface. It has a constant value regardless of the upper convex portion. Therefore, when the measured data obtained by the STM described above has a constant value, it is determined that no foreign matter or impurities are present on the sample surface.

【0026】上記S4で、計測データが所定値から外れ
る部分がある場合、その部分に対応する試料上に異物が
存在するものと判断して、当該所定領域のAFM計測デ
ータに基づき得られた試料表面形状を表示部5に表示さ
せると共に、トンネル電流に関するSTM計測データに
基づき、異物についても表示部5に併せて表示する(S
6)。
In step S4, if there is a portion where the measured data deviates from the predetermined value, it is judged that a foreign substance exists on the sample corresponding to that portion, and the sample obtained based on the AFM measured data of the predetermined area. The surface shape is displayed on the display unit 5, and the foreign matter is also displayed on the display unit 5 based on the STM measurement data regarding the tunnel current (S
6).

【0027】ここで、図5及び図6は、試料表面に異物
が存在する場合の例を示しており、上述したAFM計測
では異物も含めた試料表面形状のみに応じた計測データ
が得られ、上述したSTM計測では、STM用探針2a
と異物間に流れるトンネル電流が変化するため、異物に
応じた信号が得られ、異物の存在が認識できる。また、
その信号強度と異物の種類を対応づけることによって、
認識した異物の種類を類推することができる。
Here, FIGS. 5 and 6 show an example of the case where foreign matter is present on the sample surface. In the above-mentioned AFM measurement, measurement data corresponding to only the sample surface shape including the foreign matter is obtained, In the STM measurement described above, the STM probe 2a
Since the tunnel current flowing between the foreign matter and the foreign matter changes, a signal corresponding to the foreign matter can be obtained and the presence of the foreign matter can be recognized. Also,
By associating the signal strength with the type of foreign matter,
It is possible to infer the type of recognized foreign matter.

【0028】そして、これらの一連の動作(S4〜S
6)を試料11a上の全領域について行った後、計測動
作を終了する(S7)。
Then, a series of these operations (S4 to S
After performing 6) for all the regions on the sample 11a, the measurement operation is ended (S7).

【0029】以上の動作により、試料11aの表面形状
とその表面に存在する異物等の不純物を計測することが
可能となる。
By the above operation, it becomes possible to measure the surface shape of the sample 11a and impurities such as foreign substances existing on the surface.

【0030】次に、試料11aの表面形状とその表面に
存在する異物等の不純物を計測する本発明の他の実施例
をデータ処理制御手段4の動作を示す図7のフローチャ
ートに基づいて説明する。
Next, another embodiment of the present invention for measuring the surface shape of the sample 11a and impurities such as foreign substances existing on the surface will be described with reference to the flowchart of FIG. 7 showing the operation of the data processing control means 4. .

【0031】まず、AFM用探針1a、STM用探針2
aに対して試料11aをZ軸ドライバ12a等を介して
表面形状の計測をなしうるよう位置決めした後、XY走
査ドライバ13aを介してX,Y微動機構13を走査
し、AFM用探針部1から得られる信号をAFM計測回
路4aで処理して試料11aの表面形状の計測を行う。
そして、計測されたデータは表面形状記憶部4bに逐一
記憶される(S10)。かかるAFM計測が計測対象と
なる試料11aの全領域について終了すると、演算制御
部4fの指示に従い、XY走査ドライバ13a、X,Y
微動機構13を介して、AFM計測で計測対象となった
試料11aと同領域についてSTM用探針2aの走査が
なされると共に、STM用探針部2から逐一出力されS
TM計測回路4dを介して得られるトンネル電流に関す
るデータが一定値となるようSTM探針駆動回路4cを
介してSTM用探針部2の上下動の動作制御がなされ、
さらに演算制御部4fはその上下動から試料1a表面形
状を計測する(S11)。かかるSTM計測が計測対象
となる試料11aの全領域について終了すると、計測対
象となった試料11a上の所定領域について、得られた
AFM計測データとSTM計測データとを比較する(S
12)。
First, the AFM probe 1a and the STM probe 2
After positioning the sample 11a with respect to a so that the surface shape can be measured via the Z-axis driver 12a or the like, the X, Y fine movement mechanism 13 is scanned via the XY scanning driver 13a, and the AFM probe unit 1 The signal obtained from the above is processed by the AFM measurement circuit 4a to measure the surface shape of the sample 11a.
Then, the measured data is stored in the surface shape storage unit 4b one by one (S10). When the AFM measurement is completed for the entire area of the sample 11a to be measured, the XY scan drivers 13a, X, Y are instructed according to the instruction from the arithmetic control unit 4f.
Through the fine movement mechanism 13, the STM probe 2a scans the same region as the sample 11a that is the measurement target in the AFM measurement, and the STM probe unit 2 outputs each one S one by one.
Upward and downward motion control of the STM probe unit 2 is performed via the STM probe drive circuit 4c so that the data regarding the tunnel current obtained via the TM measurement circuit 4d becomes a constant value.
Further, the arithmetic control unit 4f measures the surface shape of the sample 1a from its vertical movement (S11). When the STM measurement is completed for all areas of the sample 11a to be measured, the obtained AFM measurement data and STM measurement data are compared for a predetermined area on the sample 11a to be measured (S).
12).

【0032】ここで、図8、a部に示されるように、試
料表面上に異物が存在しない領域では、AFM計測デー
タとSTM計測データは表面形状を示す情報として一致
するため、AFM計測データ又はSTM計測データをそ
のまま用いて試料表面形状を求めることができる。一
方、図8、b部に示されるように、試料表面上に異物が
存在する領域では、AFM計測により得られる計測デー
タは異物を含めた試料表面形状を忠実に再現し、STM
計測では、異物を含めた試料表面形状と異物に関する情
報を含めた計測データが得られることとなる。
Here, as shown in FIG. 8A, the AFM measurement data and the STM measurement data coincide with each other as information indicating the surface shape in a region where a foreign substance does not exist on the sample surface. The surface shape of the sample can be obtained by using the STM measurement data as it is. On the other hand, as shown in FIG. 8B, in the region where the foreign matter exists on the sample surface, the measurement data obtained by the AFM measurement faithfully reproduces the sample surface shape including the foreign matter, and the STM
In the measurement, the measurement data including the sample surface shape including the foreign matter and the information regarding the foreign matter will be obtained.

【0033】このため、まず、両計測データが一致する
か否かを判断し(S13)、一致する場合は、その部分
に不純物が存在しないものと判断してAFM計測データ
に基づいて試料表面形状を求め表示部5に表示させる
(S14)。なお、かかる場合、AFM計測データに換
えてSTM計測データに基づいて試料表面形状を求め表
示部5に表示させてもよいことはいうまでもない。
Therefore, first, it is determined whether or not the two measurement data match (S13). If they match, it is determined that no impurities are present in that portion, and the sample surface shape is determined based on the AFM measurement data. Is displayed on the display unit 5 (S14). In such a case, it goes without saying that the sample surface shape may be obtained based on the STM measurement data instead of the AFM measurement data and displayed on the display unit 5.

【0034】両計測データが一致しない場合は、試料表
面に異物が存在すると判断し、AFM計測データ及びS
TM計測データに基づいて試料表面に存在する異物情報
を抽出する(S15)。
If the two measurement data do not match, it is determined that a foreign substance is present on the sample surface, and the AFM measurement data and S
The foreign substance information existing on the sample surface is extracted based on the TM measurement data (S15).

【0035】すなわち、上述したAFM計測では異物を
含めた試料表面形状に応じた計測データが得られ、上述
したSTM計測では、異物を含めた試料表面形状と異物
に関する情報を含めた計測データが得られるため、ST
M計測データに基づいて得られる試料表面形状のデータ
からAFM計測データに基づいて得られる試料表面形状
のデータを差し引くことで、異物情報のみ抽出すること
ができる。
That is, in the above-mentioned AFM measurement, the measurement data corresponding to the sample surface shape including the foreign matter is obtained, and in the above-mentioned STM measurement, the measurement data including the sample surface shape including the foreign matter and the information on the foreign matter is obtained. ST
By subtracting the sample surface shape data obtained based on the AFM measurement data from the sample surface shape data obtained based on the M measurement data, only the foreign substance information can be extracted.

【0036】異物情報が抽出されると、抽出された異物
情報に基づき試料表面に存在する異物をAFM計測デー
タに基づいて得られる試料表面形状と共に表示部5に表
示する(S16)。
When the foreign matter information is extracted, the foreign matter existing on the sample surface based on the extracted foreign matter information is displayed on the display unit 5 together with the sample surface shape obtained based on the AFM measurement data (S16).

【0037】そして、上述した一連の動作(S12〜S
16)を試料11a上の全領域についての比較が終了す
るまで繰り返し行う(S17)。
Then, the series of operations described above (S12-S
16) is repeated until the comparison is completed for all areas on the sample 11a (S17).

【0038】以上の動作により、試料11aの表面形状
とその表面に存在する異物等の不純物を計測することが
可能となる。
By the above operation, it becomes possible to measure the surface shape of the sample 11a and impurities such as foreign substances existing on the surface.

【0039】なお、上述した実施例では、異物などの不
純物の存在を確認し、表示する例を示したが、上述した
異物情報について得られる計測値は、異物を構成する元
素固有の値を示すため、予め既知の元素について異物情
報としての固有の値を計測し保持しておくことで、異物
などの不純物の元素同定を行うことも可能である。
In the above-mentioned embodiment, the presence of impurities such as foreign matter is confirmed and displayed, but the measured value obtained for the above-mentioned foreign matter information indicates the value peculiar to the elements constituting the foreign matter. Therefore, it is also possible to perform element identification of impurities such as foreign matter by measuring and holding a unique value as foreign matter information for known elements in advance.

【0040】[0040]

【発明の効果】本発明によれば、走査型トンネル顕微鏡
用探針と原子間力顕微鏡用探針を併設し、走査型トンネ
ル顕微鏡と原子間力顕微鏡による試料表面形状の計測を
行い、両試料表面形状の計測結果を比較するよう構成し
たため、原子レベルの分解能で試料表面の形状及び試料
表面上の異物等の不純物情報を求めることが可能とな
る。
According to the present invention, a probe for a scanning tunnel microscope and a probe for an atomic force microscope are provided together, and the surface shape of the sample is measured by the scanning tunnel microscope and the atomic force microscope. Since it is configured to compare the measurement results of the surface shape, it is possible to obtain the shape of the sample surface and the impurity information such as foreign matter on the sample surface with atomic level resolution.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示した全体図である。FIG. 1 is an overall view showing an embodiment of the present invention.

【図2】本発明にかかるデータ処理制御手段の詳細ブロ
ック図である。
FIG. 2 is a detailed block diagram of data processing control means according to the present invention.

【図3】本発明にかかるデータ処理制御手段の動作を示
したフローチャートである。
FIG. 3 is a flowchart showing an operation of the data processing control means according to the present invention.

【図4】試料表面の状態に応じた得られるAFM信号と
STM信号の例を示す図である。
FIG. 4 is a diagram showing an example of an AFM signal and an STM signal obtained according to the state of the sample surface.

【図5】試料表面の状態に応じた得られるAFM信号と
STM信号の例を示す図である。
FIG. 5 is a diagram showing an example of an AFM signal and an STM signal obtained according to the state of the sample surface.

【図6】試料表面の状態に応じた得られるAFM信号と
STM信号の例を示す図である。
FIG. 6 is a diagram showing an example of an AFM signal and an STM signal obtained according to the state of the sample surface.

【図7】本発明にかかるデータ処理制御手段の動作を示
したフローチャートである。
FIG. 7 is a flowchart showing the operation of the data processing control means according to the present invention.

【図8】試料表面の状態に応じた得られるAFM信号と
STM信号の例を示す図である。
FIG. 8 is a diagram showing an example of an AFM signal and an STM signal obtained according to the state of the sample surface.

【図9】従来の走査型トンネル顕微鏡を示す概略図であ
る。
FIG. 9 is a schematic view showing a conventional scanning tunneling microscope.

【図10】従来の原子間力顕微鏡を示す概略図である。FIG. 10 is a schematic view showing a conventional atomic force microscope.

【図11】試料表面の状態に応じた得られるAFM信号
とSTM信号の例を示す図である。
FIG. 11 is a diagram showing an example of an AFM signal and an STM signal obtained according to the state of the sample surface.

【図12】試料表面の状態に応じた得られるAFM信号
とSTM信号の例を示す図である。
FIG. 12 is a diagram showing an example of an AFM signal and an STM signal obtained according to the state of the sample surface.

【符号の説明】[Explanation of symbols]

1・・・・AFM用探針部 1a・・・AFM用探針 2・・・・STM探針部 2a・・・STM用探針 4・・・・データ処理手段 1 ... AFM probe 1a ... AFM probe 2 ... STM probe 2a ... STM probe 4 ... Data processing means

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01J 37/28 H01J 37/28 Z Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI Technical display location H01J 37/28 H01J 37/28 Z

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 走査型トンネル顕微鏡用探針と原子間力
顕微鏡用探針とを有し、走査型トンネル顕微鏡と原子間
力顕微鏡による試料表面形状の計測をなしうる走査型プ
ローブ顕微鏡において、 前記走査型トンネル顕微鏡と前記原子間力顕微鏡による
試料表面形状の計測結果を比較することで、原子レベル
の分解能で試料表面の形状及び試料表面に存在する不純
物情報を求める演算手段を備えたことを特徴とする走査
型プローブ顕微鏡。
1. A scanning probe microscope having a scanning tunneling microscope probe and an atomic force microscope probe, which is capable of measuring a sample surface shape by the scanning tunneling microscope and the atomic force microscope. Comparing the measurement results of the sample surface shape with the scanning tunneling microscope and the atomic force microscope, it is equipped with a calculating means for obtaining the shape of the sample surface and the impurity information existing on the sample surface with atomic level resolution. Scanning probe microscope.
【請求項2】 走査型トンネル顕微鏡用探針と原子間力
顕微鏡用探針とを有し、走査型トンネル顕微鏡と原子間
力顕微鏡による試料表面形状の計測をなしうる走査型プ
ローブ顕微鏡において、 前記原子間力顕微鏡による試料表面形状の計測で得られ
た試料表面形状の情報を記憶する表面形状記憶手段と、 前記記憶された情報に基づき求められた試料表面形状に
沿って走査型トンネル顕微鏡用探針を走査する探針走査
手段と、 前記走査により得られた信号に基づき信号変化が生じた
部分を検知し、変化が生じた部分に対応する試料表面上
に不純物が存在すると判断する演算手段と、 を備えたことを特徴とする走査型プローブ顕微鏡。
2. A scanning probe microscope having a scanning tunneling microscope probe and an atomic force microscope probe, which is capable of measuring a sample surface shape by the scanning tunneling microscope and the atomic force microscope. Surface shape storage means for storing information on the sample surface shape obtained by measuring the surface shape of the sample by an atomic force microscope, and a scanning tunneling microscope probe along the sample surface shape obtained based on the stored information. A probe scanning unit that scans the needle, and a computing unit that detects a portion where a signal change occurs based on the signal obtained by the scanning and determines that impurities exist on the sample surface corresponding to the changed portion. And a scanning probe microscope.
JP2649196A 1996-02-14 1996-02-14 Scanning type probe microscope Pending JPH09218205A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2649196A JPH09218205A (en) 1996-02-14 1996-02-14 Scanning type probe microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2649196A JPH09218205A (en) 1996-02-14 1996-02-14 Scanning type probe microscope

Publications (1)

Publication Number Publication Date
JPH09218205A true JPH09218205A (en) 1997-08-19

Family

ID=12194979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2649196A Pending JPH09218205A (en) 1996-02-14 1996-02-14 Scanning type probe microscope

Country Status (1)

Country Link
JP (1) JPH09218205A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006220599A (en) * 2005-02-14 2006-08-24 Jeol Ltd Scanning probe microscope
JP2009036528A (en) * 2007-07-31 2009-02-19 Shimadzu Corp Measuring method of surface physical properties, and microfabrication method
WO2023030472A1 (en) * 2021-09-03 2023-03-09 百及纳米科技(上海)有限公司 Probe device, and probe control apparatus and method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006220599A (en) * 2005-02-14 2006-08-24 Jeol Ltd Scanning probe microscope
JP2009036528A (en) * 2007-07-31 2009-02-19 Shimadzu Corp Measuring method of surface physical properties, and microfabrication method
WO2023030472A1 (en) * 2021-09-03 2023-03-09 百及纳米科技(上海)有限公司 Probe device, and probe control apparatus and method

Similar Documents

Publication Publication Date Title
JP2837083B2 (en) Method and interaction apparatus for accurately measuring surface parameters excluding shape or performing shape related work
EP0497288B1 (en) Probe scanning system
JP4563117B2 (en) Microscope system, microscope system scanning method, and microscope system image composition method
JP3515364B2 (en) Apparatus, method and recording medium for examining topographical characteristics of sample surface
JPH10142240A (en) Scanning probe microscope and machining device equipped with this microscope
JPH09218205A (en) Scanning type probe microscope
JPH08233836A (en) Scanning probe microscope, standard device for calibrating height direction thereof and calibration method
JP2005233669A (en) Scanning probe microscope
CN110082566B (en) Scanning probe microscope
JP2011209073A (en) Program for making computer perform scanning of scanning type probe microscope
JPH09166607A (en) Scanning probe microscope and its measuring method
JP2003028772A (en) Scanning probe microscope and its measurement setting method
JP3671591B2 (en) Scanning probe microscope
JP3497913B2 (en) Scanning probe microscope and its measuring method
JPH085313A (en) Scanning type probe microscope
JP2003315241A (en) Scanning probe microscope
JP3597613B2 (en) Scanning probe microscope
JPH09145722A (en) Scanning probe microscope
JP2624008B2 (en) Scanning tunnel microscope
JP4131806B2 (en) Measuring method of scanning probe microscope
JPH09304408A (en) Measuring method by scanning probe microscope
JPH06258068A (en) Interatomic force microscope
JPH08226925A (en) Probe microscope and measurement method by the microscope
JP2000329675A (en) Scanning probe microscope
JP2002014025A (en) Probe scanning control device, scanning probe microscope by the same, probe scanning control method, and measuring method by the scanning control method