JPH09217118A - Production of particle-oriented silicon steel sheet excellent in magnetic property - Google Patents

Production of particle-oriented silicon steel sheet excellent in magnetic property

Info

Publication number
JPH09217118A
JPH09217118A JP8027764A JP2776496A JPH09217118A JP H09217118 A JPH09217118 A JP H09217118A JP 8027764 A JP8027764 A JP 8027764A JP 2776496 A JP2776496 A JP 2776496A JP H09217118 A JPH09217118 A JP H09217118A
Authority
JP
Japan
Prior art keywords
annealing
steel sheet
coercive force
primary recrystallization
silicon steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8027764A
Other languages
Japanese (ja)
Other versions
JP4016433B2 (en
Inventor
Michiro Komatsubara
道郎 小松原
Kunihiro Senda
邦浩 千田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP02776496A priority Critical patent/JP4016433B2/en
Publication of JPH09217118A publication Critical patent/JPH09217118A/en
Application granted granted Critical
Publication of JP4016433B2 publication Critical patent/JP4016433B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a stable particle-oriented silicon steel sheet excellent in magnetic properties. SOLUTION: In the method for producing a particle-oriented silicon steel sheet, after final cold rolling, the coercive force, permeability or hysteresis loss of a steel sheet before the start of primary recrystallization is regulated to the specified range. Otherwise, the coercive force, permeability or hysteresis loss of the steel sheet is measured, and, in accordance with the deviation between the measured value and objective value, at least one treatment selected from the regulation of the conditions of primary recrystallization annealing, the regulation of the coating weight and componental compsn. of a separation material for annealing and the regulation of the conditions of secondary recrystallization annealing is executed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、変圧器等の鉄心
材料として使用される磁気特性に優れる方向性けい素鋼
板の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a grain-oriented silicon steel sheet having excellent magnetic properties which is used as an iron core material for transformers and the like.

【0002】[0002]

【従来の技術】方向性けい素鋼板は、各種変圧器の鉄心
材料として使用されているが、これは材料を構成する結
晶粒の方位を圧延方向に容易磁化軸を有する(110 )〔00
1 〕方位、いわゆるゴス方位に高度に集積させたもので
ある。この集積度は、鋼板の磁束密度特性に現われ、一
般には800A/mの磁場中での磁束密度を示すB8(T) の値で
評価されている。
2. Description of the Related Art Grain-oriented silicon steel sheets are used as iron core materials for various types of transformers, which have an easy magnetization axis in the rolling direction with the orientation of the crystal grains constituting the material (110) [00
1] It is a highly integrated azimuth, the so-called Goth azimuth. This degree of integration appears in the magnetic flux density characteristics of the steel sheet, and is generally evaluated by the value of B 8 (T), which indicates the magnetic flux density in a magnetic field of 800 A / m.

【0003】このゴス方位への集積方法としては、2次
再結晶と呼ばれる現象が利用される。すなわち、通常の
結晶粒(これを1次再結晶粒という)の熱的成長過程に
おいて、方位選択性の極めて強い異常粒成長挙動を利用
したものであり、その方位選択性と異常粒成長の2点を
制御することがゴス方位への集積度の高い良好な2次再
結晶粒を得るために重要である。
A phenomenon called secondary recrystallization is used as a method of integrating in the Goss orientation. That is, in the thermal growth process of normal crystal grains (this is called primary recrystallized grain), the abnormal grain growth behavior with extremely strong orientation selectivity is utilized. Controlling the points is important for obtaining good secondary recrystallized grains having a high degree of integration in the Goss orientation.

【0004】そのためには、2次再結晶前の1次再結晶
において、集合組織および結晶粒径さらには結晶粒成長
を抑制するためのインヒビターの抑制力(分散第2相で
ある析出物や、粒界偏析成分の偏析による粒界移動を抑
制する力)などのバランスを適正に保つことが重要にな
る。
For that purpose, in the primary recrystallization before the secondary recrystallization, the inhibitory force of the inhibitor for suppressing the texture, the crystal grain size and the crystal grain growth (precipitate which is the dispersed second phase, It is important to maintain an appropriate balance such as the force that suppresses the grain boundary migration due to the segregation of grain boundary segregation components).

【0005】これらは、熱間圧延工程、冷間圧延工程お
よび1次再結晶焼鈍工程での各条件を適正に制御するこ
とによって、目標とする状態に調整されるが、いずれも
微妙な温度や圧下率さらには表面性状の制御を要求され
るため、工業的生産においては、以下に述べるような問
題があった。
These are adjusted to a target state by appropriately controlling the conditions in the hot rolling step, cold rolling step and primary recrystallization annealing step, but in any case, delicate temperature or Since it is required to control the rolling reduction and the surface properties, there were the following problems in industrial production.

【0006】すなわち、圧延方向に筋状に2次再結晶の
生成不良が発生したり、全面的に2次再結晶の生成不良
が発生したり、また、2次再結晶粒の結晶方位がゴス方
位から大幅にずれていることなどのため、磁気特性が劣
化し、大量の屑が発生することがしばしば生じた。
That is, defective generation of secondary recrystallization occurs in stripes in the rolling direction, defective generation of secondary recrystallization occurs on the entire surface, and the crystal orientation of the secondary recrystallized grains is goth. Due to the large deviation from the azimuth, the magnetic characteristics were often deteriorated and a large amount of waste was often generated.

【0007】さらに、各工程条件が極めて厳重に管理さ
れた上記以外の場合でも、工場生産工程での通板チャン
スにおいて、磁気特性にバラツキが生じるのが常であ
り、歩留りや製品としての品質保証に問題をきたしてい
た。
Further, even in cases other than the above in which each process condition is extremely strictly controlled, there is always a variation in the magnetic characteristics during the strip passing opportunity in the factory production process, and the yield and the quality guarantee as the product are guaranteed. Was causing problems.

【0008】このような、不安定さを解消させようとす
る技術として、1次再結晶粒径をオンラインで計測し、
1次再結晶粒径が適正範囲になるように1次再結晶焼鈍
条件を制御する手段が特開平2−267223号公報(方向性
電磁鋼板の1次再結晶焼鈍方法)に提案開示されてい
る。また、特開平4−337029号公報(一方向性電磁鋼板
の1次再結晶焼鈍方法)には、最終冷延前の鋼板のN含
有量を測定し、1次再結晶粒径を15〜25μm の範囲とす
べく1次再結晶焼鈍温度を変更する手段が提案開示され
ている。
As a technique for eliminating such instability, the primary recrystallized grain size is measured online,
A means for controlling the primary recrystallization annealing conditions so that the primary recrystallized grain size is in an appropriate range is proposed and disclosed in Japanese Patent Application Laid-Open No. 2-267223 (primary recrystallization annealing method for grain-oriented electrical steel sheets). . Further, in Japanese Patent Laid-Open No. 4-337029 (method of primary recrystallization annealing of unidirectional electrical steel sheet), the N content of the steel sheet before final cold rolling is measured to determine the primary recrystallization grain size of 15 to 25 μm. It has been proposed and disclosed to change the primary recrystallization annealing temperature so as to obtain the range of.

【0009】これらは、上記したように、1次再結晶粒
径が2次再結晶挙動に大きな影響をおよぼす事実から、
1次再結晶粒径を最も優れる磁気特性が得られる範囲に
制御すべく、1次再結晶焼鈍条件(温度やライン速度)
を変更し、製品の磁気特性を安定かつ向上させる技術で
あるが、実際には、熱延条件の変動、冷間圧延後の焼鈍
条件やその冷却条件が変動して、インヒビターの抑制力
が変化した場合、それらの変化に応じて最適な1次再結
晶粒径が変化するので、2次再結晶の生成不良は抑止で
きても磁気特性の安定化を得ることができず、実用上は
うまく機能していなかった。
As described above, these are due to the fact that the primary recrystallization grain size has a great influence on the secondary recrystallization behavior.
Primary recrystallization annealing conditions (temperature and line speed) in order to control the primary recrystallization grain size within the range where the best magnetic properties are obtained.
Is a technique to stabilize and improve the magnetic properties of the product.However, in reality, the inhibitor's inhibitory power changes due to changes in hot rolling conditions, annealing conditions after cold rolling and its cooling conditions. In such a case, the optimum primary recrystallized grain size changes according to these changes, so that the generation of secondary recrystallization can be suppressed, but the magnetic characteristics cannot be stabilized, which is not practically good. It wasn't working.

【0010】また、これまでに1次再結晶粒径に関連し
て磁気特性に優れる良好な2次再結晶を得ようとする技
術が数多く提案されている。
In addition, a number of techniques have been proposed so far for obtaining good secondary recrystallization having excellent magnetic properties in relation to the primary recrystallization grain size.

【0011】例えば、特開平2−182866号公報(一方向
性電磁鋼板用板材)には、1次再結晶焼鈍後の結晶粒径
が15μm 以上で変動係数を0.6 以下とする手段が、特開
平6−33141 号公報(磁気特性の優れた一方向性電磁鋼
板の製造方法)には、1次再結晶焼鈍後の平均粒径を6
〜11μm 、変動係数を0.5 以下とし、2次再結晶開始直
前までに5〜30%平均粒径を増大させる手段がそれぞれ
開示されており、また、特開平5−156361号公報(磁気
特性の優れた一方向性電磁鋼板の製造方法)には、1次
再結晶焼鈍後から最終仕上焼鈍開始までの1次再結晶粒
径を10〜35μmに、特開平5−295438号公報(磁気特性
の優れた一方向性電磁鋼板の製造方法)には、1次再結
晶粒径を18〜35μm に、特開平6−172861号公報(磁気
特性の優れた厚い厚板の一方向性電磁鋼板の製造方法)
には、1次再結晶粒径を18〜30μm にそれぞれ制御する
手段が開示されている。
For example, Japanese Unexamined Patent Publication (Kokai) No. 2-182866 (a plate material for unidirectional electrical steel sheets) discloses a means for making the grain size after primary recrystallization annealing 15 μm or more and the coefficient of variation 0.6 or less. No. 6-33141 (a method for producing a grain-oriented electrical steel sheet having excellent magnetic properties) describes an average grain size of 6 after primary recrystallization annealing.
-11 μm, a coefficient of variation of 0.5 or less, and means for increasing the average particle size by 5 to 30% immediately before the start of secondary recrystallization are disclosed, respectively, and JP-A-5-156361 (excellent magnetic properties). In the method for producing a grain-oriented electrical steel sheet), the primary recrystallized grain size after the primary recrystallization annealing until the start of the final finish annealing is 10 to 35 μm. The method for producing a unidirectional electrical steel sheet having a primary recrystallized grain size of 18 to 35 μm is disclosed in Japanese Patent Laid-Open No. 6-172861 (method for producing a thick thick unidirectional electrical steel sheet having excellent magnetic properties). )
Discloses a means for controlling the primary recrystallized grain size to 18 to 30 μm, respectively.

【0012】しかし、これらはいずれも1次再結晶粒径
を指標としこれを制御することにより、磁気特性を向上
させるための良好な2次再結晶を生じさせようとする技
術であるが、工業的生産における磁気特性の不安定さと
いう上記した問題点は残されたままであった。
[0012] However, all of these are techniques for producing good secondary recrystallization for improving magnetic properties by controlling the primary recrystallized grain size as an index. The above-mentioned problem of instability of magnetic properties in static production has remained.

【0013】さらに、1次再結晶粒径には本来的に依存
しない熱間圧延工程での集合組織形成の変動や冷間圧延
工程での集合組織形成の変動による2次再結晶挙動の変
化の問題について、1次再結晶焼鈍後の透磁率や磁束密
度を測定し集合組織の形成状態を評価しようとする技術
が提案されている。
Furthermore, the change in the secondary recrystallization behavior due to the change in the texture formation in the hot rolling process and the change in the texture formation in the cold rolling process, which does not inherently depend on the primary recrystallized grain size, is caused. Regarding the problem, a technique has been proposed in which the permeability and the magnetic flux density after the primary recrystallization annealing are measured to evaluate the formation state of the texture.

【0014】例えば、特開昭59−50119 号公報(磁気特
性の優れた一方向性珪素鋼板の製造方法)には、1次再
結晶焼鈍後、焼鈍分離剤塗布前の鋼板の透磁率を測定
し、その値に応じて焼鈍分離剤中へのS化合物の添加量
を調整する技術が、特開昭61−170514号公報(磁気特性
の優れた一方向性珪素鋼板の製造方法)には、1次再結
晶焼鈍後、焼鈍分離剤塗布前の鋼板の磁束密度を測定
し、その値に応じて焼鈍分離剤中へ添加するSなどの添
加量を調整する技術が、それぞれ開示されている。これ
らは、1次再結晶焼鈍後鋼板の集合組織の形成状態を把
握し,その状態に応じて焼鈍分離剤の成分組成を変化さ
せることにより2次再結晶条件を調整し、磁気特性を向
上させようとするものである。
For example, in Japanese Patent Laid-Open No. 59-50119 (manufacturing method of unidirectional silicon steel sheet having excellent magnetic properties), the magnetic permeability of a steel sheet after primary recrystallization annealing and before applying an annealing separator is measured. However, a technique of adjusting the amount of S compound added to the annealing separator according to the value is disclosed in JP-A-61-170514 (method for producing unidirectional silicon steel sheet having excellent magnetic properties). A technique is disclosed in which the magnetic flux density of the steel sheet after the primary recrystallization annealing and before the application of the annealing separating agent is measured, and the addition amount of S or the like added to the annealing separating agent is adjusted according to the value. These are to improve the magnetic properties by grasping the formation state of the texture of the steel sheet after the primary recrystallization annealing and adjusting the secondary recrystallization conditions by changing the composition of the annealing separator according to the state. It is something to try.

【0015】しかしながら、これらの技術は1次再結晶
焼鈍後鋼板の集合組織の形成状態を正しく反映しないの
で、工業生産に実際に適用した場合良好な成果が得られ
なかった。すなわち、1次再結晶焼鈍後鋼板の透磁率や
磁束密度は、磁化容易軸である<001> 軸が圧延方向にど
の程度配向しているかを示す尺度であるので、結晶粒の
方位として{hko }<001> 方位(h,kまたはoは任意
の整数)は全く区別できず、例えば(110) 001 方位と(1
00) 001 方位とが等価となってしまう問題を有してい
た。
However, since these techniques do not correctly reflect the formation state of the texture of the steel sheet after primary recrystallization annealing, good results were not obtained when actually applied to industrial production. That is, the magnetic permeability and magnetic flux density of the steel sheet after primary recrystallization annealing are a measure of how much the <001> axis, which is the easy axis of magnetization, is oriented in the rolling direction. } <001> azimuth (h, k or o is an arbitrary integer) cannot be distinguished at all. For example, (110) 001 azimuth and (1
00) 001 had the problem of becoming equivalent to the azimuth.

【0016】また、圧延直角方向の透磁率や磁束密度も
併せて測定する場合、上述の問題点は解消されるが、<0
01> 軸を測定方向に所有しない結晶方位、例えば{111
}<112> 方位や{112 }<111> 方位等、多くの結晶方
位間の区別が不能で、特に{111 }<112> 方位は2次再
結晶の成長に重要であるので、問題となっていた。この
ように、1次再結晶焼鈍後鋼板の透磁率や磁束密度の測
定では、X線法などと異なり、かかる鋼板の集合組織の
評価法として不十分であり、改善する必要があった。
When the magnetic permeability and the magnetic flux density in the direction perpendicular to the rolling are also measured, the above problems can be solved, but <0
01> The crystal orientation that does not own the axis in the measurement direction, for example {111
It is not possible to distinguish between many crystallographic orientations such as the {112} orientation and the {112} <111> orientation. In particular, the {111} <112> orientation is important for the growth of secondary recrystallization, which is a problem. Was there. Thus, unlike the X-ray method, the measurement of the magnetic permeability and the magnetic flux density of the steel sheet after primary recrystallization annealing is not sufficient as an evaluation method of the texture of the steel sheet, and needs to be improved.

【0017】[0017]

【発明が解決しようとする課題】この発明は、磁気特性
の向上および安定化をはかるため2次再結晶を適切に制
御するには、冷間圧延工程で形成される集合組織と熱延
バンド組織との双方のバランスを調整すること、さらに
加えて、1次再結晶粒径とインヒビター抑制力との双方
のバランスを調整することが重要であることに着目し
て、前記した問題点を有利に解決しようとするものであ
り、冷間圧延工程で形成される集合組織と熱延バンド組
織との双方のバランスをあらわす最終冷延板の特性、さ
らには、1次再結晶粒径とインヒビター抑制力とのバラ
ンスをあらわす1次再結晶後2次再結晶前鋼板の特性を
考慮した新規手段により、従来にない安定かつ優れる磁
気特性が得られる方向性けい素鋼板の製造方法を提案す
ることを目的とする。
DISCLOSURE OF THE INVENTION In order to properly control secondary recrystallization in order to improve and stabilize magnetic properties, the present invention aims to control the texture and hot rolled band structure formed in the cold rolling process. Focusing on the importance of adjusting the balance between both the primary recrystallized grain size and the inhibitor suppressive force in addition to adjusting the balance between The characteristics of the final cold-rolled sheet, which represents the balance between the texture formed in the cold rolling process and the hot-rolled band structure, and the primary recrystallized grain size and inhibitor inhibitory power. It is an object of the present invention to propose a method for producing a grain-oriented silicon steel sheet that can obtain unprecedented stable and excellent magnetic properties by a new means that takes into account the characteristics of the steel sheet after primary recrystallization and before secondary recrystallization. To

【0018】[0018]

【課題を解決するための手段】この発明は、種々実験・
検討を重ねた結果、最終冷間圧延後の鋼板の抗磁力、透
磁率もしくはヒステリシス損が、けい素鋼板製品の磁気
特性の予測、さらにはその向上および安定化に極めて有
用であることを全く新規に知見したことにより達成した
ものである。すなわち、この発明の要旨とするところは
以下のとおりである。
SUMMARY OF THE INVENTION The present invention is designed for various experiments and
As a result of repeated studies, it is completely novel that the coercive force, magnetic permeability, or hysteresis loss of the steel sheet after final cold rolling is extremely useful for predicting the magnetic properties of silicon steel sheet products, and further for improving and stabilizing them. It was achieved by the findings of. That is, the gist of the present invention is as follows.

【0019】1)けい素鋼スラブを加熱したのち熱間圧延
し、1回もしくは中間焼鈍を挟む2回以上の冷間圧延を
行ったのち、脱炭・1次再結晶焼鈍を施し、ついで焼鈍
分離剤を塗布して2次再結晶焼鈍と純化焼鈍とからなる
最終仕上焼鈍を施す方向性けい素鋼板の製造方法におい
て、最終冷間圧延後、1次再結晶開始前の鋼板の抗磁
力、透磁率もしくはヒステリシス損を所定範囲内に制御
することを特徴とする磁気特性に優れる方向性けい素鋼
板の製造方法(第1発明)。
1) A silicon steel slab is heated and then hot-rolled, and cold-rolled once or twice with an intermediate annealing, followed by decarburization / primary recrystallization annealing, and then annealing. In a method for manufacturing a grain-oriented silicon steel sheet, which comprises applying a separating agent and performing a final finishing annealing consisting of secondary recrystallization annealing and purification annealing, a coercive force of the steel sheet after the final cold rolling and before the primary recrystallization is started, A method for producing a grain-oriented silicon steel sheet having excellent magnetic characteristics, characterized by controlling magnetic permeability or hysteresis loss within a predetermined range (first invention).

【0020】2)第1発明における制御手段が、スラブの
加熱条件の調整、熱間圧延条件の調整および中間焼鈍を
含む冷間圧延条件の調整のうちから選んだ少なくともい
ずれか一つである磁気特性に優れる方向性けい素鋼板の
製造方法(第2発明)。
2) The control means in the first invention is at least one selected from the adjustment of slab heating conditions, the adjustment of hot rolling conditions, and the adjustment of cold rolling conditions including intermediate annealing. A method for producing a grain-oriented silicon steel sheet having excellent characteristics (second invention).

【0021】3)けい素鋼スラブを加熱したのち熱間圧延
し、1回もしくは中間焼鈍を挟む2回以上の冷間圧延を
行ったのち、脱炭・1次再結晶焼鈍を施し、ついで焼鈍
分離剤を塗布して2次再結晶焼鈍と純化焼鈍とからなる
最終仕上焼鈍を施す方向性けい素鋼板の製造方法におい
て、最終冷間圧延後、1次再結晶焼鈍前の鋼板の抗磁
力、透磁率もしくはヒステリシス損を測定し、その測定
値と、抗磁力、透磁率もしくはヒステリシス損の目標値
との偏差に応じて、2次再結晶焼鈍条件の調整、焼鈍分
離剤の塗布量・成分組成の調整および1次再結晶焼鈍条
件の調整のうちから選んだ少なくともいずれか一つの処
理を施すことを特徴とする磁気特性に優れる方向性けい
素鋼板の製造方法(第3発明)。
3) After heating the silicon steel slab, it is hot-rolled, cold-rolled once or twice with an intermediate anneal, and then decarburized and primary recrystallization anneal, followed by annealing. In a method for manufacturing a grain-oriented silicon steel sheet, which comprises applying a separating agent and performing a final finishing annealing consisting of a secondary recrystallization annealing and a purification annealing, a coercive force of the steel sheet after the final cold rolling and before the primary recrystallization annealing, The permeability or hysteresis loss is measured, and the secondary recrystallization annealing conditions are adjusted according to the deviation between the measured value and the target value of coercive force, permeability or hysteresis loss, and the amount and composition of the composition of the annealing separator are applied. And at least one treatment selected from the adjustment of the primary recrystallization annealing conditions, the method for producing a grain-oriented silicon steel sheet having excellent magnetic properties (third invention).

【0022】4)けい素鋼スラブを加熱したのち熱間圧延
し、1回もしくは中間焼鈍を挟む2回以上の冷間圧延を
行ったのち、脱炭・1次再結晶焼鈍を施し、ついで焼鈍
分離剤を塗布して2次再結晶焼鈍と純化焼鈍とからなる
最終仕上焼鈍を施す方向性けい素鋼板の製造方法におい
て、最終冷間圧延後、1次再結晶開始前の鋼板の抗磁
力、透磁率もしくはヒステリシス損ならびに、1次再結
晶後、2次再結晶開始前の鋼板の抗磁力をそれぞれ所定
範囲内に制御することを特徴とする磁気特性に優れる方
向性けい素鋼板の製造方法(第4発明)。
4) After heating the silicon steel slab, it is hot-rolled and cold-rolled once or twice or more with an intermediate anneal, followed by decarburization and primary recrystallization annealing, and then annealing. In a method for manufacturing a grain-oriented silicon steel sheet, which comprises applying a separating agent and performing a final finishing annealing consisting of secondary recrystallization annealing and purification annealing, a coercive force of the steel sheet after the final cold rolling and before the primary recrystallization is started, A method for producing a grain-oriented silicon steel sheet having excellent magnetic properties, characterized by controlling the permeability or hysteresis loss and the coercive force of the steel sheet after the primary recrystallization and before the start of the secondary recrystallization within respective predetermined ranges ( Fourth invention).

【0023】5)第4発明における制御手段が、最終冷間
圧延後、1次再結晶開始前の鋼板で、スラブの加熱条件
の調整、熱間圧延条件の調整および中間焼鈍を含む冷間
圧延条件の調整のうちから選んだ少なくともいずれか一
つであり、1次再結晶後、2次再結晶開始前の鋼板で、
スラブ加熱条件の調整、熱間圧延条件の調整、中間焼鈍
を含む冷間圧延条件の調整および1次再結晶焼鈍条件の
調整のうちから選んだ少なくともいずれか一つである磁
気特性に優れる方向性けい素鋼板の製造方法(第5発
明)。
5) The control means in the fourth invention is a steel sheet after the final cold rolling and before the start of primary recrystallization, in which the slab heating conditions are adjusted, the hot rolling conditions are adjusted, and cold rolling including intermediate annealing is performed. At least one selected from the adjustment of conditions, which is a steel plate after primary recrystallization and before the start of secondary recrystallization,
Directionality with excellent magnetic properties, which is at least one selected from adjustment of slab heating conditions, adjustment of hot rolling conditions, adjustment of cold rolling conditions including intermediate annealing, and adjustment of primary recrystallization annealing conditions Manufacturing method of silicon steel sheet (fifth invention).

【0024】6)けい素鋼スラブを加熱したのち熱間圧延
し、1回もしくは中間焼鈍を挟む2回以上の冷間圧延を
行ったのち、脱炭・1次再結晶焼鈍を施し、ついで焼鈍
分離剤を塗布して2次再結晶焼鈍と純化焼鈍とからなる
最終仕上焼鈍を施す方向性けい素鋼板の製造方法におい
て、 最終冷間圧延後、1次再結晶焼鈍前の鋼板の抗磁
力、透磁率もしくはヒステリシス損を測定し、その測定
値と、抗磁力、透磁率もしくはヒステリシス損の目標値
との偏差に応じて、2次再結晶焼鈍条件の調整、焼鈍分
離剤の塗布量・成分組成の調整および1次再結晶焼鈍条
件の調整のうちから選んだ少なくともいずれか一つの処
理を施すこと、 1次再結晶焼鈍後、2次再結晶焼鈍前の鋼板の抗磁
力を測定し、その測定値と抗磁力の目標値との偏差に応
じて、1次再結晶焼鈍条件の調整、焼鈍分離剤の塗布量
・成分組成の調整および2次再結晶焼鈍条件の調整のう
ちから選んだ少なくともいずれか一つの処理を施すこ
と、とを特徴とする磁気特性に優れる方向性けい素鋼板
の製造方法(第6発明)。
6) After heating the silicon steel slab, it is hot-rolled, cold-rolled once or twice with intervening intermediate annealing, followed by decarburization / primary recrystallization annealing, and then annealing. In a method for producing a grain-oriented silicon steel sheet, which comprises applying a separating agent and performing a final finishing annealing consisting of secondary recrystallization annealing and purification annealing, a coercive force of the steel sheet after final cold rolling and before primary recrystallization annealing, The permeability or hysteresis loss is measured, and the secondary recrystallization annealing conditions are adjusted according to the deviation between the measured value and the target value of coercive force, permeability or hysteresis loss, and the amount and composition of the composition of the annealing separator are applied. At least one treatment selected from the adjustment of the above and the adjustment of the primary recrystallization annealing condition, the coercive force of the steel sheet after the primary recrystallization annealing and before the secondary recrystallization annealing is measured, and the measurement is performed. 1 according to the deviation between the target value and the coercive force target value Magnetic properties characterized by performing at least one treatment selected from the followings: adjustment of secondary recrystallization annealing conditions, adjustment of application amount / component composition of annealing separator, and adjustment of secondary recrystallization annealing conditions. Of excellent grain-oriented silicon steel sheet (sixth invention).

【0025】7)けい素鋼スラブを加熱したのち熱間圧延
し、1回もしくは中間焼鈍を挟む2回以上の冷間圧延を
行ったのち、脱炭・1次再結晶焼鈍を施し、ついで焼鈍
分離剤を塗布して2次再結晶焼鈍と純化焼鈍とからなる
最終仕上焼鈍を施す方向性けい素鋼板の製造方法におい
て、最終冷間圧延後、1次再結晶焼鈍前の鋼板の抗磁
力、透磁率もしくはヒステリシス損を測定し、その測定
値と、抗磁力、透磁率もしくはヒステリシス損の目標値
との偏差に応じて、1次再結晶条件の調整を行ったの
ち、さらに1次再結晶焼鈍後、2次再結晶焼鈍前の鋼板
の抗磁力を測定し、その測定値と抗磁力の目標値との偏
差に応じて、焼鈍分離剤の塗布量・成分組成の調整およ
び2次再結晶焼鈍条件の調整のうちから選んだ少なくと
もいずれか一つの処理を施すことを特徴とする磁気特性
に優れる方向性けい素鋼板の製造方法(第7発明)。
7) After heating the silicon steel slab, it is hot-rolled, cold-rolled once or twice with intervening intermediate annealing, and then decarburized and primary recrystallization annealing, and then annealing. In a method for manufacturing a grain-oriented silicon steel sheet, which comprises applying a separating agent and performing a final finishing annealing consisting of a secondary recrystallization annealing and a purification annealing, a coercive force of the steel sheet after the final cold rolling and before the primary recrystallization annealing, After measuring the magnetic permeability or the hysteresis loss, and adjusting the primary recrystallization conditions according to the deviation between the measured value and the target value of the coercive force, the magnetic permeability or the hysteresis loss, the primary recrystallization annealing is further performed. After that, the coercive force of the steel sheet before the secondary recrystallization annealing is measured, and according to the deviation between the measured value and the target value of the coercive force, the application amount and composition of the annealing separator are adjusted and the secondary recrystallization annealing is performed. At least one process selected from the adjustment of conditions Method for producing oriented silicon steel sheet having excellent magnetic properties, wherein the applied (seventh invention).

【0026】8)抗磁力、透磁率もしくはヒステリシス損
が、オンラインでの計測によるものである第1,2,4
発明または第5発明に記載の磁気特性に優れる方向性け
い素鋼板の製造方法(第8発明)。
8) The coercive force, magnetic permeability, or hysteresis loss is due to online measurement.
A method for manufacturing a grain-oriented silicon steel sheet having excellent magnetic properties according to the invention or the fifth invention (eighth invention).

【0027】9) 抗磁力、透磁率もしくはヒステリシス
損の測定が、オンラインでの計測によるものである第
3,6発明または第7発明に記載の磁気特性に優れる方
向性けい素鋼板の製造方法(第9発明)。
9) A method for producing a grain-oriented silicon steel sheet having excellent magnetic properties according to the third, sixth or seventh inventions, in which the coercive force, magnetic permeability or hysteresis loss is measured online. 9th invention).

【0028】ここで、この発明は、冷間圧延後、1次再
結晶焼鈍前鋼板(冷延板)の抗磁力、透磁率もしくはヒ
ステリシス損により、熱延板のバンド組織、転位の導入
状況を含んで冷延板の集合組織の形成状態を評価するも
のであるが、これは、熱延板のバンド組織や冷延板の転
位の導入状況の違いの差が、冷延板での抗磁力、透磁率
あるいはヒステリシス損に大きく反映し、より適格な評
価を行うことができることによるものである。
Here, in the present invention, after cold rolling, the band structure of the hot rolled sheet and the state of introduction of dislocations are determined by the coercive force, magnetic permeability or hysteresis loss of the steel sheet (cold rolled sheet) before primary recrystallization annealing. This is to evaluate the formation state of the texture of the cold-rolled sheet, and the difference in the difference in the introduction state of the band structure of the hot-rolled sheet and the dislocation of the cold-rolled sheet is the coercive force in the cold-rolled sheet. This is because it is possible to make a more appropriate evaluation by largely reflecting it on the magnetic permeability or the hysteresis loss.

【0029】なお、1次再結晶焼鈍後鋼板の集合組織
は、1次再結晶焼鈍前鋼板の転位の導入状況などやこの
焼鈍前鋼板の集合組織にも大きく依存し、通常の操業条
件では、前記した従来技術の1次再結晶焼鈍後鋼板の透
磁率や磁束密度で評価するよりも、1次再結晶焼鈍前鋼
板の抗磁力、透磁率あるいはヒステリシス損で評価した
方が、1次再結晶焼鈍条件の外乱要因を含んでいても適
格である。
The texture of the steel sheet after primary recrystallization annealing largely depends on the dislocation introduction state of the steel sheet before primary recrystallization annealing and the texture of the steel sheet before annealing. Under normal operating conditions, The primary recrystallization is better evaluated by the coercive force, magnetic permeability or hysteresis loss of the steel sheet before primary recrystallization annealing than by the magnetic permeability or magnetic flux density of the steel sheet after primary recrystallization annealing of the above-mentioned conventional technology. It is suitable even if it includes disturbance factors of the annealing conditions.

【0030】また、抗磁力に関し、1次再結晶焼鈍前鋼
板の抗磁力は、上記したように転位の導入状況等を示す
指標となるが、1次再結晶焼鈍後鋼板の抗磁力は主とし
てインヒビターの抑制状況を示す別の指標となり、この
指標を用いればさらなる磁気特性の向上がはかれるよう
になる。
Regarding the coercive force, the coercive force of the steel sheet before primary recrystallization annealing serves as an index indicating the state of introduction of dislocations as described above, but the coercive force of the steel sheet after primary recrystallization annealing is mainly an inhibitor. Is another index showing the suppression state of the magnetic field, and by using this index, the magnetic characteristics can be further improved.

【0031】以下、この発明を達成するに至った実験例
をもとにして述べる。C:0.068mass %, Si:3.35mass
%, Mn:0.072 mass%, sol Al:0.024mass%, S:0.0
03 mass%, Se:0.016 mass%, Sb:0.030 mass%、C
u:0.15mass%およびN:0.008 mass%を含有し、残部
はFeおよび不可避的不純物の組成からなる10本のスラブ
を用い、それらのスラブを1430℃の温度に加熱する際、
5本は均熱時間を5分間とし、他の5本は20分間とし
た。スラブ加熱後は粗圧延を1200〜1210℃の温度範囲、
仕上圧延出側温度を950 〜1000℃の温度範囲で熱間圧延
し、板厚:2.2mm の熱延板コイルとした。
Hereinafter, description will be made on the basis of experimental examples that have achieved the present invention. C: 0.068mass%, Si: 3.35mass
%, Mn: 0.072 mass%, sol Al: 0.024 mass%, S: 0.0
03 mass%, Se: 0.016 mass%, Sb: 0.030 mass%, C
When 10 slabs containing u: 0.15 mass% and N: 0.008 mass% and the balance of Fe and inevitable impurities were used, and heating the slabs to a temperature of 1430 ° C.,
The soaking time was 5 minutes for 5 pieces, and 20 minutes for the other 5 pieces. After heating the slab, rough rolling is performed in the temperature range of 1200 to 1210 ° C.
Hot rolling was performed at a finish rolling outlet temperature in the temperature range of 950 to 1000 ° C to obtain a hot rolled coil with a plate thickness of 2.2 mm.

【0032】その後、各コイルは温度:1000℃、時間:
1分間の熱延板焼鈍を施したのち、1.50mmの板厚に冷間
圧延し、さらに1050℃の温度で1分間の中間焼鈍を施
し、70〜100 ℃、120 〜140 ℃、150 〜180 ℃、200 〜
230 ℃、250 〜270 ℃の各温度域で、上記したスラブ均
熱時間の2水準のスラブについて、それぞれ各1本ずつ
冷間圧延した。
After that, each coil has a temperature of 1000 ° C. and a time of:
After 1 minute of hot-rolled sheet annealing, cold rolling to a sheet thickness of 1.50 mm, then 1 minute of intermediate annealing at a temperature of 1050 ° C, 70-100 ° C, 120-140 ° C, 150-180 ℃, 200〜
In each of the temperature ranges of 230 ° C. and 250 to 270 ° C., one of each of the two levels of slab soaking time described above was cold-rolled.

【0033】これらの冷間圧延コイルはHm=1000A/m に
おける鋼板の抗磁力および透磁率を測定し、850 ℃の温
度で3分間の湿水素中における脱炭焼鈍を兼ねる1次再
結晶焼鈍を施し、つづいてMgO を主成分とする焼鈍分離
剤を塗布して最終仕上焼鈍を行った。
These cold-rolled coils were subjected to primary recrystallization annealing which measures demagnetizing force and magnetic permeability of a steel sheet at Hm = 1000 A / m, and which also serves as decarburization annealing in wet hydrogen at a temperature of 850 ° C. for 3 minutes. After that, an annealing separator containing MgO as a main component was applied to perform final finishing annealing.

【0034】かくして得られた最終仕上焼鈍後の各鋼板
について磁束密度B8(T) 、2次再結晶率および2次再結
晶粒の鋼板面内における結晶方位の(110 )〔001 〕方位
からのずれ角(α)を測定するとともに、1次再結晶焼
鈍後の各鋼板の平均1次再結晶粒径を測定した。
The magnetic flux density B 8 (T), the secondary recrystallization ratio, and the (110) [001] orientation of the in-plane crystal orientation of the secondary recrystallized grains of each of the steel sheets thus obtained after the final finish annealing were obtained. The deviation angle (α) was measured and the average primary recrystallized grain size of each steel sheet after the primary recrystallization annealing was measured.

【0035】これらの測定結果を図1、図2および図3
に示す。図1は、1次再結晶焼鈍後鋼板の平均1次再結
晶粒径と最終仕上焼鈍後鋼板の諸特性との関係を示すグ
ラフであり、図2は最終冷間圧延後鋼板の抗磁力 (Hc)
と最終仕上焼鈍後鋼板の諸特性との関係を示すグラフで
あり、図3は最終冷間圧延後鋼板の透磁率(μ)と最終
仕上焼鈍後鋼板の諸特性との関係を示すグラフである。
These measurement results are shown in FIG. 1, FIG. 2 and FIG.
Shown in FIG. 1 is a graph showing the relationship between the average primary recrystallized grain size of the steel sheet after primary recrystallization annealing and various properties of the steel sheet after final finish annealing, and FIG. 2 is a coercive force of the steel sheet after final cold rolling ( Hc)
And FIG. 3 is a graph showing the relationship between various properties of the steel plate after final annealing, and FIG. 3 is a graph showing the relationship between the magnetic permeability (μ) of the steel plate after final cold rolling and the properties of the steel plate after final annealing. .

【0036】図1から明らかなように、平均1次再結晶
粒径が同一であっても、磁気特性B8は大きく変化し、平
均1次再結晶粒径によって磁気特性は一義的に決定され
ないことが分かる。すなわち、前記した従来技術のよう
に、平均1次再結晶粒径を制御する手段では磁気特性に
優れる2次再結晶を適確に得ることができないことにな
る。
As is apparent from FIG. 1, even if the average primary recrystallized grain size is the same, the magnetic characteristic B 8 changes greatly, and the magnetic characteristic is not uniquely determined by the average primary recrystallized grain size. I understand. That is, unlike the above-mentioned conventional technique, the means for controlling the average primary recrystallization grain size cannot properly obtain the secondary recrystallization having excellent magnetic characteristics.

【0037】これに対して、図2あるいは図3において
は、スラブ加熱温度や冷間圧延温度が変化しても、最終
冷間圧延後鋼板の抗磁力(Hc)もしくは透磁率(μ)によ
ってのみ2次再結晶後の磁気特性B8は決定され、図2に
おいては抗磁力が535 〜545(A/m) の範囲あるいは図3
においては透磁率が0.53〜0.56 (×10-3H/m)の範囲に
て、良好な磁気特性が得られることを示している。
On the other hand, in FIG. 2 or FIG. 3, even if the slab heating temperature or cold rolling temperature changes, only the coercive force (Hc) or magnetic permeability (μ) of the steel sheet after final cold rolling is used. The magnetic property B 8 after the secondary recrystallization was determined. In FIG. 2, the coercive force is in the range of 535 to 545 (A / m) or in FIG.
Shows that good magnetic characteristics can be obtained when the magnetic permeability is in the range of 0.53 to 0.56 (× 10 −3 H / m).

【0038】したがって、この抗磁力もしくは透磁率を
指標として用いれば、最終仕上焼鈍後の磁気特性を極め
て正確な再現性のもとに予測できることになる。
Therefore, if this coercive force or magnetic permeability is used as an index, the magnetic characteristics after final finish annealing can be predicted with extremely accurate reproducibility.

【0039】ここで、このような結果が得られた理由に
ついて考察する。一般に、1430℃以上の高温にスラブを
加熱した場合、インヒビターは極めて短時間に溶解する
ことが知られており、均熱時間が5分間と20分間とで
は、インヒビターの固溶に関して差異はない。また、熱
間圧延の温度条件についても、両者に違いはないのでイ
ンヒビターの析出分散に関しても差異は生じない。この
ことは両者のインヒビターの抑制力の測定結果でも確認
された。
Here, the reason why such a result is obtained will be considered. It is generally known that when a slab is heated to a high temperature of 1430 ° C. or higher, the inhibitor dissolves in an extremely short time, and there is no difference in solid solution of the inhibitor between the soaking time of 5 minutes and 20 minutes. Also, since there is no difference in the temperature conditions of hot rolling, there is no difference in precipitation dispersion of the inhibitor. This was also confirmed by the results of measuring the inhibitory potency of both inhibitors.

【0040】したがって、両者の差異はスラブ加熱後の
結晶粒径であり、加熱後スラブの結晶粒径の調査による
と、均熱時間が5分間の場合には15〜30mmの結晶粒であ
ったのに対し、均熱時間が20分間の場合には50〜80mmの
大きさに結晶粒が成長していた。この熱間圧延前のスラ
ブ結晶粒の大きさは熱間圧延後の熱延バンド組織の発達
に関係しており、スラブ結晶粒が大きい程、熱延バンド
組織が発達する。
Therefore, the difference between the two is the crystal grain size after heating the slab. According to the examination of the crystal grain size of the slab after heating, when the soaking time was 5 minutes, the crystal grain size was 15 to 30 mm. On the other hand, when the soaking time was 20 minutes, the crystal grains grew to a size of 50 to 80 mm. The size of the slab crystal grains before the hot rolling is related to the development of the hot rolled band structure after the hot rolling. The larger the slab crystal grains, the more the hot rolled band structure develops.

【0041】そして、熱延バンド組織の発達は、その程
度が弱いと1次再結晶集合組織のうち(110) 集合組織の
発達が弱いことが考えられ、逆に熱延バンド組織の発達
の程度が強いと1次再結晶集合組織のうち(111) 集合組
織の発達が阻害される。したがって、製品板での良好な
磁気特性を得るためには、熱延バンド組織の発達の程度
を適正化することが肝要であり、そのためには、スラブ
結晶粒のサイズを適正化することが重要になる。
When the degree of development of the hot-rolled band structure is weak, it is considered that the development of the (110) texture of the primary recrystallization texture is weak, and conversely, the degree of the development of the hot-rolled band structure. If the value is strong, the development of the (111) texture in the primary recrystallization texture is inhibited. Therefore, in order to obtain good magnetic properties in the product plate, it is important to optimize the degree of development of the hot rolled band structure, and for that purpose it is important to optimize the size of the slab crystal grains. become.

【0042】また、冷間圧延の温度を変えることは、冷
間圧延時の変形挙動を変え、1次再結晶集合組織を変え
ることになる。したがって上記両者はともに同一の効果
を狙うものであり、適正なバランスを保つことにより、
最も優れた磁気特性を得ることが可能となるのである。
Further, changing the temperature of cold rolling changes the deformation behavior during cold rolling and changes the primary recrystallization texture. Therefore, both of them aim for the same effect, and by maintaining an appropriate balance,
It is possible to obtain the best magnetic characteristics.

【0043】ここに、1次再結晶集合組織に影響を及ぼ
す要因としては、スラブ均熱温度や冷間圧延温度の他に
も、熱間圧延における粗圧延、仕上圧延の圧下率や、鋼
中C量、炭化物サイズ、中間焼鈍、冷間圧延圧下率、圧
延速度、圧延回数、圧延時の摩擦、圧延パス間の時効、
圧延張力等種々あり、これらを調整することが重要とな
る。
Factors that influence the primary recrystallization texture include not only the slab soaking temperature and cold rolling temperature, but also the rolling ratio in rough rolling and finish rolling in hot rolling and in steel. C content, carbide size, intermediate annealing, cold rolling reduction, rolling speed, number of times of rolling, friction during rolling, aging between rolling passes,
There are various rolling tensions, and it is important to adjust these.

【0044】ところで、1次再結晶集合組織を測定する
方法はX線回折法などがあるが簡便に測定する方法がな
かった。そこで、この発明では上記実験結果に基づき最
終冷間圧延後鋼板の抗磁力や透磁率もしくはヒステリシ
ス損を測定するようにするものである。
By the way, there are X-ray diffractometry and the like as a method for measuring the primary recrystallization texture, but there is no simple method. Therefore, in the present invention, the coercive force, magnetic permeability, or hysteresis loss of the steel sheet after the final cold rolling is measured based on the above experimental results.

【0045】すなわち、最終冷間圧延後鋼板に存在する
転位は、変形時の挙動や、圧延前の結晶組織によって、
その集積状態が異なり、これが、1次再結晶集合組織に
影響を及ぼす。例えば、高温度で冷間圧延変形を受けた
場合は、高い転位の集積となり、1次再結晶集合組織と
しては(110) 集合組織が発達する。この発明は、かかる
冷間圧延によって導入された転位の集積度は、最終冷間
圧延後鋼板の抗磁力や透磁率もしくはヒステリシス損の
測定によって容易に推測できることを知見したことに基
づくものである。
That is, the dislocations existing in the steel sheet after the final cold rolling are different depending on the behavior at the time of deformation and the crystal structure before rolling.
The accumulation state is different, which affects the primary recrystallization texture. For example, when subjected to cold rolling deformation at a high temperature, high dislocations are accumulated and a (110) texture develops as a primary recrystallization texture. The present invention is based on the finding that the degree of dislocation integration introduced by such cold rolling can be easily estimated by measuring the coercive force, magnetic permeability or hysteresis loss of the steel sheet after final cold rolling.

【0046】したがって、前記した1次再結晶組織に影
響を及ぼすスラブ加熱工程、熱間圧延工程、冷間圧延工
程における諸要因の条件を変更することにより、最終冷
間圧延後鋼板の抗磁力や透磁率あるいはヒステリシス損
を目標値に近づけることが可能になるのである。
Therefore, the coercive force and the coercive force of the steel sheet after the final cold rolling are changed by changing the conditions of various factors in the slab heating step, hot rolling step, and cold rolling step that affect the above-mentioned primary recrystallization structure. It is possible to bring the magnetic permeability or the hysteresis loss close to the target value.

【0047】一方、最終冷間圧延後の鋼板の状態はこれ
らの抗磁力、透磁率もしくはヒステリシス損を測定する
ことにより推測可能であり、熱延バンド組織と冷間圧延
で導入された転位の集積度のバランスを調整することが
重要であるとの発明者らの知見によって、鋼板のその後
の処理に対し、容易かつ適切な対策を施すことが可能に
なる。
On the other hand, the state of the steel sheet after the final cold rolling can be estimated by measuring these coercive force, magnetic permeability or hysteresis loss, and the hot rolled band structure and the accumulation of dislocations introduced by cold rolling are estimated. The inventor's knowledge that it is important to adjust the balance of degrees makes it possible to take easy and appropriate measures for the subsequent processing of the steel sheet.

【0048】たとえば、抗磁力が目標値よりも高い場合
や、透磁率が目標値よりも高い場合は鋼中に導入された
転位の集積が過剰であるので、脱炭焼鈍の昇温速度を低
減する、均熱温度を低下する、もしくは最終仕上焼鈍の
昇温速度を増加する。最終仕上焼鈍時の雰囲気の中性雰
囲気から還元性雰囲気への切替時期を遅延する、さらに
は焼鈍分離剤の塗布量を低減したり、焼鈍分離剤に添加
するTiO2、Sr(OH)2 ・8H2OやSnO2などの添加量を低減し
たり、添加を取りやめたりする対策が有効となる。これ
らは転位の集積が過剰な場合に形成される(110) 系の再
結晶集合組織の発達を弱め、(111) 系の再結晶集合組織
の発達を促す対策である。また、抗磁力や透磁率もしく
はヒステリシス損が目標値より低い場合には、逆の対策
を施すことで抑制力とのバランスをとることが可能とな
る。
For example, when the coercive force is higher than the target value or when the magnetic permeability is higher than the target value, the dislocations introduced into the steel are excessively accumulated, so that the temperature rising rate of decarburization annealing is reduced. Yes, the soaking temperature is lowered, or the temperature rising rate of final finish annealing is increased. Delay the switching time from the neutral atmosphere to the reducing atmosphere in the final finish annealing, and further reduce the coating amount of the annealing separator, or add TiO 2 , Sr (OH) 2 to the annealing separator. Measures such as reducing the amount of 8H 2 O and SnO 2 added or canceling the addition are effective. These are measures to weaken the development of the (110) system recrystallization texture that is formed when dislocation accumulation is excessive, and to promote the development of the (111) system recrystallization texture. Further, when the coercive force, the magnetic permeability, or the hysteresis loss is lower than the target value, it is possible to achieve the balance with the suppression force by taking the opposite measure.

【0049】さらに、かかる転位の集積度のバランスを
とり再結晶集合組織を安定化させる技術の他に、インヒ
ビターの抑制力と、1次再結晶粒径とのバランスをとる
技術を付加させることは、優れた磁気特性の製品を得る
上でより好ましい。そのためには、1次再結晶後鋼板の
抗磁力を目標値に合わせて、一定に管理するか、目標値
からの偏差に応じて1次再結晶焼鈍条件の調整、焼鈍分
離剤の塗布量・成分組成の調整もしくは2次再結晶焼鈍
条件の調整のいずれかの対策を施すことがよい。
Further, in addition to the technique of stabilizing the recrystallized texture by balancing the degree of dislocation integration, it is not possible to add a technique of balancing the inhibitory force of the inhibitor and the primary recrystallized grain size. It is more preferable for obtaining a product having excellent magnetic properties. In order to do so, the coercive force of the steel sheet after primary recrystallization is adjusted to a target value and maintained constant, or the primary recrystallization annealing conditions are adjusted according to the deviation from the target value, and the amount of the annealing separator applied is adjusted. It is advisable to take measures to either adjust the component composition or the secondary recrystallization annealing conditions.

【0050】[0050]

【発明の実施の形態】この発明の作用を以下に述べる。
この発明の対象としている方向性けい素鋼板は、従来か
ら用いられている製鋼法で得られた溶鋼を連続鋳造法あ
るいは造塊法で鋳造し、必要に応じて分塊工程を経てス
ラブとし、該スラブを熱間圧延して熱延板としたのち、
1回または中間焼鈍を挟む2回以上の冷間圧延を施して
最終板厚となし、つづいて脱炭を兼ねる1次再結晶焼鈍
後、焼鈍分離剤を塗布して2次再結晶焼鈍と純化焼鈍と
からなる最終仕上焼鈍を施し製造される。
BEST MODE FOR CARRYING OUT THE INVENTION The operation of the present invention will be described below.
The grain-oriented silicon steel sheet that is the subject of the present invention is a molten steel obtained by a steelmaking method that has been conventionally used, is cast by a continuous casting method or an ingot making method, and is a slab through a slab step, if necessary, After hot rolling the slab into a hot rolled sheet,
Cold rolling is performed once or more than twice with an intermediate anneal between them to obtain the final sheet thickness, then after primary recrystallization annealing that also serves as decarburization, an annealing separator is applied to perform secondary recrystallization annealing and purification. It is manufactured by performing final finishing annealing consisting of annealing.

【0051】そして、その方向性けい素鋼スラブの好適
成分組成範囲は以下の通りである。
The preferred composition range of the composition of the grain-oriented silicon steel slab is as follows.

【0052】Cは、0.20mass%を超えると脱炭が困難に
なるので、その含有量は0.20mass%以下がよい。
When C exceeds 0.20 mass%, decarburization becomes difficult, so the content is preferably 0.20 mass% or less.

【0053】Siは、2.0 mass%未満では固有抵抗が低す
ぎ、所望の鉄損が得られなく、一方7.0 mass%を超える
と圧延が困難になる。したがってその含有量は2.0 mass
%以上、7.0 mass%以下とすることがよい。
If Si is less than 2.0 mass%, the specific resistance is too low to obtain the desired iron loss, while if it exceeds 7.0 mass%, rolling becomes difficult. Therefore, its content is 2.0 mass
% Or more and 7.0 mass% or less is preferable.

【0054】Mnは、MnS やMnSeなどのインヒビター成分
として、また熱間圧延性向上のために0.02mass%以上は
必要であるが、3.0 mass%を超えるとγ変態への影響が
大きくなり、2次再結晶が不安定となる。したがってそ
の含有量は0.02mass%以上、3.0 mass%以下とすること
がよい。
Mn needs to be 0.02 mass% or more as an inhibitor component such as MnS and MnSe and for improving the hot rolling property, but if it exceeds 3.0 mass%, the effect on the γ transformation becomes large, and Secondary recrystallization becomes unstable. Therefore, its content is preferably 0.02 mass% or more and 3.0 mass% or less.

【0055】上記成分のほかにインヒビター成分とし知
られるS,Se, Al, TeおよびBのうちから選んだいずれ
か1つ以上を含有させることが磁気特性に優れる良好な
2次再結晶を得るために重要である。さらに安定な2次
再結晶を得るために、Cu, Ni, Sn, Sb, As, Bi, Cr, M
o, PおよびNのうちから選んだいずれか一つ以上を含
有させることもよい。
In order to obtain good secondary recrystallization having excellent magnetic properties, it is preferable to contain one or more selected from S, Se, Al, Te and B known as inhibitor components in addition to the above components. Is important to. In order to obtain more stable secondary recrystallization, Cu, Ni, Sn, Sb, As, Bi, Cr, M
One or more selected from o, P and N may be contained.

【0056】つぎにこの発明の特徴である最終冷間圧延
後鋼板の抗磁力、透磁率もしくはヒステリシス損に関し
て、その測定方法や制御方法などについて述べる。ま
ず、その測定方法としては、最終冷間圧延後の鋼板を切
出して測定する方法(オフライン測定法)や冷間圧延ラ
インもしくは1次再結晶焼鈍ラインに1次コイルおよび
2次コイルを設置し、該コイルの中に鋼帯を通したり、
鋼帯表面に接触させて鋼帯を磁化させる方法(オンライ
ン測定法)があるが、後者の方が制御法としては優れて
いる。
Next, with respect to the coercive force, magnetic permeability, or hysteresis loss of the steel sheet after final cold rolling, which is a feature of the present invention, the measuring method and control method thereof will be described. First, as the measuring method, a method of cutting and measuring the steel sheet after the final cold rolling (off-line measuring method) or a primary coil and a secondary coil are installed in a cold rolling line or a primary recrystallization annealing line, Pass a steel strip through the coil,
There is a method (online measurement method) of magnetizing the steel strip by bringing it into contact with the surface of the steel strip, but the latter is superior as the control method.

【0057】抗磁力や透磁率もしくはヒステリシス損の
測定は、 ・一定の最大磁化力を与えて測定する ・一定の最大磁束密度を与えて測定する ・飽和磁束密度に近い領域まで磁化し測定するなど、い
ずれの方法もこの発明に適する。また、磁場を変化させ
る方法としては、準静的に変化させる方法(直流法)や
交番的に変化させる方法(交流法)のいずれもがこの発
明に適する。
Coercive force, magnetic permeability, or hysteresis loss is measured by applying a constant maximum magnetizing force, measuring by applying a constant maximum magnetic flux density, and measuring by magnetizing to a region close to the saturation magnetic flux density. Any method is suitable for this invention. Further, as a method for changing the magnetic field, either a quasi-static changing method (DC method) or an alternating changing method (AC method) is suitable for the present invention.

【0058】さらに、磁化の付与方法としては、1次コ
イルのかわりに磁石を用いることも可能である。なお、
抗磁力と透磁率との積すなわち、ヒステリシス損に相当
する量も測定できる。
Further, as a method of applying magnetization, it is possible to use a magnet instead of the primary coil. In addition,
The product of coercive force and magnetic permeability, that is, the amount corresponding to hysteresis loss can also be measured.

【0059】かかる方法で測定した最終冷間圧延後鋼板
の抗磁力や透磁率もしくはヒステリシス損の値が、あら
かじめ測定しておいた最終仕上焼鈍を経た製品で優れる
磁気特性を発現できる最終冷間圧延後の鋼板の抗磁力、
透磁率もしくはヒステリシス損の最適範囲を所定範囲と
定めこの範囲内に入るように制御する。その抗磁力、透
磁率もしくはヒステリシス損の制御手段としては、スラ
ブ加熱工程から冷間圧延工程までの間で、前記した抗磁
力、透磁率もしくはヒステリシス損を変化させる要因と
なる各処理条件があり、これらのうちから選んだ少なく
ともいずれか一つ調整を行うことでよい。
The value of the coercive force, magnetic permeability or hysteresis loss of the steel sheet after final cold rolling measured by such a method allows the final cold rolling to exhibit excellent magnetic properties in the product subjected to final finish annealing which has been measured in advance. Coercive force of the later steel plate,
The optimum range of magnetic permeability or hysteresis loss is defined as a predetermined range, and control is performed to fall within this range. The coercive force, as a control means of magnetic permeability or hysteresis loss, from the slab heating step to the cold rolling step, there is each treatment condition that becomes a factor that changes the above-mentioned coercive force, magnetic permeability or hysteresis loss, At least one selected from these may be adjusted.

【0060】さらに好ましくは、最終冷間圧延後の鋼板
の抗磁力、透磁率もしくはヒステリシス損を上記所定範
囲内にて目標値を定め、この目標値と最終冷間圧延後鋼
板の抗磁力、透磁率もしくはヒステリシス損の測定値と
を比較して、両者の偏差に応じて、1次再結晶焼鈍条件
の調整、焼鈍分離剤の塗布量・成分組成の調整および2
次再結晶焼鈍条件の調整のうちから少なくともいずれか
一つの処理を施すことがよい。かくすることにより安定
かつ優れる磁気特性を有する製品が得られることにな
る。
More preferably, a target value for the coercive force, magnetic permeability or hysteresis loss of the steel sheet after final cold rolling is set within the above predetermined range, and this target value and the coercive force, permeability of the steel sheet after final cold rolling are set. By comparing the measured values of magnetic susceptibility or hysteresis loss, the primary recrystallization annealing conditions are adjusted, the amount of the annealing separating agent applied and the composition of the components are adjusted according to the deviation between the two, and
It is preferable to perform at least one of the adjustments of the secondary recrystallization annealing conditions. By doing so, a product having stable and excellent magnetic properties can be obtained.

【0061】ここで、測定した抗磁力、透磁率もしくは
ヒステリシス損が目標値よりも小さい場合には熱延バン
ド組織の発達が不十分となっているか、最終冷間圧延後
の鋼板中の転位の集積度が過少であるので下記するA〜
Eのいずれか一つ以上の対策で処理する。
Here, when the measured coercive force, magnetic permeability or hysteresis loss is smaller than the target value, the development of the hot-rolled band structure is insufficient, or the dislocations in the steel sheet after the final cold rolling are observed. Since the degree of integration is too low,
Process by any one or more of E.

【0062】1. 1次再結晶焼鈍条件の調整 A.500 〜800 ℃間の昇温速度を増加する。 B. 均熱時の酸素ポテシャルを増加させる。1. Adjustment of primary recrystallization annealing conditions A. Increase the heating rate between 500 and 800 ℃. B. Increase oxygen potential during soaking.

【0063】2.焼鈍分離剤の塗布量の成分組成の調整 C. 焼鈍分離剤の塗布量を増加する。 D. TiO2, Sr(OH)2 ・8H2O, SnO2, Fe2O3, NiO, CuO2,
CoO 等の酸化物を焼鈍分離剤に含有させるか、もしくは
それの含有量を増加する。
2. Adjusting the composition of the amount of annealing separator applied C. Increase the amount of annealing separator applied. D. TiO 2 , Sr (OH) 2 · 8H 2 O, SnO 2 , Fe 2 O 3 , NiO, CuO 2 ,
An oxide such as CoO is contained in the annealing separator, or its content is increased.

【0064】3.2次再結晶焼鈍条件の調整 E.800 ℃から2次再結晶開始までの熱処理時間を延長
する。
3. Adjustment of secondary recrystallization annealing conditions E. Extend the heat treatment time from 800 ℃ to the start of secondary recrystallization.

【0065】一方、逆に測定した抗磁力、透磁率もしく
はヒステリシス損が目標値よりも大きい場合は熱延バン
ド組織が発達しているか、最終冷間圧延後鋼板中の転位
の集積度が過大であるので、上記したA〜Eと逆の対策
のうちのいずれか一つ以上を施すことでよい。
On the other hand, when the coercive force, magnetic permeability, or hysteresis loss measured on the contrary is larger than the target value, the hot-rolled band structure has developed, or the dislocation integration in the steel sheet after the final cold rolling is excessive. Therefore, any one or more of the measures reverse to A to E described above may be applied.

【0066】上記において、測定した抗磁力、透磁率も
しくはヒステリシス損が目標値よりも小さい場合に行
う、A〜Eの対策は、いずれも、(110) 再結晶集合組織
の発達を促し、(111) 再結晶集合組織の発達を抑制する
手段になっており、逆に抗磁力、透磁率もしくはヒステ
リシス損が目標値よりも大きい場合に行うA〜Eの逆の
対策は、いずれも(110) 再結晶集合組織の発達を抑え、
(111) 再結晶集合組織の発達を促進する手段になってい
る。
In the above, the measures A to E, which are carried out when the measured coercive force, magnetic permeability or hysteresis loss are smaller than the target values, all promote the development of (110) recrystallization texture, ) It is a means to suppress the development of recrystallized texture, and conversely, when the coercive force, magnetic permeability or hysteresis loss is larger than the target value, the reverse measures of A to E are all (110) Suppresses the development of crystal texture,
It is a means to promote the development of (111) recrystallization texture.

【0067】このようにこの発明においては、抗磁力、
透磁率もしくはヒステリシス損という指標を用いること
によって、熱延バンド組織と再結晶集合組織という2次
再結晶に影響をおよぼす2つの因子を複合して評価する
ことを可能としたのである。したがって、最も優れる2
次再結晶の制御のためには、目標とする抗磁力、透磁率
もしくはヒステリシス損からの偏差に応じてA〜Eの対
策およびその逆の対策の調整量を正確にかつ定量的に設
定することが重要であることは云うまでもない。
As described above, in the present invention, the coercive force,
By using an index such as magnetic permeability or hysteresis loss, it was possible to evaluate a composite of two factors that affect secondary recrystallization, that is, a hot rolled band structure and a recrystallization texture. Therefore, the best 2
In order to control the secondary recrystallization, the adjustment amounts of the measures A to E and vice versa are set accurately and quantitatively according to the deviation from the target coercive force, magnetic permeability, or hysteresis loss. Needless to say, is important.

【0068】また、かかる、抗磁力、透磁率もしくはヒ
ステリシス損の偏差の低減もしくは、偏差量に応じての
工程条件の調整は各コイル単位で行うことの他、コイル
内の各部分において行ってもよいことは自明のことであ
る。
The reduction of the deviation of the coercive force, the magnetic permeability or the hysteresis loss, or the adjustment of the process condition according to the deviation amount is performed not only for each coil but also for each portion in the coil. The good thing is self-evident.

【0069】さらに、かかる技術に組合せて、1次再結
晶後、鋼板の抗磁力の値が2次再結晶開始までの間にあ
らかじめ測定しておいた最終仕上焼鈍を経た製品で優れ
る磁気特性を発現できる1次再結晶板の抗磁力を所定範
囲に入るように制御することも磁気特性をさらに向上さ
せるのに有効である。
Further, in combination with such a technique, after the primary recrystallization, the value of the coercive force of the steel sheet was measured in advance until the start of the secondary recrystallization, and the product obtained after the final finish annealing showed excellent magnetic properties. It is also effective to further improve the magnetic characteristics by controlling the coercive force of the primary recrystallizable plate that can be expressed so as to fall within a predetermined range.

【0070】その抗磁力の制御手段としては、スラブ加
熱工程から冷延工程までの間で、前記した抗磁力を変化
させる要因となる処理条件を変更する手段があるがさら
に、1次再結晶焼鈍の変更ならびに焼鈍分離剤の成分組
成の調整および2次再結晶焼鈍条件の調整のうちから少
なくとも一つの処理を施すことがよく、さらに好ましく
は、1次再結晶板の抗磁力の上記所定範囲内にて目標値
を定め、この目標値と1次再結晶焼鈍後鋼板の抗磁力の
測定値とを比較して、両者の偏差に応じて、1次再結晶
焼鈍条件の変更ならびに焼鈍分離剤の塗布量・成分組成
の調整および2次再結晶焼鈍条件の調整のうちから少な
くともいずれか一つの処理を施すことがよい。
As a means for controlling the coercive force, there is a means for changing the processing condition that causes the change in the coercive force between the slab heating step and the cold rolling step. Of at least one of the above, the adjustment of the component composition of the annealing separator and the adjustment of the secondary recrystallization annealing conditions, and more preferably, the coercive force of the primary recrystallization plate within the above predetermined range. Then, the target value is determined and the target value is compared with the measured value of the coercive force of the steel sheet after the primary recrystallization annealing, and the primary recrystallization annealing condition is changed and the annealing separator is It is preferable to perform at least one treatment from the adjustment of coating amount / component composition and the adjustment of secondary recrystallization annealing conditions.

【0071】かくすることにより安定かつ優れる磁気特
性を有する製品が得られることになる。
By doing so, a product having stable and excellent magnetic properties can be obtained.

【0072】ここで、測定した抗磁力が目標値よりも小
さい場合にはインヒビターの抑制力が低下しているか1
次再結晶粒径が過大であるので下記するa〜mのいずれ
か一つ以上の対策で処理する。
If the measured coercive force is smaller than the target value, is the inhibitory force of the inhibitor reduced?
Since the secondary recrystallized grain size is too large, any one or more of the following measures a to m should be taken.

【0073】1. 1次再結晶焼鈍条件の変更 a.昇温時の酸素ポテシャルを増加する。 b. 昇温速度を低下する。 c.酸素目付量を低減する。 d.サブスケールのファイヤライト/シリカ比を低減す
る。 e. 均熱温度を下げる。 f. 均熱時間を低減する。 g. 窒化量を減らすか脱窒する(Alを含有する方向性け
い素鋼板の場合) 。
1. Change of primary recrystallization annealing conditions a. Increase oxygen potential during temperature rise. b. Decrease the heating rate. c. Reduce the oxygen basis weight. d. Reduces subscale firelite / silica ratio. e. Lower the soaking temperature. f. Reduce soaking time. g. Reduce the amount of nitriding or denitrify (for grain-oriented silicon steel sheets containing Al).

【0074】2. 焼鈍分離剤の塗布量・成分組成の調整 h.焼鈍分離剤の塗布量を増加する。 i.SrSO4, MgSO4, SnSO4, Na2SO4, CaSO4, FeSO4, NiS
O4およびCoSO4 等の硫酸塩化合物を焼鈍分離剤に含有さ
せるか、もしくはそれらの含有量を増加する。 j.Alを含有する方向性けい素鋼板の場合には、FeN, S
iN4, Fe x N, (Mn, Fe) x N, TiNおよびCrN 等の窒化物
を焼鈍分離剤に含有させるか、もしくはそれらの含有量
を増加する。
2. Adjustment of coating amount and component composition of annealing separator h. Increase the amount of annealing separator applied. i. SrSO 4 , MgSO 4 , SnSO 4 , Na 2 SO 4 , CaSO 4 , FeSO 4 , NiS
Sulfate compounds such as O 4 and CoSO 4 are included in the annealing separator or their content is increased. j. In the case of grain-oriented silicon steel sheet containing Al, FeN, S
A nitride such as iN 4 , Fe x N, (Mn, Fe) x N, TiN and CrN is contained in the annealing separator or the content thereof is increased.

【0075】3. 2次再結晶焼鈍条件の調整 k.昇温速度を増加する。 l.Sbを含有する方向性けい素鋼板の場合、750 〜950
℃の温度間における2次再結晶または2次再結晶核生成
のための定温保持処理の温度を高める。
3. Adjustment of secondary recrystallization annealing conditions k. Increase heating rate. l. 750-950 for grain-oriented silicon steel sheet containing Sb
The temperature of the isothermal holding treatment for secondary recrystallization or secondary recrystallization nucleation between the temperatures of ° C is increased.

【0076】m.Alを含有する方向性けい素鋼板の場
合、2次再結晶開始までの雰囲気中のH2分圧を低下す
る。
M. In the case of a grain-oriented silicon steel sheet containing Al, the H 2 partial pressure in the atmosphere until the start of secondary recrystallization is lowered.

【0077】一方、逆に測定した抗磁力が目標値よりも
大きい場合には、1次再結晶粒径が過少であるかインヒ
ビターの抑制力が過大であるので、上記したa〜mと逆
の対策のうち、いずれか一つ以上を行うことでよい。
On the other hand, when the coercive force measured on the contrary is larger than the target value, either the primary recrystallized grain size is too small or the inhibitory force of the inhibitor is too large. One or more of the countermeasures may be taken.

【0078】上記において、測定した抗磁力が目標値よ
りも小さい場合に行うa〜mの対策は、いずれも1次再
結晶焼鈍を含めて2次再結晶開始前までに抗磁力を高め
る手段になっており、逆に抗磁力が目標値よりも大きい
場合に行うa〜mの逆の対策は、いずれも1次再結晶焼
鈍を含めて2次再結晶開始前までに抗磁力を低下させる
手段になっている。
In the above, the measures a to m to be taken when the measured coercive force is smaller than the target value are all means for increasing the coercive force before the start of secondary recrystallization including the primary recrystallization annealing. On the contrary, when the coercive force is larger than the target value, the reverse measures a to m are all means for decreasing the coercive force before the start of secondary recrystallization including the primary recrystallization annealing. It has become.

【0079】このように、抗磁力という指標を用いるこ
とによって、インヒビターの抑制力と1次再結晶粒径と
いう2次再結晶に影響をおよぼす1次再結晶焼鈍後鋼板
の2つの因子を複合して評価することを可能としたので
ある。
As described above, by using the index of coercive force, the inhibitory force of the inhibitor and the primary recrystallized grain size, the two factors of the steel sheet after primary recrystallization annealing, which influence the secondary recrystallization are combined. It was possible to evaluate it.

【0080】したがって、最も優れる2次再結晶の制御
のためには、目標とする抗磁力からの偏差に応じてa〜
mの対策およびその逆の対策の調整量を正確かつ定量的
に設定することが重要であることは云うまでもない。
Therefore, in order to control the secondary recrystallization that is the best, a.about. Depending on the deviation from the target coercive force.
It goes without saying that it is important to accurately and quantitatively set the adjustment amount for the measure of m and the opposite.

【0081】なお、鋼板表面に溝を設けたり、局部的に
歪を付加して方向性けい素鋼板の磁区幅を低減し、鉄損
を向上させる技術の併用も、この発明は、これを妨げる
ものではない。上記において、溝を設ける手段としては
エッチング法や突起ロールによる加工法、また歪付加の
手段としてはパルス型または連続型レーザー光の照射、
プラズマジェットの照射、回転球の押付けなど従来公知
のあらゆる手段が適合する。
The present invention also prevents the simultaneous use of the technique of forming a groove on the surface of the steel sheet or locally applying strain to reduce the magnetic domain width of the grain-oriented silicon steel sheet to improve the iron loss. Not a thing. In the above, as a means for providing a groove, an etching method or a processing method using a protrusion roll, and as a means for adding strain, irradiation with a pulsed or continuous laser beam,
Any conventionally known means such as irradiation with a plasma jet and pressing of a rotating ball are suitable.

【0082】[0082]

【実施例】【Example】

実施例1 C:0.07mass%, Si:3.26mass%, Mn:0.07mass%, so
l Al:0.024 mass%,S:0.003 mass%, Se:0.018 mas
s%, Sb:0.035 mass%, Cu:0.10mass%,Mo:0.010 ma
ss%およびN:0.007 mass%を含有するスラブ24本を14
00℃の温度に加熱し、公知の方法で熱間圧延を行い、そ
れぞれ板厚:2.0mm の熱延板コイルとした。
Example 1 C: 0.07 mass%, Si: 3.26 mass%, Mn: 0.07 mass%, so
l Al: 0.024 mass%, S: 0.003 mass%, Se: 0.018 mas
s%, Sb: 0.035 mass%, Cu: 0.10 mass%, Mo: 0.010 ma
14 slabs containing ss% and N: 0.007 mass% 14
It was heated to a temperature of 00 ° C and hot-rolled by a known method to obtain hot-rolled sheet coils each having a sheet thickness of 2.0 mm.

【0083】ついで、温度:1150℃、時間:50s の熱延
板焼鈍を行い、冷却速度:15〜100℃/s の範囲で室温
までの冷却した。その後、酸洗し、ゼンジマー圧延機で
80〜250 ℃の温度範囲で冷間圧延を行い、それぞれ0.26
mmの最終板厚とした。
Then, hot-rolled sheet annealing was carried out at a temperature of 1150 ° C. for a time of 50 s, and the temperature was cooled to room temperature in the cooling rate range of 15 to 100 ° C./s. After that, pickle and use a Zenzimer rolling mill.
Cold rolling in the temperature range of 80 to 250 ℃, 0.26
The final plate thickness was mm.

【0084】かくして得られた24の冷延コイルを12コイ
ルずつにグループ分けした。最初の12コイルは、露点:
55℃、H2:60%残部N2の雰囲気中で昇温速度:15℃/s、
均熱温度:800 ℃、均熱時間:120sの脱炭・1次再結晶
焼鈍を施したのち、MgO を主成分とし、Sr(OH)2 ・8H
2O:3%,TiO2:10%, SnO2:5%を含有する焼鈍分離
剤を鋼板表面(両面)に10g/m2塗布後、コイル状に巻き
取り、最終仕上焼鈍を、N2雰囲気中で温度:840 ℃まで
昇温速度:30℃/hで昇温し840 ℃の温度で45時間保持し
たのち、N2:25%, H2:75%の雰囲気中で温度:1150℃
まで昇温速度:15℃/hで昇温し、つづいてH2雰囲気中で
1150℃の温度で5時間保持したのち冷却した。
The 24 cold-rolled coils thus obtained were grouped into 12 coils. The first 12 coils have a dew point:
55 ℃, H 2 : 60% balance in N 2 atmosphere, heating rate: 15 ℃ / s,
Soaking temperature: 800 ℃, soaking time: After having been subjected to decarburization and primary recrystallization annealing of the 120s, the main component MgO, Sr (OH) 2 · 8H
An annealing separator containing 2 O: 3%, TiO 2 : 10%, SnO 2 : 5% was applied to the steel sheet surface (both sides) at 10 g / m 2 and then wound into a coil to perform final finishing annealing with N 2 Temperature: 840 ℃ in the atmosphere, heating rate: 30 ℃ / h, and hold at 840 ℃ for 45 hours, then in an atmosphere of N 2 : 25%, H 2 : 75%, temperature: 1150 ℃
Heating rate up to 15 ℃ / h, then in H 2 atmosphere
It was kept at a temperature of 1150 ° C. for 5 hours and then cooled.

【0085】その後、それぞれ未反応焼鈍分離剤を除去
し、平坦化焼鈍を兼ねて、張力コーティング剤を塗布し
てN2雰囲気中で、温度:800 ℃、保持時間:90s の条件
で焼付け処理を行い、製品とした(比較例)。
After that, the unreacted annealing separating agent was removed, and the tension coating agent was applied also for flattening annealing, and the baking treatment was performed in an N 2 atmosphere at a temperature of 800 ° C. and a holding time of 90 s. It was made into a product (comparative example).

【0086】つぎの12コイルは上記比較例と同様に80〜
250 ℃の温度範囲で冷間圧延を行ったのち、鋼板片を切
出し、それぞれ抗磁力および透磁率を測定するととも
に、実験室的に最高の磁気特性が得られる最大磁化力H
=1000A/m の時の抗磁力:540A/m、および透磁率:0.54
H/m×10-3の値を得、それらの値を目標抗磁力および透
磁率とした。
The next 12 coils are 80 to 80 in the same manner as in the comparative example.
After cold rolling in the temperature range of 250 ℃, cut out steel sheet pieces, measure the coercive force and magnetic permeability of each piece, and obtain the maximum magnetizing force H that gives the best magnetic properties in the laboratory.
= 1000 A / m, coercive force: 540 A / m, and permeability: 0.54
Values of H / m × 10 −3 were obtained, and these values were used as the target coercive force and magnetic permeability.

【0087】その後、6コイルについては、上記目標抗
磁力と各コイルの抗磁力との差に応じて、最初の3コイ
ルは、比較例と同一の脱炭・1次再結晶焼鈍を施したの
ち、比較例と同一の組成の焼鈍分離剤を用い、その塗布
量を変更し、最終仕上焼鈍は比較例と全く同一とし、ま
た、残る3コイルは、比較例と全く同一の脱炭・1次再
結晶焼鈍条件および焼鈍分離剤の塗布を行ったのち、最
終仕上焼鈍条件において、840 ℃の温度で保持する時間
のみを変更し、それ以外は比較例と同一の条件で最終仕
上焼鈍を施した。また残りの6コイルについては、上記
目標透磁率と各コイルの透磁率との差に応じて、最初の
3コイルは比較例と同一の脱炭・1次再結晶焼鈍である
が、500〜800 ℃間の昇温速度を変更し、焼鈍分離剤お
よび最終仕上焼鈍は比較例と全く同一とし、次の3コイ
ルは、比較例と同一の脱炭・1次再結晶焼鈍を施した
後、焼鈍分離剤中のSnO2の含有量を調整し、最終仕上焼
鈍は比較例と全く同一とした。
Thereafter, for the 6 coils, the first 3 coils were subjected to the same decarburization and primary recrystallization annealing as in the comparative example, depending on the difference between the target coercive force and the coercive force of each coil. Using the annealing separator having the same composition as the comparative example, changing the coating amount, the final finishing annealing was made completely the same as the comparative example, and the remaining 3 coils were the same decarburization / primary as the comparative example. After applying the recrystallization annealing conditions and the annealing separator, in the final finishing annealing conditions, only the time of holding at the temperature of 840 ° C was changed, and other than that, the final finishing annealing was performed under the same conditions as the comparative example. . Regarding the remaining 6 coils, depending on the difference between the target magnetic permeability and the magnetic permeability of each coil, the first 3 coils have the same decarburization and primary recrystallization annealing as in the comparative example, but 500 to 800. The temperature rising rate between ° C was changed, the annealing separator and the final finish annealing were exactly the same as in the comparative example, and the following three coils were annealed after the same decarburization and primary recrystallization annealing as in the comparative example. The content of SnO 2 in the separating agent was adjusted, and the final finish annealing was the same as that of the comparative example.

【0088】これらのコイルはそれぞれ未反応分離剤を
除去したのち、平坦化焼鈍を兼ねて張力コーティング剤
を塗布し、雰囲気:N2、温度:800 ℃、時間:90s の条
件で焼付け、それぞれ製品とした(この発明の適合
例)。なお、上記1次再結晶焼鈍後鋼板の2次再結晶温
度は1100℃である。
After removing the unreacted separating agent, each of these coils was coated with a tension coating agent also for flattening annealing, and baked under the conditions of atmosphere: N 2 , temperature: 800 ° C., time: 90 s. (Compliance example of this invention). The secondary recrystallization temperature of the steel sheet after the primary recrystallization annealing is 1100 ° C.

【0089】これらの製品について測定した磁気特性
(磁束密度、鉄損)を表1にまとめて示す。
The magnetic properties (magnetic flux density, iron loss) measured for these products are summarized in Table 1.

【0090】[0090]

【表1】 [Table 1]

【0091】表1から明らかなように、この発明の適合
例は比較例に比し優れた磁気特性を有していて、コイル
間のバラツキも極めて小さく安定した値を示している。
As is apparent from Table 1, the conforming example of the present invention has excellent magnetic characteristics as compared with the comparative example, and the variation between the coils is extremely small and shows a stable value.

【0092】実施例2 C:0.07mass%, Si:3.35mass%, Mn:0.07mass%,
P:0.07 mass %, S:0.003 mass%, Se:0.018 mass
%, Sb:0.02mass%, Mo:0.01mass%およびN:0.008
mass%を含有する鋼スラブ8本を、1350℃の温度で60分
間加熱したのち、通常の熱間圧延で板厚:2.4mm の熱延
板コイルとした。
Example 2 C: 0.07 mass%, Si: 3.35 mass%, Mn: 0.07 mass%,
P: 0.07 mass%, S: 0.003 mass%, Se: 0.018 mass
%, Sb: 0.02mass%, Mo: 0.01mass% and N: 0.008
Eight steel slabs containing mass% were heated at a temperature of 1350 ° C. for 60 minutes and then subjected to ordinary hot rolling to obtain a hot-rolled coil having a plate thickness of 2.4 mm.

【0093】これらの熱延板コイルをそれぞれ6分割し
合計48コイルとした。その後温度:1000℃、時間:60s
の熱延板焼鈍を施し、さらに冷間圧延により1.50mmの板
厚としたのち、前段が温度:830 ℃、時間:30s 、後段
が温度:1050℃、時間:60sの2段均熱の中間焼鈍を、
露点:50℃、H2:50%、残部N2の雰囲気中で行い、ミス
ト水を用いて、350 ℃の温度まで40℃/s の速度で急冷
したのち、350 ℃の温度で20s 間保持した後、80℃の温
度の酸洗浴中で酸洗する処理を行った。
Each of these hot-rolled sheet coils was divided into 6 to make a total of 48 coils. After that temperature: 1000 ℃, time: 60s
After the hot rolled sheet is annealed and cold-rolled to a thickness of 1.50 mm, the former is temperature: 830 ° C, time: 30 s, the latter is temperature: 1050 ° C, time: 60 s Annealing,
Dew point: 50 ° C, H 2 : 50%, balance: N 2 atmosphere, quench with mist water to a temperature of 350 ° C at a rate of 40 ° C / s, and then hold at a temperature of 350 ° C for 20s After that, it was subjected to a pickling treatment in a pickling bath at a temperature of 80 ° C.

【0094】その後、各コイルは、100 〜230 ℃の温度
範囲での冷間圧延を行い、最終板厚0.22mmの冷延板コイ
ルとし、冷間圧延の最終圧延を通過した時点でオンライ
ンで各コイルの長手方向の抗磁力の変化を測定した。そ
の後、鋼板表面に電気絶縁性のレジストインキを部分的
に塗布し、電解エッチングを施し、鋼板の片側の表面
に、圧延方向に対し85゜の方向で、幅:100 μm 、深
さ:25μm の溝を圧延方向に3mmピッチで設ける処理を
行ったのち、レジストインキを除去し脱炭・1次再結晶
焼鈍を行い、焼鈍分離剤を塗布し、コイルに巻きとっ
た。
Thereafter, each coil is cold-rolled in a temperature range of 100 to 230 ° C. to obtain a cold-rolled plate coil having a final plate thickness of 0.22 mm, and each coil is online when the final rolling of the cold rolling is passed. The change in coercive force in the longitudinal direction of the coil was measured. After that, the surface of the steel sheet was partially coated with an electrically insulating resist ink and electrolytically etched.On one surface of the steel sheet, at a direction of 85 ° to the rolling direction, width: 100 μm, depth: 25 μm After performing a treatment for forming grooves at a pitch of 3 mm in the rolling direction, the resist ink was removed, decarburization and primary recrystallization annealing were performed, an annealing separator was applied, and the coil was wound on a coil.

【0095】脱炭・1次再結晶焼鈍の条件は、露点:50
℃, H2:50%残部N2の雰囲気中で昇温速度:10℃/s, 均
熱温度:845 ℃, 均熱時間:120sの一定条件のもとで行
い、MgO を主体とし、TiO2:8%,SrSO4 :3%を含有
する焼鈍分離剤を鋼板表面(両面)に8g/m2塗布した。
この時、最初の16コイルは、比較例として、抗磁力を測
定するのみとし、測定結果を何ら工程条件に反映させな
かった。
The conditions of decarburization and primary recrystallization annealing are as follows: dew point: 50
℃, H 2 : 50% balance in N 2 atmosphere, heating rate: 10 ℃ / s, soaking temperature: 845 ℃, soaking time: 120 s, under the fixed conditions, mainly MgO, TiO 2 2: 8%, SrSO 4: was 8 g / m 2 coated annealing separator surface of the steel sheet containing 3% (two-sided).
At this time, in the first 16 coils, as a comparative example, only the coercive force was measured, and the measurement result was not reflected in any process condition.

【0096】次の16コイルは、適合例Iとして、抗磁力
の測定値と適正な抗磁力の目標値との偏差が零となるよ
うに、冷間圧延の最終パスの圧延温度をコイルの長手方
向において、ロールクーラントの油量を抗磁力の偏差量
に応じて変更する制御を行った。
The following 16 coils, as a conforming example I, set the rolling temperature in the final pass of cold rolling to the longitudinal direction of the coil so that the deviation between the measured value of the coercive force and the appropriate target value of the coercive force becomes zero. In the direction, control was performed to change the oil amount of the roll coolant according to the deviation amount of the coercive force.

【0097】また、残りの16コイルは、適合例IIとし
て、抗磁力の測定値と適正な抗磁力の目標値との偏差に
応じて、焼鈍分離剤の塗布量の変更を、コイル長手方向
において、塗布ロールの絞付け圧を変えることで行っ
た。
The remaining 16 coils, as a conforming example II, were to change the coating amount of the annealing separator in the longitudinal direction of the coil according to the deviation between the measured value of the coercive force and the target value of the appropriate coercive force. , Was performed by changing the squeezing pressure of the coating roll.

【0098】その後これらのコイルは、最終仕上焼鈍と
して、N2雰囲気中で温度:850 ℃まで昇温速度:30℃/h
で昇温し、850 ℃の温度で35時間保持したのち、N2:35
%,H2:65%の雰囲気中で温度:1150℃まで昇温速度:3
0℃/hで昇温し、つづいてH2雰囲気中で1150℃の温度で
5時間保持したのち冷却した。しかるのち、未反応焼鈍
分離剤を除去し、平坦化焼鈍を兼ねて、張力コーテング
剤を塗布してN2雰囲気中で温度:800 ℃、時間:90s の
焼付け処理を行い、それぞれ製品とした。
Thereafter, these coils were subjected to final finishing annealing in a N 2 atmosphere at a temperature rising rate of 850 ° C. and a heating rate of 30 ° C./h.
After heating at 850 ° C for 35 hours, N 2 : 35
%, H 2 : 65%, temperature: up to 1150 ℃ Temperature rising rate: 3
The temperature was raised at 0 ° C./h, and then the temperature was maintained at 1150 ° C. for 5 hours in an H 2 atmosphere and then cooled. After that, the unreacted annealing separator was removed, a tension coating agent was applied also for flattening annealing, and a baking treatment was performed in an N 2 atmosphere at a temperature of 800 ° C. for a time of 90 s to obtain each product.

【0099】これらの製品について、各16コイルの最終
冷間圧延後の鋼板の抗磁力の平均値と標準偏差、および
製品板の磁気特性の平均値を表2にまとめて示す。
Table 2 shows the average value and standard deviation of the coercive force of the steel sheet after the final cold rolling of each of the 16 coils and the average value of the magnetic properties of the product sheet for these products.

【0100】[0100]

【表2】 [Table 2]

【0101】表2において、この発明に適合する適合例
Iおよび適合例IIは、比較例に比し、優れる磁気特性の
値を示している。なお、当然のことながら、比較例、適
合例IIに比し、適合例Iの冷間圧延後の鋼板の抗磁力の
標準偏差は小さくなっている。
In Table 2, the conforming examples I and II conforming to the present invention show excellent magnetic property values as compared with the comparative examples. As a matter of course, the standard deviation of the coercive force of the steel sheet after cold rolling of the conforming example I is smaller than that of the comparative example and the conforming example II.

【0102】実施例3 表3に示すA〜Dの4種類の目標成分組成の鋼スラブ各
60本を、鋼種AおよびBは1400℃の温度に、CおよびD
は1300℃の温度に加熱したのち、常法により熱間圧延
し、それぞれ2.2mm の熱延板コイルとした。
Example 3 Each of steel slabs having four kinds of target component compositions A to D shown in Table 3
60 pieces, steel types A and B at a temperature of 1400 ℃, C and D
Was heated to a temperature of 1300 ° C and then hot-rolled by a conventional method to form hot-rolled sheet coils of 2.2 mm each.

【0103】[0103]

【表3】 [Table 3]

【0104】これらのコイルは、1000℃の温度で30秒間
の熱延板焼鈍を施した。その後ミスト中で急冷し、冷間
圧延で1.50mmの板厚としたのち、再び1080℃の温度で1
分間の中間焼鈍後ミスト中で急冷し、140 〜250 ℃の温
度域で冷間圧延を行い、それぞれ最終板厚:0.22mmの冷
延板とした。
These coils were subjected to hot rolled sheet annealing at a temperature of 1000 ° C. for 30 seconds. After that, it is rapidly cooled in a mist, cold-rolled to a plate thickness of 1.50 mm, and then again at a temperature of 1080 ° C for 1
After intermediate annealing for 1 minute, it was rapidly cooled in a mist and cold-rolled in a temperature range of 140 to 250 ° C to obtain cold-rolled sheets with a final sheet thickness of 0.22 mm.

【0105】その後、A〜Dの各鋼種とも30コイルは、
露点:60℃, H2:50%残部N2の雰囲気中で温度:850
℃, 時間:120sの脱炭・1次再結晶焼鈍を施し、MgO を
主成分とし、TiO2:5%,SrSO4 :3%を含有する焼鈍
分離剤を鋼板表面(両面)に13g/m2塗布して、コイル状
に巻きとった。
After that, for each of the steel types A to D, 30 coils were
Dew point: 60 ℃, H 2: 50 % balance temperature in an atmosphere of N 2: 850
Decarburization / primary recrystallization annealing at 120 ° C for 120s, 13g / m of steel sheet surface (both sides) with an annealing separator containing MgO as the main component and containing TiO 2 : 5% and SrSO 4 : 3%. Two coats were applied and wound into a coil.

【0106】しかるのち、N2雰囲気中で850 ℃の温度ま
で昇温速度:40℃/hで加熱し、つづいてN2:20%、H2
80%の雰囲気中で、鋼種A,BおよびCについては850
℃から1150℃までの温度域を昇温速度:30℃/hで、鋼種
Dについては850 ℃から1000℃までの温度域を昇温速
度:15℃/hで、さらにつづいて鋼種A,BおよびCにつ
いては1150℃の温度で、鋼種Dについては1000℃の温度
でそれぞれ5時間保持する最終仕上焼鈍を施した。
After that, it was heated in an N 2 atmosphere to a temperature of 850 ° C. at a heating rate of 40 ° C./h, and then N 2 : 20% and H 2 :
850 for steel types A, B and C in 80% atmosphere
Temperature range from ℃ to 1150 ℃ is 30 ℃ / h, and for steel type D, the temperature range is from 850 ℃ to 1000 ℃ is 15 ℃ / h. Final finishing annealing was carried out by holding C and C at a temperature of 1150 ° C. and Steel type D at a temperature of 1000 ° C. for 5 hours.

【0107】その後これらの各コイルは未反応焼鈍分離
剤を除去したのち、平坦化焼鈍を兼ねて張力コーティン
グ剤を塗布し、N2雰囲気中で温度:800 ℃, 時間:90s
の焼付け処理をそれぞれ行い製品とした(比較例)。
Thereafter, after removing the unreacted annealing separator, each of these coils was coated with a tension coating agent also for flattening annealing, and in a N 2 atmosphere, temperature: 800 ° C., time: 90 s
Each of them was baked to obtain a product (comparative example).

【0108】一方、鋼種A〜Dの残る各60コイルのうち
30コイルについては、実験室にて、事前に最終冷間圧延
後の鋼板の最適透磁率を求めておき、この値を目標透磁
率として定め、脱炭・1次再結晶焼鈍直前の位置に設置
したオンライン透磁率測定器により各コイルの透磁率を
測定し、目標透磁率からの偏差に応じて、脱炭・1次再
結晶焼鈍の均熱部の酸素ポテンシァルPH2O/PH2の値の変
更と、焼鈍分離剤塗布量の変更のうちいずれか一つもし
くは二つの組合せによる工程条件の適正化を行った。
On the other hand, of the remaining 60 coils of steel types A to D,
For 30 coils, the optimum permeability of the steel sheet after the final cold rolling was obtained in advance in the laboratory, this value was set as the target permeability, and it was installed at the position immediately before decarburization and primary recrystallization annealing. The magnetic permeability of each coil was measured by the online magnetic permeability measuring device, and the oxygen potential PH 2 O / PH 2 of the soaking part of the decarburization / primary recrystallization annealing was measured according to the deviation from the target magnetic permeability. The process conditions were optimized by either one of the changes and the change in the amount of the annealing separator applied or a combination of the two.

【0109】上記の変更において、PH2O/PH2の変更は炉
内に注入する水蒸気流量を変えることにより行い、焼鈍
分離剤塗布量の変更は焼鈍炉出側に設置した焼鈍分離剤
塗布ロールの絞付け圧を変えることにより行った。
In the above changes, PH 2 O / PH 2 was changed by changing the flow rate of steam injected into the furnace, and the amount of the annealing separator applied was changed by the annealing separator applying roll installed on the outlet side of the annealing furnace. It was performed by changing the tightening pressure of.

【0110】かくして最終仕上焼鈍後は、それぞれ未反
応焼鈍分離剤を除去したのち、平坦化焼鈍を兼ねて張力
コーティング剤を塗布し、N2雰囲気中で温度:800 ℃,
時間:90s の焼付け処理を行い、製品とした(この発明
の適合例I:単独型)。
Thus, after the final finish annealing, after removing the unreacted annealing separator, the tension coating agent was applied also for flattening annealing, and the temperature was set to 800 ° C. in a N 2 atmosphere.
A baking process was performed for a time of 90 s to obtain a product (Compliant example I of the present invention: standalone type).

【0111】次に鋼種A〜Dの残る各30コイルについて
は、実験室にて、事前に最終冷間圧延後の鋼板の最適透
磁率を求めておき、この値を目標透磁率として定め、脱
炭・1次再結晶焼鈍直前の位置に設置したオンライン透
磁率測定器により各コイルの透磁率を測定し、目標透磁
率からの偏差に応じて、脱炭・1次再結晶焼鈍の500〜8
00 ℃間の昇温速度の変更を行った。
Next, for each of the remaining 30 coils of the steel types A to D, the optimum magnetic permeability of the steel sheet after the final cold rolling was obtained in advance in the laboratory, and this value was set as the target magnetic permeability and demagnetized. The magnetic permeability of each coil is measured by an online magnetic permeability measuring instrument installed immediately before the charcoal / primary recrystallization annealing, and the decarburization / primary recrystallization annealing of 500 to 8 is performed according to the deviation from the target magnetic permeability.
The rate of temperature increase between 00 ° C was changed.

【0112】また、事前に脱炭・1次再結晶焼鈍後の鋼
板の最適抗磁力を求めておき、この値を目標抗磁力とし
て定め、脱炭・1次再結晶焼鈍直後の位置に設置したオ
ンライン抗磁力測定器により各コイルの抗磁力を測定
し、目標抗磁力からの偏差に応じて、焼鈍分離剤成分組
成の変更を行った。この成分組成の変更は焼鈍分離剤に
含有させるSrSO4 の含有量を変えることによって行っ
た。
Further, the optimum coercive force of the steel sheet after decarburization / primary recrystallization annealing was obtained in advance, this value was set as the target coercive force, and it was installed at the position immediately after decarburization / primary recrystallization annealing. The coercive force of each coil was measured by an online coercive force measuring device, and the composition of the annealing separator was changed according to the deviation from the target coercive force. This compositional change was performed by changing the content of SrSO 4 contained in the annealing separator.

【0113】その他の脱炭・1次再結晶焼鈍条件、焼鈍
分離剤塗布条件、最終仕上焼鈍条件については比較例と
同一とした。
Other decarburization / primary recrystallization annealing conditions, annealing separator application conditions, and final finishing annealing conditions were the same as those of the comparative example.

【0114】かくして、最終仕上焼鈍後は、それぞれ未
反応焼鈍分離剤を除去したのち、平坦化焼鈍を兼ねて張
力コーティング剤を塗布し、N2雰囲気中で温度:800
℃, 時間:90s の焼付け処理を行い、製品とした(この
発明の適合例II:組合せ型)。
[0114] Thus, after the final annealing, after removal of the unreacted annealing separator, respectively, the tension coating agent is applied also as a flattening annealing, the temperature in an N 2 atmosphere: 800
The product was baked at 90 ° C for 90 s to obtain a product (Compliance example II of the present invention: combination type).

【0115】これらの製品について測定した磁気特性に
ついて鋼種ごと、製造方法ごとの平均値を表4にまとめ
て示す。
Table 4 shows the average values of the magnetic properties measured for these products for each steel type and each manufacturing method.

【0116】[0116]

【表4】 [Table 4]

【0117】表4から明らかなように、比較例に比しこ
の発明の適合例の磁気特性は大幅に向上しており、特
に、最終冷間圧延後の鋼板の透磁率を測定し、その値に
基づき脱炭・1次再結晶焼鈍条件あるいは焼鈍分離剤塗
布量を変更し、かつ脱炭・1次再結晶焼鈍後の鋼板の抗
磁力を測定し、その値に基づき、焼鈍分離剤組成を調整
した適合例IIの磁気特性は大幅に向上している。これ
は、インヒビターの抑制力と冷間圧延工程条件との整合
性および熱延バンド組織と冷間圧延工程条件との整合性
を同時に満たすことができた結果に他ならない。
As is clear from Table 4, the magnetic properties of the conforming example of the present invention were significantly improved as compared with the comparative example. Particularly, the magnetic permeability of the steel sheet after the final cold rolling was measured, and the value The decarburization / primary recrystallization annealing conditions or the amount of the annealing separator applied are changed based on the above, and the coercive force of the steel sheet after decarburization / primary recrystallization annealing is measured. The magnetic properties of the adjusted conformation example II are significantly improved. This is nothing but the result that the inhibitory power of the inhibitor and the consistency between the cold rolling process conditions and the compatibility between the hot-rolled band structure and the cold rolling process conditions were simultaneously satisfied.

【0118】実施例4 前掲表3に示したAの目標成分組成の鋼スラブ30本を14
00℃の温度に加熱したのち、常法により熱間圧延し、板
厚:2.6mm の熱延板とした。
Example 4 30 steel slabs having the target composition of A shown in Table 3 above were used as 14
After heating to a temperature of 00 ° C., hot rolling was carried out by an ordinary method to obtain a hot rolled sheet having a plate thickness of 2.6 mm.

【0119】これらのコイルのうち15本のコイルは1150
℃の温度で30秒間の熱延板焼鈍を施したのちミスト中で
30℃/s の冷却速度で急冷後、ゼンジマー圧延機を用い
て180 〜220 ℃の温度で冷間圧延し、0.34mmの最終板厚
とした。この鋼板の最高磁化力:2000A/m の時の抗磁力
を測定したのち、露点:60℃, H2:50%残部N2の雰囲気
中で温度850 ℃, 時間:120sの脱炭・1次再結晶焼鈍を
施し、この鋼板の最高磁束密度1.5Tの時の抗磁力を測定
した。その後、MgO を主成分とし、TiO2:8%,SnO2
3%を含有する焼鈍分離剤を鋼板表面(両面)に10g/m2
塗布して、コイル状に巻きとった。
15 of these coils are 1150
Annealed hot rolled sheet for 30 seconds at ℃, then in mist
After quenching at a cooling rate of 30 ° C./s, it was cold-rolled at a temperature of 180 to 220 ° C. using a Zenzimer rolling machine to obtain a final plate thickness of 0.34 mm. After measuring the coercive force when the maximum magnetizing force of this steel sheet was 2000 A / m, decarburization was carried out in an atmosphere of dew point: 60 ° C, H 2 : 50% balance N 2 at a temperature of 850 ° C and a time of 120 s. Recrystallization annealing was performed, and the coercive force of this steel sheet at the maximum magnetic flux density of 1.5 T was measured. Thereafter, an MgO as a main component, TiO 2: 8%, SnO 2:
Annealing agent containing 3% is applied to the steel plate surface (both sides) at 10 g / m 2
It was applied and wound into a coil.

【0120】しかるのち、N2雰囲気中で850 ℃まで昇温
速度:40℃/hで加熱し、つづいてN2:30%、H2:70%の
雰囲気中で、1150℃まで15℃/h の昇温速度で昇温し、
H2雰囲気中にて、1150℃の温度で8時間保持する最終仕
上焼鈍を施した。
Thereafter, the sample was heated in an N 2 atmosphere to 850 ° C. at a temperature rising rate of 40 ° C./h, and then in an atmosphere of N 2 : 30% and H 2 : 70% up to 1150 ° C. 15 ° C. / The temperature is raised at a heating rate of h,
A final finish annealing was carried out in a H 2 atmosphere at a temperature of 1150 ° C. for 8 hours.

【0121】その後、未反応分離剤を除去したのち、平
坦化焼鈍を兼ねて張力コーティング剤を塗布し、N2雰囲
気中で温度:800 ℃,時間:90s の焼付け処理をそれぞ
れ行い製品とした(比較例)。
Then, after removing the unreacted separating agent, a tension coating agent was applied also for flattening annealing, and baked in a N 2 atmosphere at a temperature of 800 ° C. for a time of 90 s to obtain a product ( Comparative example).

【0122】一方、残る熱延板コイル15コイルはコイル
より小試片を切出し、研究室的に比較例と同一の工程条
件で処理し、冷間圧延後の鋼板の最高磁化力:2000A/m
の時の抗磁力、脱炭・1次再結晶焼鈍後の鋼板の最高磁
束密度1.5Tの時の抗磁力、および最終処理品の磁気特性
を測定した。最も磁気特性の優れていた試料の冷間圧延
後鋼板の抗磁力:658A/mを冷間圧延後の鋼板の目標抗磁
力として、冷間圧延の温度を変更して、また、最も磁気
特性の優れていた試料の脱炭・1次再結晶焼鈍後の鋼板
の抗磁力を脱炭・1 次再結晶焼鈍後の鋼板の目標抗磁力
として、熱延板焼鈍の温度を変更して、いずれも目標値
に合致するようにして、比較例と同じ工程条件(前述の
熱延板焼鈍温度と冷間圧延の温度は除く)で、これらの
15コイルを処理し、製品とした(適合例)。
On the other hand, for the remaining 15 hot-rolled sheet coils, a small sample was cut out from the coil and processed in the laboratory under the same process conditions as the comparative example, and the maximum magnetizing force of the steel sheet after cold rolling was 2000 A / m.
The coercive force at the time of, the coercive force at the maximum magnetic flux density of 1.5 T of the steel sheet after decarburization and primary recrystallization annealing, and the magnetic properties of the final treated product were measured. The coercive force of the cold rolled steel sheet of the sample with the best magnetic properties: 658A / m as the target coercive force of the steel sheet after cold rolling, the cold rolling temperature was changed, and By changing the temperature of hot-rolled sheet annealing, the coercive force of the steel sheet after decarburization / primary recrystallization annealing of the excellent sample was set as the target coercive force of the steel sheet after decarburization / primary recrystallization annealing. Under the same process conditions as the comparative example (excluding the hot-rolled sheet annealing temperature and the cold rolling temperature) so as to meet the target value, these
15 coils were processed and made into a product (compliance example).

【0123】これら、比較例、適合例の製品の磁気特性
および、途中工程品の抗磁力の平均値と標準偏差を表5
にまとめて示す。
Table 5 shows the magnetic characteristics of the products of the comparative example and the conforming example, and the average value and standard deviation of the coercive force of the intermediate process products.
Are shown together.

【0124】[0124]

【表5】 [Table 5]

【0125】表5から明らかなように、比較例に比し、
この発明の適合例の磁気特性は大幅に向上しており、最
終冷間圧延後の鋼板の抗磁力、および、脱炭・1次再結
晶焼鈍後の鋼板の抗磁力を目標値に制御するこの発明の
方法が優れていることを示している。
As is clear from Table 5, as compared with the comparative example,
The magnetic properties of the conforming example of the present invention are significantly improved, and the coercive force of the steel sheet after final cold rolling and the coercive force of the steel sheet after decarburization / primary recrystallization annealing are controlled to target values. It shows that the method of the invention is superior.

【0126】実施例5 前掲表3に示したBの目標成分組成の鋼スラブ8本を14
20℃の温度に加熱したのち、常法により熱間圧延し、板
厚:2.4mm の熱延板とした。
Example 5 8 steel slabs having the target composition of B shown in Table 3 above
After heating to a temperature of 20 ° C., hot rolling was carried out by an ordinary method to obtain a hot rolled sheet having a plate thickness of 2.4 mm.

【0127】これらのコイルのうち、15本のコイルは11
50℃の温度で30秒間の熱延板焼鈍を施したのちミスト中
で30℃/s の冷却速度で急冷し、タンデム圧延機で1.50
mm厚まで冷間圧延し、その後、露点:60℃, H2:50%、
残部N2雰囲気中で、温度:1080℃、時間:60s の中間焼
鈍を施し、ミスト中で40℃/s の冷却速度で350 ℃の温
度まで急冷し、その後350 ℃の温度で20s 間保持し、80
℃の温度まで空冷したのち、酸洗した。
Of these coils, 15 are 11
After hot-rolled sheet annealing for 30 seconds at a temperature of 50 ° C, it is rapidly cooled in a mist at a cooling rate of 30 ° C / s and then 1.50 in a tandem rolling mill.
cold rolled to mm thickness, then dew point: 60 ℃, H 2 : 50%,
In the rest of N 2 atmosphere, an intermediate anneal of temperature: 1080 ℃, time: 60 s was performed, and it was rapidly cooled to 350 ℃ in a mist at a cooling rate of 40 ℃ / s, and then kept at a temperature of 350 ℃ for 20 s. , 80
After air cooling to a temperature of ℃, it was pickled.

【0128】その後、ゼンジマー圧延機を用いて150 〜
240 ℃の温度範囲で、冷間圧延し、0.22mmの最終板厚と
した。最終冷間圧延後の透磁率または抗磁力を評価する
ため、鋼板から試料を切出し、これらの磁気特性と強い
相関を有するヒステリシス損も併せて最高磁化力を1000
A/m に設定して測定した。
Then, using a Zenzimer rolling machine,
Cold rolling was carried out in the temperature range of 240 ° C. to a final plate thickness of 0.22 mm. In order to evaluate the permeability or coercive force after the final cold rolling, a sample was cut from a steel sheet and the maximum magnetizing force was set to 1000 with the hysteresis loss having a strong correlation with these magnetic properties.
It was set to A / m and measured.

【0129】このうち4本のコイルは845 ℃まで10℃/
s の昇温速度で温度:845 ℃、時間:120s、露点:60
℃, H2:50%、残部N2雰囲気中で、脱炭・1次再結晶焼
鈍を施し、MgO を主成分とし、TiO2:8%,Sr(OH)2
8H2O:3 %, Fe2O3 :3 %を含有する焼鈍分離剤を鋼板
表面(両面)に12g/m2塗布してコイル状に巻きとった。
Of these, four coils have a temperature of 10 ° C / 845 ° C.
Temperature: 845 ° C, time: 120s, dew point: 60 at s heating rate
℃, H 2 : 50%, balance N 2 atmosphere, decarburization, primary recrystallization annealing, MgO as a main component, TiO 2 : 8%, Sr (OH) 2 ·
An annealing separator containing 8H 2 O: 3% and Fe 2 O 3 : 3% was applied to the steel sheet surface (both sides) at 12 g / m 2 and wound into a coil.

【0130】しかるのち、N2雰囲気中で845 ℃の温度ま
で昇温速度:40℃/hで加熱し、845℃の温度で35時間保
持したのち、N2:30%、H2:70%の雰囲気中で、1150℃
の温度まで15℃/h の昇温速度で加熱したのち、1160℃
まで昇温し、1160℃の温度でH2中で8時間保持する最終
仕上焼鈍を施した。
Then, after heating in an N 2 atmosphere to a temperature of 845 ° C. at a temperature rising rate of 40 ° C./h and holding at a temperature of 845 ° C. for 35 hours, N 2 : 30%, H 2 : 70% In the atmosphere of 1150 ℃
At a temperature rise rate of 15 ℃ / h to 1160 ℃
Then, the final annealing was performed by heating the temperature to 1160 ° C. and holding it in H 2 at a temperature of 1160 ° C. for 8 hours.

【0131】その後、未反応分離剤を除去したのち、平
坦化焼鈍を兼ねて張力コーティング剤を塗布し、N2雰囲
気中で温度:800 ℃、時間:90s の焼付け処理をそれぞ
れ行い製品とした(比較例)。
Then, after removing the unreacted separating agent, a tension coating agent was applied also for flattening annealing, and baked in a N 2 atmosphere at a temperature of 800 ° C. for a time of 90 s to obtain a product ( Comparative example).

【0132】一方、残る最終冷間圧延後の4コイルにつ
いては、コイルの一部から試片を採取し、実験室で比較
材と同一の処理を行い、最も磁気特性の優れていたコイ
ルの最終冷間圧延後の特性として、抗磁力:544A/m、透
磁率:0.551 ×10-3H/m 、および抗磁力と透磁率の双方
に強い相関を有するヒステリシス損:6.07W/kgの値を得
た。
On the other hand, for the remaining 4 coils after the final cold rolling, a sample was taken from a part of the coil and the same treatment as the comparative material was carried out in the laboratory to obtain the final coil of the coil having the best magnetic characteristics. The properties after cold rolling are: coercive force: 544 A / m, magnetic permeability: 0.551 × 10 -3 H / m, and hysteresis loss: 6.07 W / kg, which has a strong correlation with both coercive force and magnetic permeability. Obtained.

【0133】したがって、ヒステリシス損の目標値6.07
W/kgの偏差に応じて、残り3コイルについては、脱炭・
1次再結晶焼鈍後の500 ℃から800 ℃にかけての昇温速
度を変更し、その他の脱炭・1次再結晶焼鈍、焼鈍分離
材塗布、最終仕上焼鈍、張力コーティング塗布、平坦化
焼鈍などの条件は比較例と同一とした(適合例)。
Therefore, the target value of hysteresis loss is 6.07.
Depending on the deviation of W / kg, decarburization of the remaining 3 coils
After changing the temperature rising rate from 500 ℃ to 800 ℃ after primary recrystallization annealing, other decarburization / primary recrystallization annealing, annealing separation material coating, final finishing annealing, tension coating coating, flattening annealing, etc. The conditions were the same as those of the comparative example (compatible example).

【0134】これらの比較例、適合例の製品の磁気特性
および、途中工程品の抗磁力、透磁率およびヒステリシ
ス損の平均値と標準偏差とを表6にまとめて示す。
Table 6 shows the magnetic properties of the products of the comparative examples and the conforming examples, and the average values and standard deviations of the coercive force, magnetic permeability and hysteresis loss of the intermediate process products.

【0135】[0135]

【表6】 [Table 6]

【0136】表6から明らかなように、比較例に比し、
この発明の適合例の磁気特性は大幅に向上しており、最
終冷間圧延後の鋼板の抗磁力、透磁率のほか、これらに
依存するヒステリシス損を目標値に制御するこの発明の
方法が優れていることを示している。
As is clear from Table 6, in comparison with the comparative example,
The magnetic properties of the conforming example of the present invention are significantly improved, and in addition to the coercive force of the steel sheet after the final cold rolling and the magnetic permeability, the method of the present invention for controlling the hysteresis loss depending on these to a target value is excellent. It indicates that

【0137】[0137]

【発明の効果】この発明は、最終冷間圧延後、1次再結
晶焼鈍前の鋼板の抗磁力、透磁率もしくはヒステリシス
損を指標とする方向性けい素鋼板の製造方法であって、
この発明によれば、安定かつ優れる磁気特性を有する方
向性けい素鋼板が得られ、歩留りが向上するとともに品
質保証の点でも有利であり、この発明によって得られる
鋼板は変圧器等の鉄心材料として極めて有利に適用でき
る。
The present invention relates to a method for producing a grain-oriented silicon steel sheet using the coercive force, magnetic permeability or hysteresis loss of the steel sheet after final cold rolling and before primary recrystallization annealing as an index.
According to the present invention, a grain-oriented silicon steel sheet having stable and excellent magnetic properties is obtained, which is advantageous in terms of quality assurance as well as improvement in yield, and the steel sheet obtained by the present invention is used as an iron core material for a transformer or the like. It can be applied very advantageously.

【図面の簡単な説明】[Brief description of drawings]

【図1】1次再結晶焼鈍後鋼板の平均1次再結晶粒径と
最終仕上焼鈍後鋼板の諸特性との関係を示すグラフであ
る。
FIG. 1 is a graph showing the relationship between the average primary recrystallized grain size of a steel sheet after primary recrystallization annealing and various properties of a steel sheet after final finish annealing.

【図2】最終冷間圧延後鋼板の抗磁力と最終仕上焼鈍後
鋼板の諸特性との関係を示すグラフである。
FIG. 2 is a graph showing the relationship between the coercive force of the steel sheet after final cold rolling and various characteristics of the steel sheet after final finish annealing.

【図3】最終冷間圧延後鋼板の透磁率と最終仕上焼鈍後
鋼板の諸特性との関係を示すグラフである。
FIG. 3 is a graph showing the relationship between the magnetic permeability of the steel sheet after final cold rolling and various characteristics of the steel sheet after final finish annealing.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 けい素鋼スラブを加熱したのち熱間圧延
し、1回もしくは中間焼鈍を挟む2回以上の冷間圧延を
行ったのち、脱炭・1次再結晶焼鈍を施し、ついで焼鈍
分離剤を塗布して2次再結晶焼鈍と純化焼鈍とからなる
最終仕上焼鈍を施す方向性けい素鋼板の製造方法におい
て、 最終冷間圧延後、1次再結晶開始前の鋼板の抗磁力、透
磁率もしくはヒステリシス損を所定範囲内に制御するこ
とを特徴とする磁気特性に優れる方向性けい素鋼板の製
造方法。
1. A silicon steel slab is heated, then hot-rolled, cold-rolled once or twice with an intermediate anneal, followed by decarburization / primary recrystallization annealing, and then annealing. In a method for producing a grain-oriented silicon steel sheet which is subjected to a final finishing annealing consisting of a secondary recrystallization annealing and a purification annealing by applying a separating agent, a coercive force of the steel sheet after the final cold rolling and before the start of the primary recrystallization, A method for producing a grain-oriented silicon steel sheet having excellent magnetic properties, characterized by controlling magnetic permeability or hysteresis loss within a predetermined range.
【請求項2】 請求項1における制御手段が、スラブの
加熱条件の調整、熱間圧延条件の調整および中間焼鈍を
含む冷間圧延条件の調整のうちから選んだ少なくともい
ずれか一つである磁気特性に優れる方向性けい素鋼板の
製造方法。
2. The magnetic device according to claim 1, wherein the control means is at least one selected from adjustment of slab heating conditions, adjustment of hot rolling conditions, and adjustment of cold rolling conditions including intermediate annealing. A method for producing a grain-oriented silicon steel sheet having excellent characteristics.
【請求項3】 けい素鋼スラブを加熱したのち熱間圧延
し、1回もしくは中間焼鈍を挟む2回以上の冷間圧延を
行ったのち、脱炭・1次再結晶焼鈍を施し、ついで焼鈍
分離剤を塗布して2次再結晶焼鈍と純化焼鈍とからなる
最終仕上焼鈍を施す方向性けい素鋼板の製造方法におい
て、 最終冷間圧延後、1次再結晶焼鈍前の鋼板の抗磁力、透
磁率もしくはヒステリシス損を測定し、その測定値と、
抗磁力、透磁率もしくはヒステリシス損の目標値との偏
差に応じて、1次再結晶焼鈍条件の調整、焼鈍分離剤の
塗布量・成分組成の調整および2次再結晶焼鈍条件の調
整のうちから選んだ少なくともいずれか一つの処理を施
すことを特徴とする磁気特性に優れる方向性けい素鋼板
の製造方法。
3. A silicon steel slab is heated, then hot-rolled, cold-rolled once or twice with an intermediate anneal, followed by decarburization / primary recrystallization annealing, and then annealing. In a method for producing a grain-oriented silicon steel sheet, which comprises applying a separating agent and performing a final finishing annealing consisting of secondary recrystallization annealing and purification annealing, a coercive force of the steel sheet after final cold rolling and before primary recrystallization annealing, Magnetic permeability or hysteresis loss is measured, and the measured value,
Depending on the deviation from the target value of coercive force, magnetic permeability or hysteresis loss, the primary recrystallization annealing conditions are adjusted, the coating amount and composition of the annealing separator are adjusted, and the secondary recrystallization annealing conditions are adjusted. A method for producing a grain-oriented silicon steel sheet having excellent magnetic properties, characterized by performing at least one selected treatment.
【請求項4】 けい素鋼スラブを加熱したのち熱間圧延
し、1回もしくは中間焼鈍を挟む2回以上の冷間圧延を
行ったのち、脱炭・1次再結晶焼鈍を施し、ついで焼鈍
分離剤を塗布して2次再結晶焼鈍と純化焼鈍とからなる
最終仕上焼鈍を施す方向性けい素鋼板の製造方法におい
て、 最終冷間圧延後、1次再結晶開始前の鋼板の抗磁力、透
磁率もしくはヒステリシス損ならびに、1次再結晶後、
2次再結晶開始前の鋼板の抗磁力をそれぞれ所定範囲内
に制御することを特徴とする磁気特性に優れる方向性け
い素鋼板の製造方法。
4. A silicon steel slab is heated, then hot-rolled, cold-rolled once or twice with intermediate annealing, followed by decarburization / primary recrystallization annealing, and then annealing. In a method for producing a grain-oriented silicon steel sheet which is subjected to a final finish annealing consisting of a secondary recrystallization annealing and a purification annealing by applying a separating agent, a coercive force of the steel sheet after the final cold rolling and before the primary recrystallization is After permeability or hysteresis loss and primary recrystallization,
A method for manufacturing a grain-oriented silicon steel sheet having excellent magnetic properties, which comprises controlling the coercive force of the steel sheet before the start of secondary recrystallization within a predetermined range.
【請求項5】 請求項4における制御手段が、最終冷間
圧延後、1次再結晶開始前の鋼板で、スラブの加熱条件
の調整、熱間圧延条件の調整および中間焼鈍を含む冷間
圧延条件の調整のうちから選んだ少なくともいずれか一
つであり、1次再結晶後、2次再結晶開始前の鋼板で、
スラブ加熱条件の調整、熱間圧延条件の調整、中間焼鈍
を含む冷間圧延条件の調整および1次再結晶焼鈍条件の
調整のうちから選んだ少なくともいずれか一つである磁
気特性に優れる方向性けい素鋼板の製造方法。
5. The control means according to claim 4, wherein the steel plate after the final cold rolling and before the start of primary recrystallization is cold rolling including adjustment of slab heating conditions, hot rolling conditions and intermediate annealing. At least one selected from the adjustment of conditions, which is a steel plate after primary recrystallization and before the start of secondary recrystallization,
Directionality with excellent magnetic properties, which is at least one selected from adjustment of slab heating conditions, adjustment of hot rolling conditions, adjustment of cold rolling conditions including intermediate annealing, and adjustment of primary recrystallization annealing conditions Manufacturing method of silicon steel sheet.
【請求項6】 けい素鋼スラブを加熱したのち熱間圧延
し、1回もしくは中間焼鈍を挟む2回以上の冷間圧延を
行ったのち、脱炭・1次再結晶焼鈍を施し、ついで焼鈍
分離剤を塗布して2次再結晶焼鈍と純化焼鈍とからなる
最終仕上焼鈍を施す方向性けい素鋼板の製造方法におい
て、 最終冷間圧延後、1次再結晶焼鈍前の鋼板の抗磁
力、透磁率もしくはヒステリシス損を測定し、その測定
値と、抗磁力、透磁率もしくはヒステリシス損の目標値
との偏差に応じて、2次再結晶焼鈍条件の調整、焼鈍分
離剤の塗布量・成分組成の調整および1次再結晶焼鈍条
件の調整のうちから選んだ少なくともいずれか一つの処
理を施すこと、 1次再結晶焼鈍後、2次再結晶焼鈍前の鋼板の抗磁
力を測定し、その測定値と抗磁力の目標値との偏差に応
じて、1次再結晶焼鈍条件の調整、焼鈍分離剤の塗布量
・成分組成の調整および2次再結晶焼鈍条件の調整のう
ちから選んだ少なくともいずれか一つの処理を施すこ
と、とを特徴とする磁気特性に優れる方向性けい素鋼板
の製造方法。
6. A silicon steel slab is heated and then hot-rolled, and cold-rolled once or at least twice with intermediate annealing, followed by decarburization / primary recrystallization annealing, and then annealing. In a method for producing a grain-oriented silicon steel sheet, which comprises applying a separating agent and performing a final finishing annealing consisting of secondary recrystallization annealing and purification annealing, a coercive force of the steel sheet after final cold rolling and before primary recrystallization annealing, The permeability or hysteresis loss is measured, and the secondary recrystallization annealing conditions are adjusted according to the deviation between the measured value and the target value of coercive force, permeability or hysteresis loss, and the amount and composition of the composition of the annealing separator are applied. At least one treatment selected from the adjustment of the above and the adjustment of the primary recrystallization annealing condition, the coercive force of the steel sheet after the primary recrystallization annealing and before the secondary recrystallization annealing is measured, and the measurement is performed. 1 according to the deviation between the target value and the coercive force target value Magnetic properties characterized by performing at least one treatment selected from adjustment of recrystallization annealing conditions, adjustment of application amount and composition of annealing separator, and adjustment of secondary recrystallization annealing conditions. A method for manufacturing an excellent grain-oriented silicon steel sheet.
【請求項7】 けい素鋼スラブを加熱したのち熱間圧延
し、1回もしくは中間焼鈍を挟む2回以上の冷間圧延を
行ったのち、脱炭・1次再結晶焼鈍を施し、ついで焼鈍
分離剤を塗布して2次再結晶焼鈍と純化焼鈍とからなる
最終仕上焼鈍を施す方向性けい素鋼板の製造方法におい
て、 最終冷間圧延後、1次再結晶焼鈍前の鋼板の抗磁力、透
磁率もしくはヒステリシス損を測定し、その測定値と、
抗磁力、透磁率もしくはヒステリシス損の目標値との偏
差に応じて、1次再結晶条件の調整を行ったのち、さら
に1次再結晶焼鈍後、2次再結晶焼鈍前の鋼板の抗磁力
を測定し、その測定値と抗磁力の目標値との偏差に応じ
て、焼鈍分離剤の塗布量・成分組成の調整および2次再
結晶焼鈍条件の調整のうちから選んだ少なくともいずれ
か一つの処理を施すことを特徴とする磁気特性に優れる
方向性けい素鋼板の製造方法。
7. A silicon steel slab is heated and then hot-rolled, and cold-rolled once or twice or more with an intermediate anneal, followed by decarburization and primary recrystallization annealing, and then annealing. In a method for producing a grain-oriented silicon steel sheet, which comprises applying a separating agent and performing a final finishing annealing consisting of secondary recrystallization annealing and purification annealing, a coercive force of the steel sheet after final cold rolling and before primary recrystallization annealing, Magnetic permeability or hysteresis loss is measured, and the measured value,
After adjusting the primary recrystallization conditions according to the deviation from the target value of coercive force, permeability or hysteresis loss, the coercive force of the steel sheet after the primary recrystallization annealing and before the secondary recrystallization annealing is further adjusted. At least one treatment selected from the adjustment of the coating amount and composition of the annealing separator and the adjustment of the secondary recrystallization annealing condition according to the deviation between the measured value and the target value of the coercive force. A method for manufacturing a grain-oriented silicon steel sheet having excellent magnetic properties, characterized by:
【請求項8】 抗磁力、透磁率もしくはヒステリシス損
が、オンラインでの計測によるものである請求項1,
2,4または5に記載の磁気特性に優れる方向性けい素
鋼板の製造方法。
8. The coercive force, magnetic permeability or hysteresis loss is obtained by online measurement.
2. A method for producing a grain-oriented silicon steel sheet having excellent magnetic properties according to 2, 4, or 5.
【請求項9】 抗磁力、透磁率もしくはヒステリシス損
の測定が、オンラインでの計測によるものである請求項
3,6または7に記載の磁気特性に優れる方向性けい素
鋼板の製造方法。
9. The method for producing a grain-oriented silicon steel sheet having excellent magnetic properties according to claim 3, 6 or 7, wherein the measurement of the coercive force, the magnetic permeability or the hysteresis loss is performed by online measurement.
JP02776496A 1996-02-15 1996-02-15 Method for producing grain-oriented silicon steel sheets with excellent magnetic properties Expired - Fee Related JP4016433B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02776496A JP4016433B2 (en) 1996-02-15 1996-02-15 Method for producing grain-oriented silicon steel sheets with excellent magnetic properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02776496A JP4016433B2 (en) 1996-02-15 1996-02-15 Method for producing grain-oriented silicon steel sheets with excellent magnetic properties

Publications (2)

Publication Number Publication Date
JPH09217118A true JPH09217118A (en) 1997-08-19
JP4016433B2 JP4016433B2 (en) 2007-12-05

Family

ID=12230073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02776496A Expired - Fee Related JP4016433B2 (en) 1996-02-15 1996-02-15 Method for producing grain-oriented silicon steel sheets with excellent magnetic properties

Country Status (1)

Country Link
JP (1) JP4016433B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011074453A (en) * 2009-09-30 2011-04-14 Jfe Steel Corp Method for manufacturing grain-oriented magnetic steel sheet
JP2015190022A (en) * 2014-03-28 2015-11-02 Jfeスチール株式会社 Method for estimating primary recrystallization texture and method for manufacturing grain oriented electrical steel sheet
JP2017150009A (en) * 2016-02-22 2017-08-31 Jfeスチール株式会社 Manufacturing method of oriented electromagnetic steel sheet

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011074453A (en) * 2009-09-30 2011-04-14 Jfe Steel Corp Method for manufacturing grain-oriented magnetic steel sheet
JP2015190022A (en) * 2014-03-28 2015-11-02 Jfeスチール株式会社 Method for estimating primary recrystallization texture and method for manufacturing grain oriented electrical steel sheet
JP2017150009A (en) * 2016-02-22 2017-08-31 Jfeスチール株式会社 Manufacturing method of oriented electromagnetic steel sheet

Also Published As

Publication number Publication date
JP4016433B2 (en) 2007-12-05

Similar Documents

Publication Publication Date Title
EP1108794B1 (en) Electrical steel sheet suitable for compact iron core and manufacturing method therefor
RU2736566C2 (en) Hot-rolled steel sheet for textured electrical steel sheet and method of manufacturing thereof and method for manufacturing of textured electrical steel sheet
RU2580776C1 (en) Method of making sheet of textured electrical steel
JP7028325B2 (en) Directional electrical steel sheet
RU2610204C1 (en) Method of making plate of textured electrical steel
JP7028327B2 (en) Directional electrical steel sheet
RU2771318C1 (en) Method for producing electrical steel sheet with oriented grain structure
JP7348551B2 (en) grain-oriented electrical steel sheet
JPH0578744A (en) Manufacture of grain-oriented electrical steel sheet excellent in magnetic property
JP4192399B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP4016433B2 (en) Method for producing grain-oriented silicon steel sheets with excellent magnetic properties
JP4259037B2 (en) Method for producing grain-oriented electrical steel sheet
RU2768094C1 (en) Method for producing electrotechnical steel sheet with oriented grain structure
RU2771130C1 (en) Method for producing electrical steel sheet with oriented grain structure
KR100266551B1 (en) Method of manufacturing grain oriented silicon steel sheet having excellent characteristics
KR100259401B1 (en) Production of grain oriented silicon steel sheet capable of stably providing excellent magnetic property
WO2020149341A1 (en) Method for manufacturing grain-oriented electrical steel sheet
JP4873770B2 (en) Unidirectional electrical steel sheet
US20230243010A1 (en) Production method for grain-oriented electrical steel sheet
JP3885428B2 (en) Method for producing grain-oriented electrical steel sheet
JP4905374B2 (en) Unidirectional electrical steel sheet and manufacturing method thereof
JP4377477B2 (en) Method for producing high magnetic flux density unidirectional electrical steel sheet
JP4317305B2 (en) Cold rolling method for obtaining a unidirectional electrical steel sheet with small fluctuation in magnetic properties in the cold rolling direction
JP7197068B1 (en) Manufacturing method of grain-oriented electrical steel sheet
JP4876799B2 (en) Oriented electrical steel sheet

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070828

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070910

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110928

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110928

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120928

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120928

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130928

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees