JPH09217964A - Magnetic refrigerating machine - Google Patents

Magnetic refrigerating machine

Info

Publication number
JPH09217964A
JPH09217964A JP8025076A JP2507696A JPH09217964A JP H09217964 A JPH09217964 A JP H09217964A JP 8025076 A JP8025076 A JP 8025076A JP 2507696 A JP2507696 A JP 2507696A JP H09217964 A JPH09217964 A JP H09217964A
Authority
JP
Japan
Prior art keywords
heat
magnetic
refrigerator
cryogenic fluid
magnetic body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8025076A
Other languages
Japanese (ja)
Other versions
JP3285751B2 (en
Inventor
Kenji Nakamichi
憲治 中道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP02507696A priority Critical patent/JP3285751B2/en
Publication of JPH09217964A publication Critical patent/JPH09217964A/en
Application granted granted Critical
Publication of JP3285751B2 publication Critical patent/JP3285751B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2321/00Details of machines, plants or systems, using electric or magnetic effects
    • F25B2321/002Details of machines, plants or systems, using electric or magnetic effects by using magneto-caloric effects
    • F25B2321/0021Details of machines, plants or systems, using electric or magnetic effects by using magneto-caloric effects with a static fixed magnet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/17Re-condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D19/00Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors
    • F25D19/006Thermal coupling structure or interface
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Abstract

PROBLEM TO BE SOLVED: To abolish mechanical means for moving the movable unit of a heat switch and increase refrigerating capacity by a method wherein the heat switch is constituted of a heat pipe, whose upper end unit is connected thermally to the cold heat generating unit of a Gifford McMahon refrigerating machine, and a movable unit, whose lower end unit is constituted of a heat transmitting magnetic body for discharging heat to the heat pipe. SOLUTION: A heat switch in a magnetic refrigerating machine is constituted of a copper block 36, a heat transmitting cryogenic fluid 34, a bellows 33 and a heat transmitting magnetic body 32. A heat pipe is constituted of a vessel 18, the copper block 36 and the heat transmitting cryogenic fluid 34. The heat switch, constituted of the combination of the heat transmitting magnetic body 32, moved up-and-down in accordance with the ON.OFF of the field of a superconductive magnet, and the heat pipe, is employed whereby a rod for moving the heat switch up-and-down mechanically becomes unnecessary, invading heat into the second stage 9 of cold head of the GM refrigerating machine is reduced and the generating amount of cold heat in the second stage 9 of cold head of GM refrigerating machine for depriving heat of the heat switch is increased. According to this method, refrigerating capacity is increased.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は極低温流体の再液化
に適用される磁気冷凍機に関するものである。
TECHNICAL FIELD The present invention relates to a magnetic refrigerator applied to reliquefaction of a cryogenic fluid.

【0002】[0002]

【従来の技術】図3は従来の磁気冷凍機の縦断面図であ
る。図において、1は侵入熱を低減するための断熱真空
容器、2は断熱真空容器のフランジ部である。3は常温
からの輻射熱をシールドするための液体窒素槽、4は液
体窒素、5は液体窒素4の供給管、6は蒸発した液体窒
素4の気化したガスの逃気管である。40はギフォード
・マクマホン冷凍機(以下GM冷凍機と略称する)、7
はGM冷凍機の第一段寒冷発生部で、8は液体窒素槽3
からの輻射侵入熱を抑制するために第一段寒冷発生部7
に取り付けられたシールド板である。9はGM冷凍機の
第二段寒冷発生部、10は第二寒冷発生部9と、熱スイ
ッチの銅の部分11とを熱的に結合させるための銅のブ
ロック。12は超伝導マグネット13の磁場をパルス的
に運転した時に発生するジュール発熱の影響を少なくす
るために用いられる絶縁物で、磁気冷凍サイクルの温度
範囲で熱伝導率の大きい水晶などを用いる。符号11,
12を付した部分から熱スイッチが構成されている。1
4は上下動機構を含んだステッピングモータ、15はス
テッピングモータ14を支持するための台、16は熱ス
イッチ11,12とステッピングモータ14とを結ぶロ
ッドである。17は熱スイッチ11,12がステッピン
グモータにより上下動するときにも、銅のブロック10
と熱的な接触を保つための、容易に変形の可能な銅製の
網、18は熱スイッチを収める容器であり、ヘリウムガ
ス19が満たされている。20は液化用磁性体で、例え
ば液化しようとする液化対象極低温流体21が水素など
の場合はGGG(Gd3 Ga5 12、ガドリニウム・ガ
リウム・ガーネット)等である。22はシール、23は
液化用磁性体20を押え、シール22に必要な圧力を供
給するためのバネ、24はバネの力を受け止めるための
フランジである。25は液化対象極低温流体21を収め
るための容器、26は液化用磁性体20を収めるための
容器で、27は0.5mm程度のギャップである。28は
超伝導マグネット13を冷却するための液体ヘリウム、
29は液体ヘリウム容器、30は液体ヘリウム28の注
入管。31は液体ヘリウム28の気化したガスの逃気管
である。
FIG. 3 is a longitudinal sectional view of a conventional magnetic refrigerator. In the figure, reference numeral 1 is an adiabatic vacuum container for reducing invasion heat, and 2 is a flange portion of the adiabatic vacuum container. Reference numeral 3 is a liquid nitrogen tank for shielding radiant heat from room temperature, 4 is liquid nitrogen, 5 is a supply pipe for liquid nitrogen 4, and 6 is an escape pipe for vaporized gas of vaporized liquid nitrogen 4. 40 is a Gifford McMahon refrigerator (hereinafter abbreviated as GM refrigerator), 7
Is the first stage cold generation part of the GM refrigerator, and 8 is the liquid nitrogen tank 3
1st stage cold generation part 7 to suppress radiant intrusion heat from
It is a shield plate attached to. Reference numeral 9 denotes a second stage cold generation part of the GM refrigerator, and 10 denotes a copper block for thermally coupling the second cold generation part 9 and the copper part 11 of the heat switch. Reference numeral 12 is an insulator used to reduce the influence of Joule heat generated when the magnetic field of the superconducting magnet 13 is operated in a pulsed manner, and is made of crystal or the like having a large thermal conductivity in the temperature range of the magnetic refrigeration cycle. Reference numeral 11,
A thermal switch is formed from the part indicated by 12. 1
Reference numeral 4 is a stepping motor including a vertical movement mechanism, 15 is a base for supporting the stepping motor 14, and 16 is a rod connecting the thermal switches 11 and 12 and the stepping motor 14. Reference numeral 17 denotes the copper block 10 even when the thermal switches 11 and 12 are moved up and down by the stepping motor.
An easily deformable copper net for maintaining thermal contact with the reference numeral 18 is a container for accommodating a thermal switch, and is filled with a helium gas 19. Reference numeral 20 denotes a liquefying magnetic material, which is, for example, GGG (Gd 3 Ga 5 O 12 , gadolinium gallium garnet) when the cryogenic fluid 21 to be liquefied is hydrogen or the like. Reference numeral 22 is a seal, 23 is a spring for pressing the liquefying magnetic body 20 to supply a necessary pressure to the seal 22, and 24 is a flange for receiving the force of the spring. Reference numeral 25 is a container for storing the cryogenic fluid 21 to be liquefied, 26 is a container for storing the magnetic material 20 for liquefaction, and 27 is a gap of about 0.5 mm. 28 is liquid helium for cooling the superconducting magnet 13,
29 is a liquid helium container, 30 is a liquid helium 28 injection pipe. Reference numeral 31 is an escape pipe for the vaporized gas of liquid helium 28.

【0003】上記構成の磁気冷凍機においては、以下の
過程を繰り返すことによって低温を発生し、液化対象極
低温流体21を極低温化する。 (1)断熱励磁過程:ステッピングモータ14により磁
性体20と熱スイッチ11,12が接触しない状態で超
伝導マグネット13により磁場が印加されると磁性体2
0の温度は上昇する。 (2)等温磁化過程:ある温度まで磁性体20の温度が
上昇すると、ステッピングモータ14により、熱スイッ
チ11,12が下降し、磁性体20と接触した状態で、
磁性体20に印加される磁場を増加させる。このとき磁
性体20は温度一定のままで、熱スイッチ11,12に
熱を放出する。 (3)断熱消磁過程:次にステッピングモータ14によ
り、熱スイッチ11,12を上昇させ、磁性体から離し
た状態で磁場を減少させる。このとき磁性体20の温度
は低下する。 (4)等温消磁過程:さらに磁場を減少させ、極低温流
体21の沸点まで磁性体の温度が低下すると、極低温流
体21はギャップ27において液化される。
In the magnetic refrigerator having the above structure, a low temperature is generated by repeating the following process, and the cryogenic fluid 21 to be liquefied is cryogenically cooled. (1) Adiabatic excitation process: When a magnetic field is applied by the superconducting magnet 13 with the stepping motor 14 not contacting the magnetic body 20 and the thermal switches 11 and 12, the magnetic body 2
The temperature of 0 rises. (2) Isothermal magnetization process: When the temperature of the magnetic body 20 rises to a certain temperature, the thermal switches 11 and 12 are lowered by the stepping motor 14 and in contact with the magnetic body 20,
The magnetic field applied to the magnetic body 20 is increased. At this time, the temperature of the magnetic body 20 remains constant and heat is released to the thermal switches 11 and 12. (3) Adiabatic degaussing process: Next, the stepping motor 14 raises the thermal switches 11 and 12 to decrease the magnetic field in a state of being separated from the magnetic body. At this time, the temperature of the magnetic body 20 decreases. (4) Isothermal demagnetization process: When the magnetic field is further reduced and the temperature of the magnetic substance drops to the boiling point of the cryogenic fluid 21, the cryogenic fluid 21 is liquefied in the gap 27.

【0004】[0004]

【発明が解決しようとする課題】上記従来の磁気冷凍機
では熱スイッチ11,12を上下動させるためのロッド
16を介して、GM冷凍機寒冷ヘッド第2段に侵入熱が
あり、熱スイッチ11,12から熱を奪うためのGM冷
凍機寒冷ヘッド第2段の寒冷発生量が減少していた。本
考案は以上の問題点を解決し、熱スイッチ可動部を動か
すための機械的手段を廃し、冷凍能力の大きい磁気冷凍
機を提供しようとするものである。
In the conventional magnetic refrigerator described above, there is invasion heat in the second stage of the GM refrigerator cold head through the rod 16 for moving the heat switches 11 and 12 up and down, and the thermal switch 11 , 12, the amount of cold generated in the second stage of the GM refrigerator cold head for removing heat from the cold was reduced. The present invention is intended to solve the above problems and to provide a magnetic refrigerator having a large refrigerating capacity by eliminating the mechanical means for moving the thermal switch movable part.

【0005】[0005]

【課題を解決するための手段】本発明は上記課題を解決
したものであって、液化対象極低温流体の収容容器、同
液化対象極低温流体を液化するために上記収容容器内に
設けられた液化用磁性体、同液化用磁性体の周囲に設置
され同液化用磁性体に磁場を加える超伝導マグネット、
寒冷発生部を有するギフォード・マクマホン冷凍機、及
び上記ギフォード・マクマホン冷凍機の寒冷発生部に熱
的に接続され下端部において外力によって上下に移動し
て上記液化用磁性体に離接する可動部を備えている熱ス
イッチによって構成される磁気冷凍機において、次の特
徴を有する磁気冷凍機に関するものである。 (1)上記熱スイッチを、上端部が上記ギフォード・マ
クマホン冷凍機の寒冷発生部に熱的に接続されているヒ
ートパイプと、同ヒートパイプの下端部において上下移
動可能に支持され上記超伝導マグネットの磁場により上
下移動して上記液化用磁性体に離接し上記ヒートパイプ
に放熱する伝熱用磁性体からなる可動部とによって構成
した。 (2)上記(1)項に記載の磁気冷凍機におけるヒート
パイプを、上記伝熱用磁性体を上下移動可能に支持する
ベローズを設けた容器と、同容器内に封入された上記液
化対象極低温流体より沸点の高い伝熱用極低温流体とか
ら構成した。 (3)上記(2)項に記載の磁気冷凍機において、その
ヒートパイプと上記ギフォード・マクマホン冷凍機の寒
冷発生部とを接続する部材としてその一部が上記ヒート
パイプ内に位置する銅ブロックを用い、同銅ブロックの
上記ヒートパイプ内に位置する部分に、蒸発した伝熱用
極低温流体を凝縮させるギャップを設けた。
DISCLOSURE OF THE INVENTION The present invention has been made to solve the above-mentioned problems and is provided in a container for storing a cryogenic fluid to be liquefied and in the container for liquefying the cryogenic fluid to be liquefied. Liquefaction magnetic body, superconducting magnet installed around the liquefaction magnetic body and applying a magnetic field to the liquefaction magnetic body,
A Gifford-McMahon refrigerator having a cold-generating part, and a movable part that is thermally connected to the cold-generating part of the Gifford-McMahon refrigerator and moves up and down by an external force at the lower end to contact and separate from the liquefying magnetic material. The present invention relates to a magnetic refrigerator having the following characteristics in a magnetic refrigerator configured by a heat switch that operates. (1) The heat switch has a heat pipe whose upper end is thermally connected to the cold generation part of the Gifford-McMahon refrigerator, and the superconducting magnet which is movably supported at the lower end of the heat pipe. And a movable part composed of a heat transfer magnetic body that moves up and down by the magnetic field of (1) to separate from and contact the liquefying magnetic body and radiate heat to the heat pipe. (2) A container provided with a bellows for supporting the heat transfer magnetic body in a vertically movable manner, and a liquefaction target electrode enclosed in the container for the heat pipe in the magnetic refrigerator according to the item (1). It is composed of a cryogenic fluid for heat transfer that has a higher boiling point than the cryogenic fluid. (3) In the magnetic refrigerator according to the item (2), a copper block, a part of which is located in the heat pipe, is used as a member for connecting the heat pipe and the cold generation part of the Gifford-McMahon refrigerator. A gap for condensing the evaporated cryogenic fluid for heat transfer was provided in the portion of the copper block located inside the heat pipe.

【0006】[0006]

【発明の実施の形態】図1は本発明の実施の一形態に係
る磁気冷凍機の縦断面図である。図には従来技術と同一
の構成部材には同一の符号を付してあるので説明は省略
する。図において、33はベローズ、32は同ベローズ
33に固定された伝熱用磁性体で、超伝導マグネット1
3がONになると電磁力により下降する。34は伝熱用
極低温流体で例えば液化対象極低温流体21がヘリウム
の場合はヘリウムより沸点の高い水素が用いられる。3
5は蒸発した伝熱用極低温流体が凝縮する幅0.5mm程
度のギャップで、36は蒸発した伝熱用極低温流体34
からギャップ35における凝縮によって奪った熱をGM
冷凍機寒冷ヘッド二段9へ伝える銅ブロックである。本
装置における熱スイッチは銅ブロック36、伝熱用極低
温流体34、ベローズ33および伝熱用磁性体32から
なる部分を指している。また、容器18、銅ブロック3
6、伝熱用極低温流体32はヒートパイプを構成してい
る。本実施形態においては、従来技術に設けられていた
ステッピングモータ14、支持台15、ロッド16、熱
スイッチ11,12は設けられていない。上記以外の部
分の構成は従来技術と同じである。
1 is a longitudinal sectional view of a magnetic refrigerator according to an embodiment of the present invention. In the figure, the same components as those in the conventional technique are designated by the same reference numerals, and the description thereof will be omitted. In the figure, 33 is a bellows, 32 is a magnetic material for heat transfer fixed to the bellows 33, and the superconducting magnet 1
When 3 is turned on, it descends due to electromagnetic force. Reference numeral 34 is a cryogenic fluid for heat transfer, and for example, when the cryogenic fluid 21 to be liquefied is helium, hydrogen having a boiling point higher than that of helium is used. 3
Reference numeral 5 is a gap having a width of about 0.5 mm in which the vaporized heat transfer cryogenic fluid is condensed, and 36 is the vaporized heat transfer cryogenic fluid 34.
The heat taken by the condensation in the gap 35 from the GM
It is a copper block that is transmitted to the refrigerator cold head two-stage 9. The thermal switch in the present apparatus refers to a portion including a copper block 36, a heat transfer cryogenic fluid 34, a bellows 33, and a heat transfer magnetic body 32. Also, container 18, copper block 3
6. The heat transfer cryogenic fluid 32 constitutes a heat pipe. In this embodiment, the stepping motor 14, the support 15, the rod 16, and the thermal switches 11 and 12 which are provided in the conventional technique are not provided. The configuration of other parts is the same as that of the related art.

【0007】図2は上記実施形態に用いられている熱ス
イッチの作動原理説明図であり、(a)は熱スイッチO
FFの状態、(b)は熱スイッチONの状態を示してい
る。この熱スイッチは機械的に熱スイッチを上下動する
ためのロッド等の機構が無くてもON・OFFが可能な
熱スイッチである。
FIG. 2 is an explanatory view of the operating principle of the thermal switch used in the above embodiment, (a) is a thermal switch O.
The state of FF, (b) shows the state of thermal switch ON. This thermal switch is a thermal switch that can be turned on and off without a mechanism such as a rod for mechanically moving the thermal switch up and down.

【0008】図において、超伝導マグネット13がON
になると、電磁力により伝熱用磁性体32は超伝導マグ
ネット13の磁場空間の中心に向かって下降するので、
伝熱用磁性体32は液化用磁性体20と接触し、熱スイ
ッチはONとなる(図2の(b))。このとき液化用磁
性体20は発熱しているので、この熱は伝熱用磁性体3
2を介して伝熱用極低温流体34に伝えられ、同伝熱用
極低温流体はさかんに蒸発する。蒸発した伝熱用極低温
流体34はギャップ35で凝縮し、蒸発した伝熱用極低
温流体34から奪われた熱は、銅ブロック36を介して
GM冷凍機寒冷ヘッド第二段9へ排熱される。次にふた
たび超伝導マグネットの磁場がOFFになると、伝熱用
磁性体32は液化用磁性体20から離れ、熱スイッチは
OFFとなる(図2の(a))。上記の熱スイッチでは
超伝導マグネット13と熱スイッチの先端にとりつけら
れた伝熱用磁性体32の間の電磁力により熱スイッチの
ON・OFFを行うので、熱スイッチを上下動するため
のロッドが不要となり、GM冷凍機寒冷ヘッド第二段へ
の侵入熱を低減できる。
In the figure, the superconducting magnet 13 is turned on.
Then, due to the electromagnetic force, the heat transfer magnetic body 32 descends toward the center of the magnetic field space of the superconducting magnet 13,
The heat transfer magnetic body 32 comes into contact with the liquefaction magnetic body 20, and the thermal switch is turned on ((b) of FIG. 2). At this time, since the liquefying magnetic body 20 is generating heat, this heat is transferred to the heat conducting magnetic body 3
It is transmitted to the heat transfer cryogenic fluid 34 via 2 and the heat transfer cryogenic fluid is rapidly evaporated. The evaporated heat transfer cryogenic fluid 34 is condensed in the gap 35, and the heat taken from the evaporated heat transfer cryogenic fluid 34 is exhausted to the GM refrigerator cold head second stage 9 via the copper block 36. Be done. Next, when the magnetic field of the superconducting magnet is turned off again, the heat transfer magnetic body 32 separates from the liquefying magnetic body 20 and the thermal switch is turned off ((a) in FIG. 2). In the heat switch described above, the heat switch is turned on and off by the electromagnetic force between the superconducting magnet 13 and the heat transfer magnetic body 32 attached to the tip of the heat switch. Therefore, the rod for moving the heat switch up and down is provided. It is not necessary and the heat entering the second stage of the GM refrigerator cold head can be reduced.

【0009】[0009]

【発明の効果】以上説明したように、本発明の磁気冷凍
機においては、超伝導マグネットの磁場のON・OFF
にともなって上下動する伝熱用磁性体とヒートパイプを
組み合わせた熱スイッチを用いているので、機械的に熱
スイッチを上下動するためのロッドが不要となり、GM
冷凍機寒冷ヘッド第二段への侵入熱を低減し、熱スイッ
チから熱を奪うためのGM冷凍機寒冷ヘッド第二段の寒
冷発生量を増加させる。したがって高性能な熱スイッチ
となっているので、磁気冷凍機の冷凍能力を増大させる
ことができる。
As described above, in the magnetic refrigerator of the present invention, the magnetic field of the superconducting magnet is turned on / off.
Since a heat switch that combines a heat transfer magnetic material that moves up and down with a heat pipe is used, a rod for mechanically moving the heat switch up and down is unnecessary, and the GM
It reduces the heat entering the second stage of the refrigerator cold head and increases the amount of cold generated in the second stage of the GM refrigerator cold head for removing heat from the heat switch. Therefore, since it is a high-performance heat switch, the refrigerating capacity of the magnetic refrigerator can be increased.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の一形態に係る磁気冷凍機の縦断
面図。
FIG. 1 is a longitudinal sectional view of a magnetic refrigerator according to an embodiment of the present invention.

【図2】上記実施形態に用いられている熱スイッチの作
動原理説明図。
FIG. 2 is an explanatory view of the operating principle of the thermal switch used in the above embodiment.

【図3】従来の磁気冷凍機の縦断面図。FIG. 3 is a vertical sectional view of a conventional magnetic refrigerator.

【符号の説明】[Explanation of symbols]

1 断熱真空容器 2 フランジ部 3 液体窒素槽 4 液体窒素 5 液体窒素供給管 6 窒素ガス逃気管 7 GM冷凍機第一段寒冷発生部 8 シールド板 9 GM冷凍機第二段寒冷発生部 10 銅ブロック 13 超伝導マグネット 18 熱スイッチ容器 20 液化用磁性体 21 液化対象極低温流体 22 シール 23 バネ 24 フランジ 25 液化対象極低温流体収納容器 26 液化用磁性体収納容器 27 ギャップ 28 液体ヘリウム 29 液体ヘリウム容器 30 液体ヘリウム注入管 31 ヘリウムガス逃気管 32 伝熱用磁性体 33 ベローズ 34 伝熱用極低温流体 35 ギャップ 36 銅ブロック 40 ギフォード・マクマホン(GM)冷凍機 1 Adiabatic Vacuum Container 2 Flange 3 Liquid Nitrogen Tank 4 Liquid Nitrogen 5 Liquid Nitrogen Supply Pipe 6 Nitrogen Gas Escape Pipe 7 GM Refrigerator 1st Stage Cold Generation 8 Shield Plate 9 GM Refrigerator 2nd Stage Cold Generation 10 Copper Block 13 Superconducting Magnet 18 Thermal Switch Container 20 Liquefaction Magnetic Material 21 Liquefaction Target Cryogenic Fluid 22 Seal 23 Spring 24 Flange 25 Liquefaction Target Cryogenic Fluid Storage Container 26 Liquefaction Magnetic Material Storage Container 27 Gap 28 Liquid Helium 29 Liquid Helium Container 30 Liquid helium injection pipe 31 Helium gas escape pipe 32 Heat transfer magnetic material 33 Bellows 34 Heat transfer cryogenic fluid 35 Gap 36 Copper block 40 Gifford McMahon (GM) refrigerator

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 液化対象極低温流体の収容容器、同液化
対象極低温流体を液化するために上記収容容器内に設け
られた液化用磁性体、同液化用磁性体の周囲に設置され
同液化用磁性体に磁場を加える超伝導マグネット、寒冷
発生部を有するギフォード・マクマホン冷凍機、及び上
記ギフォード・マクマホン冷凍機の寒冷発生部に熱的に
接続され下端部において外力によって上下に移動して上
記液化用磁性体に離接する可動部を備えている熱スイッ
チによって構成される磁気冷凍機において、上記熱スイ
ッチを、上端部が上記ギフォード・マクマホン冷凍機の
寒冷発生部に熱的に接続されているヒートパイプと、同
ヒートパイプの下端部において上下移動可能に支持され
上記超伝導マグネットの磁場により上下移動して上記液
化用磁性体に離接し上記ヒートパイプに放熱する伝熱用
磁性体からなる可動部とによって構成したことを特徴と
する磁気冷凍機。
1. A container for storing a cryogenic fluid to be liquefied, a liquefying magnetic body provided in the container for liquefying the cryogenic fluid to be liquefied, and a liquefying system installed around the liquefying magnetic body. A superconducting magnet for applying a magnetic field to a magnetic material for use, a Gifford-McMahon refrigerator having a cold-generating part, and the above-mentioned Gifford-McMahon refrigerator being thermally connected to the cold-generating part and vertically moved by an external force at the lower end. In a magnetic refrigerator comprising a thermal switch having a movable part which is brought into contact with and separated from a liquefying magnetic material, the thermal switch has an upper end portion thermally connected to a cold generating portion of the Gifford-McMahon refrigerator. A heat pipe and a lower end portion of the heat pipe are movably supported and vertically moved by a magnetic field of the superconducting magnet to come into contact with and separate from the liquefying magnetic body. A magnetic refrigerator comprising a movable part made of a heat transfer magnetic material that radiates heat to the heat pipe.
【請求項2】 上記ヒートパイプを、上記伝熱用磁性体
を上下移動可能に支持するベローズを設けた容器と、同
容器内に封入された上記液化対象極低温流体より沸点の
高い伝熱用極低温流体とから構成したことを特徴とする
請求項1に記載の磁気冷凍機。
2. A container provided with a bellows for supporting the heat transfer magnetic body so that the heat transfer magnetic body can move up and down, and a heat transfer container having a boiling point higher than that of the cryogenic fluid to be liquefied sealed in the container. The magnetic refrigerator according to claim 1, wherein the magnetic refrigerator comprises a cryogenic fluid.
【請求項3】 上記ヒートパイプと上記ギフォード・マ
クマホン冷凍機の寒冷発生部とを接続する部材としてそ
の一部が上記ヒートパイプ内に位置する銅ブロックを用
い、同銅ブロックの上記ヒートパイプ内に位置する部分
に、蒸発した伝熱用極低温流体を凝縮させるギャップを
設けたことを特徴とする請求項2に記載の磁気冷凍機。
3. A copper block, a part of which is located in the heat pipe, is used as a member for connecting the heat pipe to the cold generation part of the Gifford McMahon refrigerator, and the heat pipe of the copper block is used in the heat pipe. The magnetic refrigerator according to claim 2, wherein a gap for condensing the evaporated cryogenic fluid for heat transfer is provided in the located portion.
JP02507696A 1996-02-13 1996-02-13 Magnetic refrigerator Expired - Fee Related JP3285751B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02507696A JP3285751B2 (en) 1996-02-13 1996-02-13 Magnetic refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02507696A JP3285751B2 (en) 1996-02-13 1996-02-13 Magnetic refrigerator

Publications (2)

Publication Number Publication Date
JPH09217964A true JPH09217964A (en) 1997-08-19
JP3285751B2 JP3285751B2 (en) 2002-05-27

Family

ID=12155842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02507696A Expired - Fee Related JP3285751B2 (en) 1996-02-13 1996-02-13 Magnetic refrigerator

Country Status (1)

Country Link
JP (1) JP3285751B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2441652A (en) * 2006-09-08 2008-03-12 Gen Electric Cryocooler thermal link
EP2878903A1 (en) * 2013-11-29 2015-06-03 Oxford Instruments Nanotechnology Tools Limited Cryogenic cooling apparatus and system
CN105823262A (en) * 2015-01-06 2016-08-03 青岛海尔智能技术研发有限公司 Magnetic refrigerator
EP3584516A1 (en) * 2018-06-19 2019-12-25 Oxford Instruments Nanotechnology Tools Limited Cryogenic cooling system
WO2020005300A1 (en) 2018-06-29 2020-01-02 General Electric Company Remotely driven cryocooler for a superconducting generator
CN111947348A (en) * 2020-07-17 2020-11-17 同济大学 Composite cylinder thermal switch
CN112361644A (en) * 2020-11-24 2021-02-12 珠海格力电器股份有限公司 Magnetic cold accumulation assembly, cold accumulator, magnetic refrigeration system and magnetic refrigerator
CN115200247A (en) * 2022-07-11 2022-10-18 中国科学院上海技术物理研究所 Low-temperature structure of throttling refrigeration coupling adiabatic demagnetization refrigerator and implementation method
CN115200247B (en) * 2022-07-11 2024-05-07 中国科学院上海技术物理研究所 Low-temperature structure of throttling refrigeration coupling heat insulation demagnetizing refrigerator and implementation method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106091461B (en) * 2016-06-12 2018-11-23 铜陵天海流体控制股份有限公司 High-gain energy-saving type deep cooling machine

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2441652A (en) * 2006-09-08 2008-03-12 Gen Electric Cryocooler thermal link
GB2441652B (en) * 2006-09-08 2012-01-11 Gen Electric Thermal switch for superconducting magnet cooling system
EP2878903A1 (en) * 2013-11-29 2015-06-03 Oxford Instruments Nanotechnology Tools Limited Cryogenic cooling apparatus and system
US9927154B2 (en) 2013-11-29 2018-03-27 Oxford Instruments Nanotechnology Tools Limited Cryogenic cooling apparatus and system
CN105823262A (en) * 2015-01-06 2016-08-03 青岛海尔智能技术研发有限公司 Magnetic refrigerator
CN110617650A (en) * 2018-06-19 2019-12-27 牛津仪器纳米技术工具有限公司 Cryogenic cooling system
EP3584516A1 (en) * 2018-06-19 2019-12-25 Oxford Instruments Nanotechnology Tools Limited Cryogenic cooling system
CN110617650B (en) * 2018-06-19 2022-05-13 牛津仪器纳米技术工具有限公司 Cryogenic cooling system
WO2020005300A1 (en) 2018-06-29 2020-01-02 General Electric Company Remotely driven cryocooler for a superconducting generator
CN112585417A (en) * 2018-06-29 2021-03-30 通用电气公司 Remote-driven cryocooler for superconducting generator
EP3814698A4 (en) * 2018-06-29 2022-06-29 General Electric Company Remotely driven cryocooler for a superconducting generator
CN111947348A (en) * 2020-07-17 2020-11-17 同济大学 Composite cylinder thermal switch
CN112361644A (en) * 2020-11-24 2021-02-12 珠海格力电器股份有限公司 Magnetic cold accumulation assembly, cold accumulator, magnetic refrigeration system and magnetic refrigerator
CN115200247A (en) * 2022-07-11 2022-10-18 中国科学院上海技术物理研究所 Low-temperature structure of throttling refrigeration coupling adiabatic demagnetization refrigerator and implementation method
CN115200247B (en) * 2022-07-11 2024-05-07 中国科学院上海技术物理研究所 Low-temperature structure of throttling refrigeration coupling heat insulation demagnetizing refrigerator and implementation method

Also Published As

Publication number Publication date
JP3285751B2 (en) 2002-05-27

Similar Documents

Publication Publication Date Title
JP3265139B2 (en) Cryogenic equipment
US5638685A (en) Superconducting magnet and regenerative refrigerator for the magnet
US10203068B2 (en) Method and device for precooling a cryostat
GB2433581A (en) Closed-loop pre-cooling of cryogenically cooled equipment
JPH0357389B2 (en)
JPH09312210A (en) Cooling device and cooling method
JP3285751B2 (en) Magnetic refrigerator
JPH0878737A (en) Superconductive magnet
JP2513608B2 (en) Magnetic refrigeration method and apparatus
JP3233811B2 (en) Magnetic refrigerator
JPS6290910A (en) Cryogenic device
JP3310872B2 (en) Magnetic refrigerator
JP3572087B2 (en) Magnetic refrigerator for cooling pressurized liquid helium
JP3648265B2 (en) Superconducting magnet device
JP3310863B2 (en) Magnetic refrigeration equipment
JP3281740B2 (en) Refrigeration equipment
JP3310847B2 (en) Magnetic refrigeration equipment
JP2945153B2 (en) Stationary magnetic refrigerator
JP2893210B2 (en) Cryostat for high temperature superconducting magnetic shield
JPH09280686A (en) Magnetic freezer
JPH09113048A (en) Cryotemperature apparatus
JPH1038397A (en) Cooler
JPH09167704A (en) Attachable/detachable superconductive coil feed device and superconductive electromagnet device
JPH0918062A (en) Superconducting magnet device
Chandratilleke et al. Gas—Gap Thermal Switch for Precooling of Cryocooler—Cooled Superconducting Magnets

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020205

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080308

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090308

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100308

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110308

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees