JPH09218024A - Method for inspecting surface unevenness of vegetable and fruit - Google Patents

Method for inspecting surface unevenness of vegetable and fruit

Info

Publication number
JPH09218024A
JPH09218024A JP8061577A JP6157796A JPH09218024A JP H09218024 A JPH09218024 A JP H09218024A JP 8061577 A JP8061577 A JP 8061577A JP 6157796 A JP6157796 A JP 6157796A JP H09218024 A JPH09218024 A JP H09218024A
Authority
JP
Japan
Prior art keywords
vegetables
fruits
image
fruit
vegetable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8061577A
Other languages
Japanese (ja)
Inventor
Takashi Tokuyama
隆 徳山
Shinichi Koyanagi
伸一 小柳
Tomoo Nogi
知生 野木
Akio Tateishi
明生 立石
Mitsutoshi Akai
光俊 赤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Denki Kogyo KK
Original Assignee
Daido Denki Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Denki Kogyo KK filed Critical Daido Denki Kogyo KK
Priority to JP8061577A priority Critical patent/JPH09218024A/en
Publication of JPH09218024A publication Critical patent/JPH09218024A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sorting Of Articles (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

PROBLEM TO BE SOLVED: To determine the grade of vegetables and fruits automatically by comparing the surface unevenness of a fruit being conveyed, detected from the gray image data at two points, with a preset threshold value. SOLUTION: The image of a material (vegetables and fruits) 10 being conveyed on a conveyor belt 2 at a constant speed is picked up at two points within a predetermined pickup period (e.g. 66ms) by means of a TV camera 3 and two gray images are inputted to an image processor 8. Two gray images picked up at two points are then subjected to A/D conversion and one image data is set with a match window. The gay level is interpolated for each window and a maximum position of correlation value is determined through cross correlation operation with other image. Subsequently, the distribution of height on the surface of a vegetable or fruit, i.e., the surface unevenness thereof, is determined from the parallax which is determined from the maximum position of correlation value for each match window. The surface unevenness is compared with a preset threshold value thus determining the grade of vegetables and fruits.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は果物、或いは、野菜の表
面検査を行い、等級判別する青果物表面検査方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fruit or vegetable surface inspection method for inspecting the surface of fruits or vegetables to determine the grade.

【0002】[0002]

【従来の技術】従来のテレビカメラを用いた画像処理に
よる青果物の等級判別装置は、曲がり、くびれ、尻こけ
等、判別素材全体の輪郭形状、或いは、色沢により等級
を判別するもので、裂開、皮脈、条溝等、判別素材の部
分的な凹凸形状に関しては、目視により検査が行われて
いる。
2. Description of the Related Art A conventional fruit and vegetable grade discriminating apparatus based on image processing using a television camera discriminates a grade based on the contour shape of a discrimination material as a whole, such as bending, constriction, buttocks, etc. Inspection is performed visually on the partial uneven shape of the discriminating material such as open, skin vein, groove and the like.

【0003】[0003]

【発明が解決しようとする課題】従来の判別素材の部分
的凹凸に関する目視検査は素材表面の細かい部分的欠陥
の検査ゆえ、人間が長時間連続して行うことは、目の疲
労が大きいことより困難であり、検査洩れが多く発生す
る原因となっている。又、複数の検査員により目視検査
する場合、凹凸の程度により、各検査員の判断により等
級判別される為、判別基準が一定でないという問題もあ
った。一方、判別素材の部分的表面形状に関する目視検
査に代わる、完全な自動化を可能にするための表面検査
方法はなかった。
Since the conventional visual inspection for the partial unevenness of the discriminating material is an inspection of fine local defects on the surface of the material, it is more difficult for a human to continuously perform it for a long time because it causes more eyestrain. It is difficult and causes many inspection omissions. In addition, when a visual inspection is performed by a plurality of inspectors, the class is determined by the judgment of each inspector according to the degree of unevenness, so that there is a problem that the determination standard is not constant. On the other hand, there has been no surface inspection method that enables complete automation instead of a visual inspection on the partial surface shape of the discrimination material.

【0004】本発明は上記実状に鑑み、等級判別素材の
部分的表面凹凸形状を処理能力を落とすことなく行え、
青果物の等級判別に於いて、完全に自動化可能な青果物
の等級判別方法を提供することを目的とする。
In view of the above situation, the present invention can perform the partial surface irregularity shape of the grade discrimination material without lowering the processing capacity,
An object of the present invention is to provide a method of classifying fruits and vegetables which can be completely automated in the classification of fruits and vegetables.

【0005】[0005]

【課題を解決するための手段】ベルトコンベア等の搬送
装置上を移動する青果物の2地点に於ける濃淡画像を用
い、一方の画像にマッチングウィンドウを設定し、マッ
チングウィンドウ毎に濃度補間処理した後、他方の画像
との相互相関演算を行い、相関値の最大位置を求め、各
マッチングウィンドウの相関値の最大位置より求められ
る青果物の、表面の高さの差に対し、青果物表面の凹凸
度合により、予め設定したしきい値により等級を判別す
るようにしたものである。
[Means for Solving the Problems] After using a grayscale image at two points of fruits and vegetables moving on a conveyor such as a belt conveyor, a matching window is set in one of the images, and density interpolation processing is performed for each matching window. , The cross-correlation calculation with the other image is performed, the maximum position of the correlation value is obtained, and the difference in surface height of the fruits and vegetables obtained from the maximum position of the correlation value of each matching window is compared with the unevenness of the surface of the fruits and vegetables. The grade is discriminated by a preset threshold value.

【0006】[0006]

【作用】1台のテレビカメラにより得られる青果物の2
地点に於ける画像間で、マッチングウィンドウ毎に相互
相関演算を行い、相関値の最大位置を求めることにより
マッチングウィンドウ毎に視差量が求まり、視差量より
青果物表面高さの分布である凹凸度合が分かり、等級を
判別することができる。
[Function] 2 of fruits and vegetables obtained by one TV camera
The parallax amount is obtained for each matching window by performing the cross-correlation calculation for each matching window between the images at the points, and the maximum position of the correlation value is obtained, and the unevenness degree that is the distribution of the fruit and vegetable surface height is calculated from the parallax amount. Understand and be able to distinguish grades.

【0007】[0007]

【実施例】以下、本発明の実施例を図面を用いて説明す
る。図1は、本発明に係わる青果物表面凹凸検査装置の
平面透視図で、図中1は、甘藷、馬鈴薯、人参等の野
菜、或いは、りんご、梨、桃等の果物で、表面の凹凸形
状が等級の判定要素になる素材10(図では甘藷を示
す)を搬送するべルトコンベア、2はコンベアベルト、
3はコンベアベルト2上の素材10を上方から撮像する
テレビカメラ、4、5は素材10を左右の側方から撮像
するテレビカメラ、6は、テレビカメラ4、5により撮
像される映像に、素材10以外の余計なものが映り込ま
ない様にするための背景板、7は素材10の上面及び両
側面を照明する照明装置、8はテレビカメラ3、4、5
からの映像信号をA/D変換し、得られたデジタル画像
データを画像処理することにより、素材10の表面凹凸
形状を検査し、等級を判別する画像処理装置、9はこれ
らの表面凹凸検査装置を構成する装置を収納する収納箱
である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a plan perspective view of a vegetable and fruit surface unevenness inspection apparatus according to the present invention. In FIG. 1, 1 is a vegetable such as sweet potato, potato, carrot, or fruit such as apple, pear, peach, etc. A belt conveyor that conveys a material 10 (showing sweet potatoes in the figure) that serves as a grade determination factor, 2 is a conveyor belt,
3 is a television camera that images the material 10 on the conveyor belt 2 from above, 4 and 5 are television cameras that image the material 10 from the left and right sides, and 6 is an image captured by the television cameras 4 and 5. A background plate to prevent extraneous objects other than 10 from being reflected, 7 is a lighting device that illuminates the upper surface and both side surfaces of the material 10, and 8 is a TV camera 3, 4, 5
An image processing device for inspecting the surface irregularity shape of the material 10 and discriminating the grade by A / D converting the video signal from the device and subjecting the obtained digital image data to image processing, and 9 is the surface irregularity inspection device. It is a storage box for storing the devices constituting the.

【0008】図2は図1に示す表面凹凸検査装置のa矢
視図で、図1と同一のものは同一の番号で示す。図中、
7aは高周波点灯される蛍光照明、7bは素材10に対
し、均一照明するための光拡散板である。
FIG. 2 is a view of the surface unevenness inspection apparatus shown in FIG. 1 as viewed from the direction of arrow a. The same parts as those in FIG. 1 are designated by the same reference numerals. In the figure,
Reference numeral 7a is a fluorescent light which is turned on at a high frequency, and 7b is a light diffusion plate for uniformly illuminating the material 10.

【0009】以上の構成による本実施例の青果物表面凹
凸検査方法について以下に説明する。図3は、本実施例
の青果物表面凹凸検査方法の処理フローで、本処理フロ
ーの順序に従い、説明する。
The method for inspecting the surface irregularities of fruits and vegetables according to this embodiment having the above-mentioned structure will be described below. FIG. 3 is a processing flow of the fruit and vegetable surface unevenness inspection method of this embodiment, which will be described in the order of this processing flow.

【0010】まず、2地点画像取込について説明する
と、図4は図1に示す表面凹凸検査装置のテレビカメラ
3による取込画像の視野部(図中破線3aにて示す)の
拡大斜視図で、ベルト2により素材10が一定速度にて
搬送される状態で、画像処理装置8によりテレビカメラ
3からのアナログ映像信号を一定取込周期(例えば66
ms)にて2画面取込まれ、順次A/D変換される。素
材10の位置がA点とB点の2地点でカメラ3により画
像が取込まれた場合のA、B2地点画像を、A点の画像
を図5(a)に、B点の画像を図5(b)に示す。
First, the two-point image capturing will be described. FIG. 4 is an enlarged perspective view of a visual field portion (indicated by a broken line 3a in the figure) of the captured image by the television camera 3 of the surface unevenness inspection apparatus shown in FIG. While the material 10 is being conveyed at a constant speed by the belt 2, the image processing device 8 causes the analog video signal from the television camera 3 to be taken in at a constant period (for example, 66).
ms), 2 screens are taken in and sequentially A / D converted. When the image of the material 10 is captured by the camera 3 at two points A and B, an image of points A and B is shown, an image of the point A is shown in FIG. 5A, and an image of the point B is shown. 5 (b).

【0011】次に、マッチングウィンドウ設定について
説明すると、マッチングウィンドウは、前記2地点の画
像の対応付けを行うための分割領域で、図5の(a)に
示すように、2地点の画像の片方に、画像を細かく分割
する多数のウィンドウを設定する。図5(a)では画像
の下部に設けてあるが、図5(b)に設ける場合は画像
上部に設ける。
Next, the setting of the matching window will be described. The matching window is a divided area for associating the images of the two points, and as shown in FIG. Set a number of windows to divide the image into small pieces. In FIG. 5A, it is provided at the bottom of the image, but in the case of FIG. 5B, it is provided at the top of the image.

【0012】次に、マッチングウィンドウ内の濃度補間
について図6を用いて説明すると、濃度補間の目的は、
前記2地点の画像の対応付けをサブピクセルの精度で行
うためのもので、図5(a)に示したマッチングウィン
ドウ内の画像データの位置をu,v座標で表し、座標位
置を(u,v)、(u,v+1)、(u+1,v)、
(u+1,v+1)とし、濃度値を各々f(u,
v)、f(u,v+1)、f(u+1,v)、f(u+
1,v+1)とし、濃度補間後の(u,v)位置の
濃度値をf(u,v)とすると、濃度値f(u
)は式にて演算される。 f(u,v)=f(u,v)(1−α)(1−β)
+f(u+1,v)α(1−β)+f(u,v+1)
(1−α)β+f(u+1, v+1)αβ……
Next, the density interpolation in the matching window will be described with reference to FIG.
This is for associating the images at the two points with sub-pixel accuracy. The position of the image data in the matching window shown in FIG. 5A is represented by u and v coordinates, and the coordinate position is represented by (u, v), (u, v + 1), (u + 1, v),
(U + 1, v + 1), and the density values are f (u,
v), f (u, v + 1), f (u + 1, v), f (u +
1, v + 1) and the density value at the (u 0 , v 0 ) position after density interpolation is f (u 0 , v 0 ), the density value f (u 0 ,
v 0 ) is calculated by an equation. f (u 0 , v 0 ) = f (u, v) (1-α) (1-β)
+ F (u + 1, v) α (1-β) + f (u, v + 1)
(1-α) β + f (u + 1, v + 1) αβ ...

【0013】α及びβは、元画像データ間を例えば各々
10等分して補間する場合は、図7に示す様に0.1、
0.2〜1という様に変化させ、各点の濃度値を求め
る。図ではα=0.4,β=0.3の位置を示す。図5
に示すマッチングウインドウ11を濃度補間した場合の
画像を図8に示す。
When the original image data is interpolated by dividing it into, for example, 10 parts, α and β are 0.1 and 0.1 as shown in FIG.
The density value at each point is obtained by changing the density value from 0.2 to 1. In the figure, positions at α = 0.4 and β = 0.3 are shown. FIG.
FIG. 8 shows an image when the density of the matching window 11 shown in FIG.

【0014】次に、図5(a)に示すA地点画像のマッ
チングウィンドウ内の濃度補間画像データと、図5
(b)に破線で示すB地点画像の一定範囲内(コンベア
ベルト2の速度と画像取込周期により決められる)の濃
度補間画像データとの対応付け走査を行う相互相関演算
について説明する。
Next, the density interpolation image data in the matching window of the point A image shown in FIG.
The cross-correlation calculation for performing the matching scan with the density interpolation image data within a certain range (determined by the speed of the conveyor belt 2 and the image capturing period) of the point B image indicated by the broken line in (b) will be described.

【0015】図9に示すように、A地点画像のマッチン
グウィンドウ内の濃度補間画像データをg(x,
y)、B地点の走査範囲内の濃度補間画像データをf
(x,y)とすると、正規化相互相関R(x,y)は、
画像データg(x,y)の中心座標を(k,ι)とする
と、式にて演算される。 ΣΣf(x,y)g(x−k,y−ι) Xy R(x,y)= ≦1 ΣΣf(x, y) ΣΣg(x− k, y−ι) xy Xy 式により演算された正規化相互相関値の分布を図
10に示す。この結果、最も相関の高い位肌をサブピク
セルの精度で求めることができる。
As shown in FIG. 9, the density interpolated image data in the matching window of the image at the point A is g (x,
y), the density-interpolated image data within the scanning range at the point B is expressed as f
Given (x, y), the normalized cross-correlation R (x, y) is
Assuming that the center coordinate of the image data g (x, y) is (k, ι), it is calculated by the equation. ΣΣf (x, y) g (x−k, y−ι) Xy R (x, y) = ≦ 1 ΣΣf 2 (x, y) ΣΣg 2 (x−k, y−ι) xy Xy The distribution of the normalized cross-correlation values is shown in FIG. As a result, the skin with the highest correlation can be obtained with sub-pixel accuracy.

【0016】次に、前記相互相関の最大値の位置より、
素材10のマッチングウィンドウで分割された領域の表
面の高さを、三角測量の原理による単眼ステレオ視を用
いて求める方法について、図11を用いて説明する。図
中、コンベアベルト2からの高さHに設定したカメラ位
置をO点とし、素材10の表面上の領域が、A点より一
定画像取込時間後にB点へ移動した場合、前記A地点画
像とB地点画像の相関演算の最大位置より求められる角
度α、βと、コンベア2の速度と画像取込み時間より求
められる実移動距離ιより、素材10の表面上の領域の
高さhは、式より求めることができる。 h=H−ι/(tanα+tanβ) ……………………
Next, from the position of the maximum value of the cross correlation,
A method for obtaining the height of the surface of the region divided by the matching window of the material 10 by using monocular stereoscopic vision based on the principle of triangulation will be described with reference to FIG. In the figure, when the camera position set to the height H from the conveyor belt 2 is set to O point, and the area on the surface of the material 10 moves from A point to B point after a certain image capturing time, the A point image Based on the angles α and β obtained from the maximum position of the correlation calculation between the image of B and the point B, and the actual moving distance ι obtained from the speed of the conveyor 2 and the image capture time, the height h of the area on the surface of the material 10 is calculated by You can ask more. h = H-ι / (tanα + tanβ) ……………………

【0017】前記マッチングウィンドウで分割された領
域の高さを求める処理を、素材10が映る部分の全ての
マッチングウィンドウに対して行えば、図12に示すよ
うに、素材10の実際の断面形状の輪郭に近い表面高さ
分布が得られる。ここで、前記マッチングウィンドウの
領域分割数を、相互相関演算により対応付けできる範囲
で、より細かく設定することにより、より実際の輪郭に
近い高さ分布を得ることができる。次に、高さ分布より
素材表面の凹凸度を求めるには、図12中Δhで示す高
低差を求めればよい。
If the processing for obtaining the heights of the areas divided by the matching window is performed for all matching windows of the portion where the material 10 is reflected, as shown in FIG. A surface height distribution close to the contour is obtained. Here, the height distribution closer to the actual contour can be obtained by setting the number of area divisions of the matching window more finely within a range that can be associated by the cross-correlation calculation. Next, in order to obtain the unevenness of the material surface from the height distribution, the height difference indicated by Δh in FIG. 12 may be obtained.

【0018】以上説明した処理を素材10の搬送に伴
い、順次取込まれる2画面に対し行えば、1個の素材表
面全体の凹凸度が求まり、凹凸度の最大値と、予め、皮
脈、条溝、裂開、等の凹凸度に対して決めたしきい値と
を比較することにより、等級が決定される。尚、説明で
は素材10を上方から撮像するテレビカメラ3の画像を
用いたが、素材10の左右側方から撮像するテレビカメ
ラ4、5の画像に於いても、同様にして凹凸度が求ま
り、素材10の上面、側面の表面凹凸度を含めて等級判
別を行うことができる。
If the above-described processing is performed on two screens that are sequentially captured as the material 10 is conveyed, the unevenness of the entire surface of one material can be obtained. The grade is determined by comparing with a threshold value determined for the degree of unevenness such as striations, tears, and the like. Although the image of the TV camera 3 that images the material 10 from above is used in the description, the degree of unevenness is similarly obtained in the images of the TV cameras 4 and 5 that image from the left and right sides of the material 10. The grade determination can be performed by including the surface unevenness of the upper surface and the side surface of the material 10.

【0019】又、図13に示す様に左右側方のカメラの
代わりに鏡12を設置し、上方のカメラ1台にて素材の
上面と側面を映るようにした装置に於いても同様に声材
の表面凹凸度を求めることができる。
Also, as shown in FIG. 13, a mirror 12 is installed in place of the left and right side cameras, and the upper and side surfaces of the material can be viewed by one upper camera. The surface roughness of the material can be obtained.

【0020】[0020]

【発明の効果】上述した様に、本発明は、ベルトコンベ
ア等の搬送装置上を移動する青果物の2地点に於ける濃
淡画像を用い、当該画像の濃度補間及び相互相関演算を
行うことにより、青果物の表面凹凸度合を求め、等級判
別できるようにしたことにより、従来、検査員による目
視に頼っていた青果物表面の凹凸検査が、自動で行える
ようになり、長時間の連続作業が困難であった目視検査
が自動化され、検出洩れがなく、判別結果も安定し、か
つ、従来の画像処理による表面検査装置に、何ら、新規
に装置を付加することなく実現できるという大きな効果
を有する。
As described above, according to the present invention, by using grayscale images at two points of fruits and vegetables moving on a conveyor such as a belt conveyor, density interpolation and cross-correlation calculation of the images are performed. By determining the degree of surface irregularity of fruits and vegetables and enabling classification to be performed, it is now possible to automatically perform an irregularity inspection of the surface of fruits and vegetables, which has traditionally relied on visual inspection by inspectors, making continuous work difficult for a long time. The visual inspection is automated, there is no omission of detection, the determination result is stable, and there is a great effect that it can be realized without adding any new device to the conventional surface inspection device by image processing.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係わる実施例の平面透視図FIG. 1 is a perspective plan view of an embodiment according to the present invention.

【図2】実施例の内部矢視図FIG. 2 is an internal view of the embodiment.

【図3】実施例の処理フロー図FIG. 3 is a processing flowchart of the embodiment.

【図4】テレビカメラ視野部拡大斜視図FIG. 4 is an enlarged perspective view of a television camera viewing area.

【図5】取込画像を示す図FIG. 5 is a diagram showing a captured image.

【図6】濃度補間を説町するための図FIG. 6 is a diagram for explaining density interpolation.

【図7】濃度補間データを説明するための図FIG. 7 is a diagram for explaining density interpolation data.

【図8】濃度補間画像を示す図FIG. 8 is a diagram showing a density interpolation image.

【図9】相互相関を説明するための図FIG. 9 is a diagram for explaining cross-correlation.

【図10】相互相関の分布を示す図FIG. 10 is a diagram showing distribution of cross-correlation.

【図11】単眼ステレオ視を説明するための図FIG. 11 is a diagram for explaining monocular stereo vision.

【図12】表面高さ分布を示す図FIG. 12 is a diagram showing a surface height distribution.

【図13】他の実施例の内部矢視図FIG. 13 is an internal arrow view of another embodiment.

【符号の説明】[Explanation of symbols]

1.ベルトコンベア 2.コンベアベルト 3.4.5.テレビカメラ 6.背景板 7.照明装置 8.画像処理装置 9.収納箱 10.素材 1. Belt conveyor 2. Conveyor belt 3.4.5. TV camera 6. Background plate 7. Lighting device 8. Image processing device 9. Storage box 10. Material

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 G06F 15/70 460D (72)発明者 立石 明生 東京都千代田区岩本町3丁目11番5号 大 同電機工業株式会社内 (72)発明者 赤井 光俊 東京都千代田区岩本町3丁目11番5号 大 同電機工業株式会社内Continuation of front page (51) Int.Cl. 6 Identification number Office reference number FI Technical indication location G06F 15/70 460D (72) Inventor Akio Tateishi 3-11-5 Iwamotocho, Chiyoda-ku, Tokyo Daido Electric Industry Incorporated (72) Inventor Mitsutoshi Akai 3-11-5 Iwamotocho, Chiyoda-ku, Tokyo Daido Electric Industry Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】青果物を搬送するベルトコンベア等の搬送
装置と、搬送装置上の青果物を撮像するテレビカメラ
と、搬送装置上の青果物の表面を照明する照明装置と、
テレビカメラからの映像信号をA/D変換し、A/D変
換された画像データに基づいて、青果物の表面を検査処
理する画像処理装置により構成される青果物表面検査装
置に於いて、搬送装置上を移動する青果物の2地点に於
ける濃淡画像データを用い、当該画像の一方の画像にマ
ッチングウィンドウを設定し、マッチングウィンドウ毎
に濃度補間処理した後、他方の画像との相互相関演算を
行い、相関値の最大位置を求め、各マッチングウィンド
ウの相関値の最大位置より求められる青果物表面の高さ
の差に対し、青果物表面の凹凸度合により、予め設定し
たしきい値により等級を判別することを特徴とする青果
物表面凹凸検査方法。
1. A transport device such as a belt conveyor for transporting fruits and vegetables, a television camera for imaging the fruits and vegetables on the transport device, and an illuminating device for illuminating the surface of the fruits and vegetables on the transport device.
In a fruit and vegetable surface inspection device including an image processing device for A / D converting a video signal from a television camera and inspecting the surface of the fruit and vegetables based on the A / D converted image data, Using the grayscale image data at two points of moving fruits and vegetables, a matching window is set in one of the images, the density interpolation processing is performed for each matching window, and the cross-correlation calculation with the other image is performed. Obtain the maximum position of the correlation value, for the difference in the height of the fruit and vegetable surface obtained from the maximum position of the correlation value of each matching window, depending on the degree of unevenness of the fruit and vegetable surface, it is possible to determine the grade by a preset threshold value. A characteristic method for inspecting the surface irregularities of fruits and vegetables.
JP8061577A 1996-02-13 1996-02-13 Method for inspecting surface unevenness of vegetable and fruit Pending JPH09218024A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8061577A JPH09218024A (en) 1996-02-13 1996-02-13 Method for inspecting surface unevenness of vegetable and fruit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8061577A JPH09218024A (en) 1996-02-13 1996-02-13 Method for inspecting surface unevenness of vegetable and fruit

Publications (1)

Publication Number Publication Date
JPH09218024A true JPH09218024A (en) 1997-08-19

Family

ID=13175128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8061577A Pending JPH09218024A (en) 1996-02-13 1996-02-13 Method for inspecting surface unevenness of vegetable and fruit

Country Status (1)

Country Link
JP (1) JPH09218024A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104036492A (en) * 2014-05-21 2014-09-10 浙江大学 Speckle extraction and adjacent point vector method-based fruit image matching method
CN107356198A (en) * 2016-12-24 2017-11-17 重庆都英科技有限公司 A kind of blank detecting system
WO2023082742A1 (en) * 2021-11-09 2023-05-19 南方电网科学研究院有限责任公司 Epoxy filler uniformity measurement method based on image detection

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104036492A (en) * 2014-05-21 2014-09-10 浙江大学 Speckle extraction and adjacent point vector method-based fruit image matching method
CN107356198A (en) * 2016-12-24 2017-11-17 重庆都英科技有限公司 A kind of blank detecting system
WO2023082742A1 (en) * 2021-11-09 2023-05-19 南方电网科学研究院有限责任公司 Epoxy filler uniformity measurement method based on image detection

Similar Documents

Publication Publication Date Title
KR100819412B1 (en) Defect detecting method and defect detecting device
US5146510A (en) Methods and apparatus for optically determining the acceptability of products
JPS60219504A (en) Measuring device for height of circuit element on substrate
JPH055709A (en) Screen inspection device
JPH09218024A (en) Method for inspecting surface unevenness of vegetable and fruit
JPH06103276B2 (en) Surface inspection device
JP3089079B2 (en) Circuit pattern defect inspection method
JPS59138904A (en) Checking method of surface defect of running plate body
JPS647549B2 (en)
JPH08297020A (en) Defect inspection method and apparatus therefor
JPS598988B2 (en) Object inspection equipment
JPH03108638A (en) Method of identifying particle aggregation pattern
JPS61126455A (en) Image processing method
JPH10111116A (en) Inspection device of unevenness of all-round surface of vegetables and fruits
JP3384631B2 (en) Inspection device for winding state of sheet
JP3038092B2 (en) Appearance inspection method
JPS6319543A (en) Binarizing processing method for variable density picture in picture processing
JPH0797410B2 (en) Image processing method
JP3132931B2 (en) Scratch inspection device
JPH06235625A (en) Inspecting apparatus for flaw
JPH0431751A (en) Defect detecting method by visual inspection
JPH086243Y2 (en) Chamfering dimension inspection device for machined parts
JPH1163950A (en) Method and device for inspecting object
JPH0627037A (en) Flaw inspecting apparatus
JPH048833B2 (en)