JPH09217614A - Intake and exhaust valve drive control device for internal combustion engine - Google Patents

Intake and exhaust valve drive control device for internal combustion engine

Info

Publication number
JPH09217614A
JPH09217614A JP2453196A JP2453196A JPH09217614A JP H09217614 A JPH09217614 A JP H09217614A JP 2453196 A JP2453196 A JP 2453196A JP 2453196 A JP2453196 A JP 2453196A JP H09217614 A JPH09217614 A JP H09217614A
Authority
JP
Japan
Prior art keywords
cam
drive shaft
shaft
angle sensor
camshaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2453196A
Other languages
Japanese (ja)
Other versions
JP3569589B2 (en
Inventor
Akira Hidaka
章 日高
Masaharu Saito
正晴 斉藤
Seinosuke Hara
誠之助 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Unisia Automotive Ltd
Original Assignee
Unisia Jecs Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unisia Jecs Corp filed Critical Unisia Jecs Corp
Priority to JP2453196A priority Critical patent/JP3569589B2/en
Publication of JPH09217614A publication Critical patent/JPH09217614A/en
Application granted granted Critical
Publication of JP3569589B2 publication Critical patent/JP3569589B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Valve-Gear Or Valve Arrangements (AREA)
  • Valve Device For Special Equipments (AREA)

Abstract

PROBLEM TO BE SOLVED: To secure favourable detection precision of a rotational phase difference by a cam angle sensor by avoiding influence of rotational torque variation of a camshaft and to prevent abrasion, etc. SOLUTION: An operating angle of a suction valve 24 by a rotational phase difference between a drive shaft and a camshaft is controlled by changing relative angular velocity in accordance with concentric - eccentric oscillation of a control system 3 provided between the drive shaft 1 and the camshaft 2. An operation system 4 to control the above-mentioned control system has an electromagnetic pick up type cam angle sensor 30 to output an information signal to a controller 31 and is furnished with a projected part 32 for a pick-up of the cam angle sensor 30 between a first flange part 5 and a cam 2a of the camshaft. Additionally, the cam angle sensor 30 and the projected part 32 are set at a position where their pick-up point becomes the maximum point of a change of the above-mentioned rotational phase difference.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、例えば自動車用内
燃機関の運転状態に応じて吸気・排気弁の開閉時期を可
変にする吸排気弁駆動制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an intake / exhaust valve drive control device for varying the opening / closing timing of intake / exhaust valves in accordance with the operating state of an internal combustion engine for an automobile.

【0002】[0002]

【従来の技術】この種の従来の吸排気弁駆動制御装置と
しては、本出願人が先に出願した特願平7−85101
号に記載されているものがある。
2. Description of the Related Art As a conventional intake / exhaust valve drive control device of this type, Japanese Patent Application No. 7-85101 filed previously by the present applicant.
There are those described in the issue.

【0003】図9に基づいて概略を説明すれば、機関の
クランク軸から回転力が伝達される駆動軸1と、該駆動
軸1の外周に一定の隙間をもって同軸上に配置され、か
つ各気筒毎に分割されて、外周に図外の吸気弁を作動す
るカム2aを有するカムシャフト2と、該各カムシャフ
ト2の端部と駆動軸1との間に設けられて、両者の相対
的な回転位相を変化させる制御機構3と、該制御機構3
を機関運転状態に応じて偏心動させる作動機構4とを備
えている。
The outline will be described with reference to FIG. 9. The drive shaft 1 to which the rotational force is transmitted from the crankshaft of the engine and the outer periphery of the drive shaft 1 are coaxially arranged with a constant gap and each cylinder is arranged. The camshaft 2 is divided into parts and has a cam 2a for operating an intake valve (not shown) on the outer periphery, and the camshaft 2 is provided between the end of each camshaft 2 and the drive shaft 1. Control mechanism 3 for changing the rotation phase, and the control mechanism 3
And an operating mechanism 4 for eccentrically moving the engine according to the engine operating state.

【0004】前記制御機構3は、カムシャフト2の端部
と駆動軸1とに夫々設けられた第1,第2フランジ部
5,6と、該両フランジ部5,6間に設けられて内周に
環状ディスク7を回転自在に保持するディスクハウジン
グ8と、前記環状ディスク7と各フランジ部5,6との
間に介装されて駆動軸1の回転力を各カムシャフト2に
伝達する摺動自在な第1,第2ピン9,10とを有して
おり、この各ピン9,10は、2面巾の先端部9a,1
0aが前記両フランジ部5,6の外周部に形成されたU
字状の第1,第2係合溝11,12に摺動自在に設けら
れている。
The control mechanism 3 is provided between the first and second flange portions 5 and 6 provided on the end portion of the camshaft 2 and the drive shaft 1 and between the flange portions 5 and 6, respectively. A disc housing 8 that rotatably holds an annular disc 7 around its circumference, and a slide that is interposed between the annular disc 7 and each of the flange portions 5 and 6 to transmit the rotational force of the drive shaft 1 to each cam shaft 2. It has movable first and second pins 9 and 10, and each of these pins 9 and 10 has a tip portion 9a, 1 having a width across flats.
0a is a U formed on the outer peripheral portions of the flange portions 5 and 6
It is slidably provided in the character-shaped first and second engagement grooves 11 and 12.

【0005】また、作動機構4は、図8に示すようにカ
ムシャフト2とほぼ平行に配設されて、一端部にディス
クハウジング8を揺動させる偏心カム13が設けられた
制御シャフト14と、該制御シャフト14の他端部側に
設けられて、コントロールプレート14aを介して制御
シャフト14の回動位置を制御する油圧シリンダ15
と、該油圧シリンダ15内の第1,第2受圧室15a,
15bの油圧を図外のスプール弁を介して制御する電磁
アクチュエータ16と、制御シャフト14の回転角度位
置を検出する接触式のポテンショメータ17とを備えて
いる。
As shown in FIG. 8, the actuating mechanism 4 is arranged substantially parallel to the camshaft 2 and has a control shaft 14 provided with an eccentric cam 13 for swinging the disc housing 8 at one end thereof. A hydraulic cylinder 15 provided on the other end side of the control shaft 14 for controlling the rotational position of the control shaft 14 via a control plate 14a.
And the first and second pressure receiving chambers 15a in the hydraulic cylinder 15,
An electromagnetic actuator 16 for controlling the hydraulic pressure of 15b via a spool valve (not shown) and a contact type potentiometer 17 for detecting the rotational angle position of the control shaft 14 are provided.

【0006】前記油圧シリンダ15は、内部のピストン
18が各受圧室15a,15bの相対圧に応じて摺動し
て、ピストンロッド19を進退動させ、ピン20を介し
てコントロールプレート14aを正逆回動させるように
なっている。また、前記電磁アクチュエータ16は、コ
ンピュータ内蔵のコントローラ21から制御パルス信号
によって作動するようになっており、このコントローラ
21は、クランク角センサやエアーフローメータ等の各
種センサからの情報信号によって機関運転状態を検出す
ると共に、ポテンショメータ17からフィードバックさ
れた情報信号に基づいて駆動軸1とカムシャフト2との
回転位相差を検出している。
In the hydraulic cylinder 15, the internal piston 18 slides according to the relative pressure in the pressure receiving chambers 15a and 15b to move the piston rod 19 forward and backward, and the control plate 14a is normally or reversely moved via the pin 20. It is designed to rotate. The electromagnetic actuator 16 is operated by a control pulse signal from a controller 21 incorporated in the computer, and the controller 21 is operated by an information signal from various sensors such as a crank angle sensor and an air flow meter. And the rotational phase difference between the drive shaft 1 and the cam shaft 2 is detected based on the information signal fed back from the potentiometer 17.

【0007】前記ポテンショメータ17は、図8に示す
ように制御シャフト14の他端部にボルト22によって
固定されたカム23のカム面23aに摺動ロッド17a
が当接して、カム23の回動位置に応じて進退する摺動
ロッド17aの摺動位置によって抵抗電圧を変化させる
にようになっている。
The potentiometer 17 has a sliding rod 17a on a cam surface 23a of a cam 23 fixed to the other end of the control shaft 14 by a bolt 22, as shown in FIG.
Are brought into contact with each other, and the resistance voltage is changed depending on the sliding position of the sliding rod 17a which advances and retreats according to the rotational position of the cam 23.

【0008】そして、機関低回転時には、コントローラ
20から電磁アクチュエータ16に制御パルス信号のデ
ューティ比を変化させて、図外のスプール弁を作動さ
せ、これによって、油圧シリンダ15のピストンロッド
19を進出させることによりコントロールプレート14
aを介して制御シャフト14が図中時計方向へ回転す
る。このため、偏心カム13によってディスクハウジン
グ8が揺動して、環状ディスク7の中心が駆動軸1のX
から偏心する。
When the engine is running at low speed, the duty ratio of the control pulse signal is changed from the controller 20 to the electromagnetic actuator 16 to operate the spool valve (not shown), whereby the piston rod 19 of the hydraulic cylinder 15 is advanced. By the control plate 14
The control shaft 14 rotates clockwise in the figure via a. Therefore, the disc housing 8 is swung by the eccentric cam 13 so that the center of the annular disc 7 becomes X of the drive shaft 1.
Eccentric from.

【0009】このため、第1,第2ピン9,10が、駆
動軸1の1回転毎に第1,第2係合溝11,12に沿っ
て径方向に摺動し、第2ピン10が駆動軸1の軸心Xに
接近する場合は、第1ピン9は軸心Xから離れる関係に
なる。したがって、この場合は、環状ディスク7は、駆
動軸1に対して角速度が大きくなり、カムシャフト2の
角速度も大きくなる。このため、カムシャフト2は駆動
軸1に対して2重に増速された状態になる。したがっ
て、駆動軸1とカムシャフト2の回転位相差が図10B
に示すように変化し、カムシャフト2の角速度が相対的
に大きい場合は、駆動軸1に対する回転位相は両者1,
2が等速になるまで進み、やがてカムシャフト2の角速
度が相対的に小さくなると、回転位相は両者1,2が等
速になるまで遅れる。
For this reason, the first and second pins 9 and 10 slide in the radial direction along the first and second engaging grooves 11 and 12 for each rotation of the drive shaft 1, and the second pin 10 is moved. When is close to the axis X of the drive shaft 1, the first pin 9 is separated from the axis X. Therefore, in this case, the annular disc 7 has a large angular velocity with respect to the drive shaft 1, and the camshaft 2 also has a large angular velocity. Therefore, the camshaft 2 is in a state in which the speed is doubled with respect to the drive shaft 1. Therefore, the rotational phase difference between the drive shaft 1 and the cam shaft 2 is as shown in FIG. 10B.
When the angular velocity of the camshaft 2 is relatively large, the rotational phase with respect to the drive shaft 1 is
When the angular velocity of the camshaft 2 becomes relatively small, the rotational phase is delayed until the rotational speeds of the camshaft 2 and the camshaft 2 become uniform.

【0010】そして、図10Bで示すように回転位相差
の各振幅の最大点(Q点)間の途中に同位相点Pが存在
し、同図Bの回転位相の変化では、弁の作動角が図10
Aの破線で示すようにP点よりも前の開弁時期が遅れ、
P点より後の閉弁時期が進み、全体に小さく制御され
る。したがって、吸気弁24のバルブオーバラップが小
さくなり、燃焼室の残留ガスが減少し、安定した燃焼に
より燃費の向上が図れる。また、早い閉弁時期制御によ
り吸気充填効率が向上し、低速トルクを高めることがで
きる。
As shown in FIG. 10B, the same phase point P exists in the middle of the maximum points (Q points) of the respective amplitudes of the rotational phase difference, and the change in the rotational phase in FIG. Is shown in FIG.
As shown by the broken line A, the valve opening timing before point P is delayed,
The valve closing timing after point P advances, and the overall control is made small. Therefore, the valve overlap of the intake valve 24 is reduced, the residual gas in the combustion chamber is reduced, and stable combustion improves fuel efficiency. Further, the intake valve charging efficiency is improved by the early valve closing timing control, and the low speed torque can be increased.

【0011】一方、機関高回転時には、環状ディスク7
の中心が駆動軸1の軸心Xに合致して、駆動軸1とカム
シャフト2との回転位相差が生じない。したがって、駆
動軸1の回転に伴い制御機構3を介してカムシャフト2
が駆動軸1と同期回転し、カム6,6による吸気弁24
の作動角が図10Aの実線で示すように大きくなり、開
弁時期が早くなると共に、閉弁時期が遅くなるため、吸
気慣性力を利用した吸気充填効率が向上する。
On the other hand, at the time of high engine speed, the annular disk 7
Does not coincide with the axis X of the drive shaft 1, and there is no difference in rotational phase between the drive shaft 1 and the camshaft 2. Therefore, as the drive shaft 1 rotates, the camshaft 2 passes through the control mechanism 3.
Rotates synchronously with the drive shaft 1, and the intake valves 24 by the cams 6 and 6
10A becomes large as shown by the solid line in FIG. 10A, the valve opening timing is advanced and the valve closing timing is delayed, so that the intake charging efficiency using the intake inertial force is improved.

【0012】[0012]

【発明が解決しようとする課題】ところで、前記カムシ
ャフト2には、通常、吸気弁24の開閉時つまりカムリ
フト初期ととダウン終期にバルブスプリングのばね力等
に起因して正負の回転トルク変動(交番トルク変動)が
発生していることは周知の通りである。
By the way, the camshaft 2 usually has positive and negative rotational torque fluctuations due to the spring force of the valve spring when the intake valve 24 is opened and closed, that is, at the beginning and end of the cam lift. It is well known that the alternating torque fluctuation) occurs.

【0013】ところが、前記従来の装置にあっては、制
御シャフト14の回転角度位置を検出するポテンショメ
ータ17は、前述のように摺動ロッド17aがカム面2
3aに摺接しながら進退動して抵抗電圧を変化させるこ
とにより、制御シャフト14の回転角度位置を検出する
ようになっている。このため、前述のカムシャフト2に
発生する正負の回転トルク変動がシャフト14に伝達さ
れ、さらにカム23及び摺動ロッド17aを介してポテ
ンショメータ17の内部に伝達されてしまう。この結
果、ポテンショメータ17に内蔵されたブラシと抵抗体
との間に振動が発生して、カム回転角度の検出精度の低
下を招くばかりか、該ブラシと抵抗体が摩耗してしまう
おそれがある。
However, in the conventional device, the potentiometer 17 for detecting the rotational angle position of the control shaft 14 has the sliding rod 17a as the cam surface 2 as described above.
The rotational angle position of the control shaft 14 is detected by moving back and forth while making sliding contact with the 3a to change the resistance voltage. Therefore, the positive and negative rotational torque fluctuations generated in the camshaft 2 are transmitted to the shaft 14 and further transmitted to the inside of the potentiometer 17 via the cam 23 and the sliding rod 17a. As a result, vibration is generated between the brush and the resistor built in the potentiometer 17, which not only lowers the detection accuracy of the cam rotation angle, but also wears the brush and the resistor.

【0014】[0014]

【課題を解決するための手段】本発明は、前記従来の課
題に鑑みて案出されたもので、請求項1記載の発明は、
機関によって回転駆動される駆動軸と、該駆動軸の同軸
上に相対回転自在に設けられ、外周に吸排気弁を作動さ
せるカムを有するカムシャフトと、前記駆動軸の軸心に
対して同心あるいは偏心動して駆動軸とカムシャフトと
の相対的な回転位相を変化させることにより、前記吸排
気弁の作動角を可変にする制御機構と、機関運転状態に
応じて前記制御機構を駆動軸の軸心に対して揺動させる
作動機構とを備え、該作動機構は駆動軸とカムシャフト
との回転位相差を算出するコントローラを有する吸排気
弁駆動制御装置において、前記カムシャフトの回転角度
を検出して、該回転角度情報信号を前記コントローラに
出力するカム角センサを前記カムシャフトと非接触状態
に設けると共に、前記カムシャフトの外周所定位置にカ
ム角センサのピックアップ用の突起部を設け、前記カム
角センサによる突起部のピックアップポイントを、駆動
軸とカムシャフトとの回転位相差が発生する位置に設定
したことを特徴としている。
SUMMARY OF THE INVENTION The present invention has been devised in view of the above-mentioned conventional problems.
A drive shaft that is rotationally driven by the engine, a cam shaft that is provided relatively rotatably on the same axis as the drive shaft, and has a cam that operates an intake / exhaust valve on the outer circumference, and a cam shaft that is concentric with the drive shaft. A control mechanism that eccentrically moves to change the relative rotational phase of the drive shaft and the camshaft to change the operating angle of the intake and exhaust valves, and the control mechanism that changes the drive shaft of the drive shaft according to the engine operating state. An intake / exhaust valve drive control device having a controller for calculating a rotational phase difference between a drive shaft and a cam shaft, the operating mechanism detecting the rotational angle of the cam shaft. Then, a cam angle sensor that outputs the rotation angle information signal to the controller is provided in a non-contact state with the cam shaft, and the cam angle sensor is picked up at a predetermined position on the outer circumference of the cam shaft. A protrusion for up provided, the pick-up point of the protrusion by the cam angle sensor, the rotational phase difference between the drive shaft and the cam shaft is characterized in that it is set to a position that occurs.

【0015】請求項2の発明は、前記カム角センサによ
る突起部のピックアップポイントを、駆動軸とカムシャ
フトの回転位相差の変化の最大点に設定したことを特徴
としている。
The invention of claim 2 is characterized in that the pick-up point of the projection by the cam angle sensor is set to the maximum point of change in the rotational phase difference between the drive shaft and the cam shaft.

【0016】請求項3の発明は、前記突起部を、前記カ
ムのカムノーズ部としたことを特徴としている。
The invention of claim 3 is characterized in that the protrusion is a cam nose portion of the cam.

【0017】本発明によれば、駆動軸とカムシャフトと
の回転位相差を検出するために従来のような接触式のポ
テンショメータを用いるのではなく、駆動軸の回転角度
を検出する例えば光センサ回転角センサと、カムシャフ
トの回転角度位置を検出する例えば電磁ピックアップ型
のカム角センサを用いるため、該カム角センサとカムシ
ャフトとは非接触状態となる。したがって、カム角セン
サは、カムシャフトの回転トルク変動の影響を全く受け
ない。
According to the present invention, instead of using the conventional contact type potentiometer for detecting the rotational phase difference between the drive shaft and the cam shaft, for example, an optical sensor rotation for detecting the rotational angle of the drive shaft is used. Since the angle sensor and, for example, an electromagnetic pickup type cam angle sensor that detects the rotational angle position of the cam shaft are used, the cam angle sensor and the cam shaft are in a non-contact state. Therefore, the cam angle sensor is completely unaffected by fluctuations in the rotational torque of the camshaft.

【0018】[0018]

【発明の実施の形態】図1は本発明の第1実施例を示
し、駆動軸1やカムシャフト2及び該両者1,2の回転
位相差を変化させる制御機構3,作動機構4等の基本構
成は前記従来例と同様であるから重複説明は省略する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a first embodiment of the present invention, in which a drive shaft 1, a cam shaft 2, a control mechanism 3 for changing a rotational phase difference between the both 1, 2 and an operating mechanism 4, etc. Since the configuration is the same as that of the conventional example, duplicate description will be omitted.

【0019】本発明は、従来のポテンショメータを廃止
して、駆動軸1は、光センサ等の回転角センサによって
回転角度位置を検出する一方、カムシャフト2は電磁ピ
ックアップ型のカム角センサ30によって回転角度位置
が検出され、夫々の情報信号をコントローラ31に出力
するようになっている。
The present invention eliminates the conventional potentiometer, and the drive shaft 1 detects the rotational angle position by a rotational angle sensor such as an optical sensor, while the camshaft 2 rotates by an electromagnetic pickup type cam angle sensor 30. The angular position is detected and each information signal is output to the controller 31.

【0020】具体的に説明すれば、前記カム角センサ3
0は、図1及び図2に示すように例えばロッカカバー等
に固定されて、カムシャフト2とは非接触状態になって
いる一方、カムシャフト2のカム2aと第1プランジャ
5との間の外周面にピックアップ用の突起部32が径方
向に沿って突設されている。また、前記カム角センサ3
0と突起部32とは、その合致点、つまりピックアップ
ポイントが、図2に示すように環状ディスク7の偏心時
(小作動角時)における駆動軸1とカムシャフト2との
回転位相差が発生しないP点(同心)位置ではなく、回
転位相差の最大点(Q点)の位置に夫々が相対配置され
ている。
More specifically, the cam angle sensor 3 will be described.
0 is fixed to, for example, a rocker cover or the like as shown in FIGS. 1 and 2, and is in a non-contact state with the camshaft 2, while the cam 0 between the cam 2a of the camshaft 2 and the first plunger 5 is A protrusion 32 for pickup is provided on the outer peripheral surface so as to protrude in the radial direction. In addition, the cam angle sensor 3
0 and the protrusion 32 have a coincident point, that is, a pickup point, a rotational phase difference between the drive shaft 1 and the cam shaft 2 when the annular disc 7 is eccentric (at a small operating angle) as shown in FIG. Instead of the P point (concentric) position which is not performed, each is relatively arranged at the position of the maximum point (Q point) of the rotational phase difference.

【0021】ところで、機関高回転域から低回転域に移
行した際に、制御シャフト14を大作動角側から小作動
角側へ制御するように回転させると、駆動軸1とカムシ
ャフト2の回転位相差は、図2及び図3に示すように最
大作動角状態における小さな回転位相差から連続的に増
大する。そして、この増大量を前記駆動軸1の回転角セ
ンサ33とカムシャフト2のカム角センサ30から夫々
出力された情報信号に基づいてコントローラ31が作動
角量に換算する。
By the way, when the control shaft 14 is rotated so as to control from the large operating angle side to the small operating angle side at the time of shifting from the high engine speed region to the low engine speed region, the drive shaft 1 and the cam shaft 2 rotate. The phase difference continuously increases from a small rotational phase difference in the maximum operating angle state as shown in FIGS. 2 and 3. Then, the controller 31 converts this increase amount into an operating angle amount based on the information signals output from the rotation angle sensor 33 of the drive shaft 1 and the cam angle sensor 30 of the cam shaft 2, respectively.

【0022】すなわち、このコントローラ31は、図5
に示すように前記回転角センサ33とカム角センサ30
から駆動軸1とカムシャフト2の現在の夫々の回転角度
位置を入力して両者1,2の回転位相差を算出する回転
位相差検出手段34と、クランク角センサ35やエアー
フローメータ36等の各種センサ類から機関回転数や、
負荷等の情報信号から現在の機関運転状態を検出して作
動角の目標値を決定する目標値決定手段37とを備えて
いる。また、前記回転位相差検出手段34と目標値決定
手段37からの情報信号を夫々入力して、電磁アクチュ
エータ16の作動制御値を演算する制御回路38を有し
ている。また、この制御回路38は、回転位相差検出手
段34からの情報信号に基づいて吸気弁24の作動角を
推定することになっている。
That is, this controller 31 is shown in FIG.
As shown in FIG.
From the rotational phase difference detecting means 34 for calculating the rotational phase difference between the drive shaft 1 and the camshaft 2 by inputting the current rotational angle positions of the drive shaft 1 and the camshaft 2, a crank angle sensor 35, an air flow meter 36, and the like. Engine speed from various sensors,
A target value determining means 37 for detecting a current engine operating state from an information signal such as a load to determine a target value of the operating angle is provided. Further, it has a control circuit 38 for calculating the operation control value of the electromagnetic actuator 16 by inputting the information signals from the rotational phase difference detection means 34 and the target value determination means 37, respectively. Further, the control circuit 38 is supposed to estimate the operating angle of the intake valve 24 based on the information signal from the rotational phase difference detecting means 34.

【0023】以下、コントローラ31の具体的制御を図
6のフローチャートに基づいて説明する。
The specific control of the controller 31 will be described below with reference to the flowchart of FIG.

【0024】まず、セクションS1では、クランク角セ
ンサからのクランク軸の回転数Nとエアーフローメータ
からの吸入空気量Q及びスロットル開度センサからのス
ロットル開度θTを夫々読み込む。次に、セクションS
2で、前記各情報信号に基づいて図外の燃料噴射弁の基
本噴射量TPを演算し、さらにセクションS3では、
N,TPによって予め設定されているマップからバルブ
タイミングの作動角の目標値STを読み取る。続いて、
セクションS4では、前記回転位相差検出手段34から
の情報信号に基づいて現在のカムシャフト2のカムシャ
フト作動角つまり駆動軸1に対する作動角Sを推定す
る。
First, in section S1, the rotational speed N of the crank shaft from the crank angle sensor, the intake air amount Q from the air flow meter, and the throttle opening θ T from the throttle opening sensor are read. Next, section S
In step 2, the basic injection amount T P of the fuel injection valve (not shown) is calculated based on the information signals, and in section S3,
The target value S T of the valve timing operating angle is read from the map preset by N and T P. continue,
In section S4, the current camshaft operating angle of the camshaft 2, that is, the operating angle S with respect to the drive shaft 1, is estimated based on the information signal from the rotational phase difference detecting means 34.

【0025】さらに、セクションS5では作動角目標値
Tからカムシャフト作動角Sを減算して差値△Sを求
める。続いて、セクションS6では、差値△Sが所定値
α以下か否かを判別し、以下ではない場合は、セクショ
ンS7で差値△Sが0より大きいか否か、つまり正か負
かを判別する。ここで、差値△Sが負の場合つまりカム
シャフト作動角Sが目標値STを超えている場合は、例
えば低回転低負荷域であるから、セクションS8におい
てデューティ比を0%にする処理を行い、電磁アクチュ
エータ16の電磁力を零に制御する。
Further, in section S5, the difference value ΔS is obtained by subtracting the camshaft operating angle S from the operating angle target value S T. Subsequently, in section S6, it is determined whether or not the difference value ΔS is less than or equal to a predetermined value α, and if not, it is determined in section S7 whether the difference value ΔS is greater than 0, that is, whether the difference value ΔS is positive or negative. Determine. Here, when the difference value ΔS is negative, that is, when the camshaft operating angle S exceeds the target value S T , it is in the low rotation and low load region, for example, so that the duty ratio is set to 0% in the section S8. Then, the electromagnetic force of the electromagnetic actuator 16 is controlled to zero.

【0026】したがって、電磁アクチュエータ16の駆
動ロッド先端部に有する図外のスプール弁が、コイルス
プリングのばね力によって一方側へ付勢されて流路を切
り換え、シリンダ15内の第2受圧室15b内の作動油
がドレンされて、第1受圧室15aに油圧が供給され
る。これによりピストン18が進出してピストンロッド
19によりピン20を介してコントロールプレート14
aを図4の図中時計方向へ傾動させ、これによって制御
シャフト14は図中時計方向へ最大に回転し、偏心カム
13を同方向へ回転させる。
Therefore, the spool valve (not shown) provided at the tip of the drive rod of the electromagnetic actuator 16 is urged to one side by the spring force of the coil spring to switch the flow path, and the inside of the second pressure receiving chamber 15b in the cylinder 15 is switched. Is drained and hydraulic pressure is supplied to the first pressure receiving chamber 15a. As a result, the piston 18 advances and the piston rod 19 causes the control plate 14 to move through the pin 20.
By tilting a in the clockwise direction in FIG. 4, the control shaft 14 rotates maximally in the clockwise direction in the figure, causing the eccentric cam 13 to rotate in the same direction.

【0027】したがって、ディスクハウジング8は、上
方に揺動し、環状ディスク7の中心が駆動軸1の中心X
から最大に偏心する。よって、第1,第2ピン9,10
等を介して環状ディスク7の角速度が変化して不等角速
度回転になる。これにより、カムシャフト2は、駆動軸
1に対して部分的に増速された状態になり、吸気弁24
は小作動角に制御される。したがって、前記低速低負荷
域には、吸気弁24と排気弁とのバルブオーバラップが
小さくなって燃費の向上と、早い閉時期に伴う吸気充填
効率の向上によって出力トルクを高めることができる。
Therefore, the disc housing 8 swings upward, and the center of the annular disc 7 is the center X of the drive shaft 1.
Eccentric to the maximum. Therefore, the first and second pins 9 and 10
And the like, the angular velocity of the annular disk 7 is changed to rotate at an unequal angular velocity. As a result, the camshaft 2 is partially accelerated with respect to the drive shaft 1, and the intake valve 24
Is controlled to a small operating angle. Therefore, in the low-speed low-load region, the valve overlap between the intake valve 24 and the exhaust valve is reduced, so that the fuel consumption is improved and the intake charging efficiency is improved due to the early closing timing, so that the output torque can be increased.

【0028】また、セクションS7で、差値△Sが正で
あると判別した場合、つまりカムシャフト作動角Sが目
標値STに達していない場合は、高回転高負荷域である
からセクションS9で電磁アクチュエータ16へのデュ
ーティ比を100%に増加する処理を行い、電磁力を増
加させて、駆動ロッドを最大に進出させる。このため、
スプール弁は、コイルスプリングのばね力に抗して最大
他方側に移動し、流路を切り換える。
If it is determined in section S7 that the difference value ΔS is positive, that is, if the camshaft operating angle S has not reached the target value S T , it means that the engine is in the high rotation and high load region, and therefore section S9. Then, the processing for increasing the duty ratio to the electromagnetic actuator 16 is performed to increase the electromagnetic force, and the drive rod is advanced to the maximum. For this reason,
The spool valve moves to the maximum other side against the spring force of the coil spring to switch the flow path.

【0029】したがって、今度は第1受圧室15a内の
作動油がドレンされて低圧になる一方、第2受圧室15
b内に作動油が供給されて高圧になる。これによって、
ピストン18は、最大に後退方向(右方向)へ移動し、
ピストンロッド19がピン20を介してコントロールプ
レート14aを最大反時計方向へ傾動させる。このた
め、制御シャフト14は、図中反時計方向へ最大に回転
し、偏心カム22を同方向へ回転させる。
Therefore, this time, while the hydraulic oil in the first pressure receiving chamber 15a is drained to a low pressure, the second pressure receiving chamber 15a
The hydraulic oil is supplied to the inside of b to become a high pressure. by this,
The piston 18 moves in the maximum backward direction (to the right),
The piston rod 19 tilts the control plate 14a through the pin 20 in the maximum counterclockwise direction. For this reason, the control shaft 14 rotates maximally in the counterclockwise direction in the figure, and rotates the eccentric cam 22 in the same direction.

【0030】したがって、ディスクハウジング8は、下
方に揺動し、環状ディスク7の中心Yが駆動軸1の中心
Xから前述とは逆の方向へ偏心する。このため、環状デ
ィスク7に対し、カムシャフト2の角速度が前述とは反
対に小さくなり、カムシャフト2は駆動軸1に対して部
分的に減速された状態になり、吸気弁は大作動角に制御
される。よって、バルブオーバラップが大きくなって、
吸気充填効率が向上して高出力トルク等が得られる。
Therefore, the disc housing 8 swings downward, and the center Y of the annular disc 7 decenters from the center X of the drive shaft 1 in the opposite direction to the above. For this reason, the angular velocity of the camshaft 2 becomes smaller than the above with respect to the annular disc 7, the camshaft 2 is partially decelerated with respect to the drive shaft 1, and the intake valve has a large operating angle. Controlled. Therefore, the valve overlap becomes large,
The intake charge efficiency is improved and high output torque and the like can be obtained.

【0031】そして、前記セクションS6において、差
値△Sが所定値以下であると判別した場合は、現在の機
関運転状態にカムシャフト作動角Sが略合致している場
合であるから、セクションS10に移行する。ここで
は、デューティ比を50%に固定する処理を行う。この
ため、スプール弁は、略中間移動位置に保持されて各流
通路を閉止する。したがって、各受圧室15a,15b
への作動油の供給や排出が阻止されて、ピストン18を
所定の任意の移動位置に保持する。この結果、制御シャ
フト14及び制御機構3を介して吸気弁24を略中間の
作動角に制御することが可能になる。
If it is determined in the section S6 that the difference value ΔS is less than or equal to the predetermined value, it means that the camshaft operating angle S substantially matches the current engine operating state. Move to. Here, a process of fixing the duty ratio to 50% is performed. Therefore, the spool valve is held at the substantially intermediate movement position to close each flow passage. Therefore, each pressure receiving chamber 15a, 15b
The supply and discharge of hydraulic oil to the piston 18 are blocked, and the piston 18 is held at a predetermined arbitrary moving position. As a result, it becomes possible to control the intake valve 24 to a substantially intermediate operating angle via the control shaft 14 and the control mechanism 3.

【0032】このように、本実施例では、駆動軸1とカ
ムシャフト2の回転位相差の検出を、従来のように接触
式のポテンショメータで行うのではなく、駆動軸1側の
回転角センサ33と、カムシャフト2側のカム角センサ
30とを用いて行い、該カム角センサ30をカムシャフ
ト2と非接触の電磁ピックアップ式のものを利用したた
め、カムシャフト2の回転トルク変動に全く影響される
ことがない。したがって、該カム角センサ30の常時良
好な位置検出精度が得られと共に、摩耗等の発生も防止
できる。
As described above, in this embodiment, the rotation phase difference between the drive shaft 1 and the cam shaft 2 is not detected by the contact type potentiometer as in the conventional case, but the rotation angle sensor 33 on the drive shaft 1 side is used. And the cam angle sensor 30 on the side of the camshaft 2 are used, and the electromagnetic angle sensor of the cam angle sensor 30 that is not in contact with the camshaft 2 is used. Never. Therefore, it is possible to always obtain good position detection accuracy of the cam angle sensor 30 and prevent wear and the like from occurring.

【0033】しかも、カム角センサ30と突起部32の
合致点(ピックアップ点)が、回転位相差の最大点(Q
点)に位置しているため、該カム角センサ30の分解能
を低く設定してあっても、両者1,2の回転位相差を確
実にかつ高精度に検出できる。
Moreover, the matching point (pickup point) between the cam angle sensor 30 and the protrusion 32 is the maximum point (Q) of the rotational phase difference.
Since the cam angle sensor 30 is located at a point), the rotational phase difference between the cam angle sensor 30 and the cam angle sensor 30 can be reliably and accurately detected even if the resolution is set low.

【0034】図7は本発明の第2実施例を示し、カム角
センサ30のピックアップ用の突起部を第1実施例のよ
うにカムシャフト2に設けるのではなく、カム2aのカ
ムノーズ部2bを利用したものである。そして、カム角
センサ30の位置をカムノーズ部2bとの相対関係で回
転位相差の最大点(Q点)となる位置に設定した。
FIG. 7 shows a second embodiment of the present invention, in which the pick-up protrusion of the cam angle sensor 30 is not provided on the camshaft 2 as in the first embodiment, but the cam nose portion 2b of the cam 2a is provided. It was used. Then, the position of the cam angle sensor 30 is set to a position where it becomes the maximum point (Q point) of the rotational phase difference in relation to the cam nose portion 2b.

【0035】したがって、この実施例によれば、第1実
施例と同様な作用効果が得られることは勿論のこと、カ
ムノーズ部2bをピックアップ用の突起部としたため、
カムシャフト2の製造作業性が良好になると共に、コス
トの点でも有利になる。
Therefore, according to this embodiment, the same operational effect as that of the first embodiment can be obtained, and since the cam nose portion 2b is used as the protrusion for pickup,
The manufacturing workability of the camshaft 2 is improved, and it is also advantageous in terms of cost.

【0036】本発明は、前記実施例の構成に限定される
ものではなく、例えば作動機構4を油圧シリンダや制御
シャフト等を用いないものにも適用できると共に、排気
側にも適用することが可能である。
The present invention is not limited to the configuration of the above-described embodiment, and can be applied to, for example, the one in which the operating mechanism 4 does not use a hydraulic cylinder, a control shaft or the like, and can also be applied to the exhaust side. Is.

【0037】[0037]

【発明の効果】以上の説明で明らかなように、本発明に
よれば、駆動軸とカムシャフトの回転位相差を検出する
手段を、従来のような接触式のポテンショメータを用い
るのではなく、カムシャフトと非接触状態である例えば
電磁ピックアップ式のカム角センサを用いたため、該カ
ム角センサにはカムシャフトで発生する回転トルク変動
の影響が及ぼされない。この結果、該カム角センサの常
時良好な検出精度が得られ、弁作動角の制御精度が向上
する。
As is apparent from the above description, according to the present invention, the means for detecting the rotational phase difference between the drive shaft and the cam shaft does not use the contact type potentiometer as in the prior art, but the cam. Since, for example, an electromagnetic pickup-type cam angle sensor that is in non-contact with the shaft is used, the cam angle sensor is not affected by the rotational torque fluctuation generated in the cam shaft. As a result, good detection accuracy of the cam angle sensor is always obtained, and the control accuracy of the valve operating angle is improved.

【0038】また、カム角センサが回転トルク変動を全
く受けないことから摩耗等の発生による耐久性の低下を
防止できる。
Further, since the cam angle sensor is not subjected to the rotational torque fluctuation at all, it is possible to prevent the deterioration of the durability due to the occurrence of wear or the like.

【0039】しかも、カム角センサと突起部とを、ピッ
クアップポイントが回転位相差の最大点となる位置に設
定したため、カム角センサの分解能を低く設定しても、
回転位相差を確実かつ高精度に検出することが可能にな
る。
Moreover, since the cam angle sensor and the projection are set at the position where the pickup point is the maximum point of the rotational phase difference, even if the resolution of the cam angle sensor is set low,
It is possible to detect the rotational phase difference reliably and with high accuracy.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例を示す要部断面図。FIG. 1 is a sectional view of a main part showing a first embodiment of the present invention.

【図2】本実施例の駆動軸とカムシャフトの回転位相差
及びバルブリフト特性を示す概略図。
FIG. 2 is a schematic view showing a rotational phase difference between a drive shaft and a cam shaft and a valve lift characteristic of the present embodiment.

【図3】本実施例の駆動軸とカムシャフトの回転位相差
の変化状態を示す図。
FIG. 3 is a diagram showing a changing state of a rotational phase difference between a drive shaft and a cam shaft according to the present embodiment.

【図4】本実施例に供される作動機構を示す斜視図。FIG. 4 is a perspective view showing an operating mechanism used in this embodiment.

【図5】本実施例の制御ブロック図。FIG. 5 is a control block diagram of the present embodiment.

【図6】本実施例の作用を示すフローチャート図。FIG. 6 is a flowchart showing the operation of this embodiment.

【図7】本発明の第2実施例を示す説明図。FIG. 7 is an explanatory diagram showing a second embodiment of the present invention.

【図8】従来の作動機構を示す斜視図。FIG. 8 is a perspective view showing a conventional operating mechanism.

【図9】従来の吸排気弁駆動制御装置を示す要部断面
図。
FIG. 9 is a cross-sectional view of essential parts showing a conventional intake / exhaust valve drive control device.

【図10】従来例における駆動軸とカムシャフトの回転
位相差及びバルブリフト特性図。
FIG. 10 is a diagram showing a rotational phase difference between a drive shaft and a cam shaft and a valve lift characteristic in a conventional example.

【符号の説明】[Explanation of symbols]

1…駆動軸 2…カムシャフト 2a…カム 2b…カムノーズ部 3…制御機構 4…作動機構 30…カム角センサ 31…コントローラ 32…突起部 Q点…最大点 1 ... Drive shaft 2 ... Cam shaft 2a ... Cam 2b ... Cam nose part 3 ... Control mechanism 4 ... Actuating mechanism 30 ... Cam angle sensor 31 ... Controller 32 ... Protrusion part Q point ... Maximum point

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 機関によって回転駆動される駆動軸と、
該駆動軸の同軸上に相対回転自在に設けられ、外周に吸
排気弁を作動させるカムを有するカムシャフトと、前記
駆動軸の軸心に対して同心あるいは偏心動して駆動軸と
カムシャフトとの相対的な回転位相を変化させることに
より、前記吸排気弁の作動角を可変にする制御機構と、
機関運転状態に応じて前記制御機構を駆動軸の軸心に対
して揺動させる作動機構とを備え、該作動機構は駆動軸
とカムシャフトとの回転位相差を算出するコントローラ
を有する吸排気弁駆動制御装置において、 前記カムシャフトの回転角度を検出して、該回転角度情
報信号を前記コントローラに出力するカム角センサを前
記カムシャフトと非接触状態に設けると共に、前記カム
シャフトの外周所定位置にカム角センサのピックアップ
用の突起部を設け、前記カム角センサによる突起部のピ
ックアップポイントを、駆動軸とカムシャフトとの回転
位相差が発生する位置に設定したことを特徴とする内燃
機関の吸排気弁駆動制御装置。
1. A drive shaft rotationally driven by an engine,
A cam shaft which is provided coaxially with the drive shaft and is rotatable relative to the drive shaft, and a cam shaft which has a cam for actuating an intake and exhaust valve on the outer circumference; A control mechanism for varying the operating angle of the intake and exhaust valves by changing the relative rotational phase of
An intake / exhaust valve having an operating mechanism for swinging the control mechanism with respect to the axis of the drive shaft in accordance with the engine operating state, the operating mechanism having a controller for calculating a rotational phase difference between the drive shaft and the camshaft. In the drive control device, a cam angle sensor that detects the rotation angle of the cam shaft and outputs the rotation angle information signal to the controller is provided in a non-contact state with the cam shaft, and at a predetermined position on the outer circumference of the cam shaft. A protrusion for picking up the cam angle sensor is provided, and a pickup point of the protrusion by the cam angle sensor is set at a position where a rotational phase difference between the drive shaft and the cam shaft is generated. Exhaust valve drive control device.
【請求項2】 前記カム角センサによる突起部のピック
アップポイントを、駆動軸とカムシャフトの回転位相差
の最大点に設定したことを特徴とする請求項1記載の内
燃機関の吸排気弁駆動制御装置。
2. The intake / exhaust valve drive control for an internal combustion engine according to claim 1, wherein a pickup point of the protrusion by the cam angle sensor is set to a maximum point of a rotational phase difference between the drive shaft and the cam shaft. apparatus.
【請求項3】 前記突起部を、前記カムのカムノーズ部
としたことを特徴とする請求項1記載の内燃機関の吸排
気弁駆動制御装置。
3. The intake / exhaust valve drive control device for an internal combustion engine according to claim 1, wherein the protrusion is a cam nose portion of the cam.
JP2453196A 1996-02-13 1996-02-13 Intake and exhaust valve drive control device for internal combustion engine Expired - Fee Related JP3569589B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2453196A JP3569589B2 (en) 1996-02-13 1996-02-13 Intake and exhaust valve drive control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2453196A JP3569589B2 (en) 1996-02-13 1996-02-13 Intake and exhaust valve drive control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH09217614A true JPH09217614A (en) 1997-08-19
JP3569589B2 JP3569589B2 (en) 2004-09-22

Family

ID=12140745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2453196A Expired - Fee Related JP3569589B2 (en) 1996-02-13 1996-02-13 Intake and exhaust valve drive control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP3569589B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000291418A (en) * 1999-04-07 2000-10-17 Unisia Jecs Corp Variable valve system for internal combustion engine
US20170298845A1 (en) * 2014-11-05 2017-10-19 Hitachi Automotive Systems, Ltd. Control Device and Control Method for Internal Combustion Engine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000291418A (en) * 1999-04-07 2000-10-17 Unisia Jecs Corp Variable valve system for internal combustion engine
US20170298845A1 (en) * 2014-11-05 2017-10-19 Hitachi Automotive Systems, Ltd. Control Device and Control Method for Internal Combustion Engine
US9816452B2 (en) * 2014-11-05 2017-11-14 Hitachi Automotive Systems, Ltd. Control device and control method for internal combustion engine

Also Published As

Publication number Publication date
JP3569589B2 (en) 2004-09-22

Similar Documents

Publication Publication Date Title
US5553573A (en) Valve duration control system for four-cycle engine
EP1653065B1 (en) Intake control apparatus and method for internal combustion engine
US20070295295A1 (en) Phase angle detection apparatus and variable valve timing control apparatus using the phase angle detection apparatus for internal combustion engine
US5924397A (en) Variable valve performance apparatus for engine
US6883476B1 (en) Control system and method for an internal combustion engine
US20130092114A1 (en) Method and device for operating an internal combustion engine in the event of a fault in a crankshaft sensor
JPH01262334A (en) Method for controlling valve system of internal combustion engine
JP3286420B2 (en) Intake and exhaust valve drive control device for internal combustion engine
US6578534B2 (en) Variable valve operating system of internal combustion engine enabling variation of valve-lift characteristic
CN105736085B (en) Reciprocating piston internal combustion engine with a sensor on the gas exchange valve
US8181612B2 (en) Variable valve timing apparatus and control method therefor
JPH09217614A (en) Intake and exhaust valve drive control device for internal combustion engine
JP3703709B2 (en) Valve timing control device for internal combustion engine
US7628127B2 (en) Apparatus and method for controlling variable valve actuation mechanism
JPH0988642A (en) Valve timing detecting method for engine and device therefor
CN102859157A (en) Method and apparatus for controlling a variable valve system
JPH066882B2 (en) Valve mechanism of internal combustion engine
JP2000291418A (en) Variable valve system for internal combustion engine
JPH1162640A (en) Variable valve device
JP3786011B2 (en) Variable valve operating device for internal combustion engine
JPS6027714A (en) Controller of valve timing of engine
JPH1172031A (en) Valve characteristics control device of internal combustion engine
JP2590384B2 (en) Operating state diagnostic device for variable valve timing mechanism in internal combustion engine
KR20010002311U (en) Continuously variable valve lift device in the engine
JPS6313019B2 (en)

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040601

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040621

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees