JPH09216851A - Liquid crystal having rapid response and liquid crystal composition containing the same - Google Patents

Liquid crystal having rapid response and liquid crystal composition containing the same

Info

Publication number
JPH09216851A
JPH09216851A JP8338883A JP33888396A JPH09216851A JP H09216851 A JPH09216851 A JP H09216851A JP 8338883 A JP8338883 A JP 8338883A JP 33888396 A JP33888396 A JP 33888396A JP H09216851 A JPH09216851 A JP H09216851A
Authority
JP
Japan
Prior art keywords
liquid crystal
trifluoro
ring
compound
phenyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8338883A
Other languages
Japanese (ja)
Inventor
Ichiro Kobayashi
一郎 小林
Yoshihiko Aihara
良彦 相原
Shigeji Hashimoto
茂治 橋本
Tadaaki Isozaki
忠昭 磯崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Shell Sekiyu KK
Original Assignee
Showa Shell Sekiyu KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Shell Sekiyu KK filed Critical Showa Shell Sekiyu KK
Priority to JP8338883A priority Critical patent/JPH09216851A/en
Publication of JPH09216851A publication Critical patent/JPH09216851A/en
Pending legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Liquid Crystal Substances (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain the subject compound having optically active positions of CF3 , whose number of carbon at the chiral side is 3, enabling a wide improvement in response speed in various antiferroelectric liquid crystal compositions and useful for display materials, etc. SOLUTION: A compound of the formula [ring A to ring D are each a phenyl ring which may be substituted with a halogen atom; R is a 8-16C alkyl which may have a double bond; (m)+(n)=1, 2; (p)+(q)=1, 2; X is COO, CO, OCO or a single bond; the mark * indicates an optically active part], e.g. 4-(1,1,1- trifluoro-2-pentyloxycarbonyl)phenyl-4'-n-nonylbiphenyl-4-carboxylate. Further, the compound may be obtained e.g. by using (+)-1,1,1-trifluoro-2-pentanol as a starting material and through the preparation of (+)-1,1,1-trifluoro-2-pentyl-4- hydroxybenzoate by esterification, hydrogenation, etc.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、従来合成が困難であっ
た光学活性部位がCF3で、キラル側の炭素数が3であ
ることおよび従来の化合物よりも速い応答速度を有する
ことを特徴とする強誘電性液晶化合物または反強誘電性
液晶化合物およびそれらを含む液晶組成物に関する。
The present invention is characterized in that the optically active site, which has been difficult to synthesize conventionally, is CF 3 , the number of carbon atoms on the chiral side is 3, and that it has a faster response speed than conventional compounds. And a ferroelectric liquid crystal compound and a liquid crystal composition containing them.

【0002】[0002]

【従来技術】液晶表示素子は、1)低電圧作動性、2)
低消費電力性、3)薄形表示、4)受光型などの優れた
特徴を有するため、現在まで、TN方式、STN方式、
ゲスト−ホスト(Gest−Host)方式などが開発
され実用化されている。しかし、現在広く利用されてい
るネマチック液晶を用いたものは、応答速度が数mse
c〜数十msecと遅い欠点があり、応用上種々の制約
を受けている。これらの問題を解決するため、STN方
式や薄層トランジスタなどを用いたアクティブマトリッ
クス方式などが開発されたが、STN型表示素子は、表
示コントラストや視野角などの表示品位は優れたものと
なったが、セルギャップやチルト角の制御に高い精度を
必要とすることや応答がやや遅いことなどが問題となっ
ている。このため、応答性のすぐれた新しい液晶表示方
式の開発が要望されており、光学応答時間がμsecオ
ーダーと極めて短かい超高速デバイスが可能になる強誘
電性液晶の開発が試みられていた。強誘電性液晶は、1
975年、Meyer等によりDOBAMBC(p−デ
シルオキシベンジリデン−p−アミノ−2−メチルブチ
ルシンナメート)が初めて合成された(Le Jour
nal de Physique,36巻1975,L
−69)。さらに、1980年、ClarkとLaga
wallによりDOBAMBCのサブマイクロ秒の高速
応答、メモリー特性など表示デバイス上の特性が報告さ
れて以来、強誘電性液晶が大きな注目を集めるようにな
った〔N.A.Clark,etal.,Appl.P
hys.Lett.36.899(1980)〕。しか
し、彼らの方式には、実用化に向けて多くの技術的課題
があり、特に室温で強誘電性液晶相を示す材料はほとん
ど無く、表示ディスプレーに不可欠な液晶分子の配列制
御に有効かつ実用的な方法も確立されていなかった。こ
の報告以来、液晶材料/デバイス両面からの様々な試み
がなされ、ツイスト二状態間のスイッチングを利用した
表示デバイスが試作され、それを用いた高速電気光学装
置も例えば特開昭56−107216号などで提案され
ているが、高いコントラストや適正なしきい値特性は得
られていない。このような視点から他のスイッチング方
式についても探索され、過渡的な散乱方式が提案され
た。その後、1988年に本発明者らによる三安定状態
を有する液晶の三状態スイッチング方式が報告された
〔A.D.L.Chandani,T.Hagiwar
a,Y.Suzuki etal.,Japan.J.
ofAppl.Phys.,27,(5),L729−
L732(1988)〕。前記「三状態を有する」と
は、第一の電極基板と所定の間隙を隔てて配置されてい
る第二の電極基板の間に強誘電性液晶が挟まれてなる液
晶電気光学装置において、前記第一及び第二の電極基板
に電界形成用の電圧が印加されるよう構成されており、
図1Aで示される三角波として電圧を印加したとき、図
1Dのように前記強誘電性液晶が、無電界時に分子配向
が第一の安定状態(図1Dの1)を有し、かつ、電界印
加時に一方の電界方向に対し分子配向が前記第一の安定
状態とは異なる第二の安定状態(図1Dの2)を有し、
さらに他方の電界方向に対し前記第一及び第二の安定状
態とは異なる第三の分子配向安定状態(図1Dの3)を
有することを意味する。なお、この三安定状態、すなわ
ち三状態を利用する液晶電気光学装置については、本出
願人は特願昭63−70212号として出願し、特開平
2−153322号として公開されている。三安定状態
を示す反強誘電性液晶の特徴をさらに詳しく説明する。
クラーク/ラガヴァル(Clark−Lagawal
l)により提案された表面安定化強誘電性液晶素子で
は、S*C相において強誘電性液晶分子が図2(a),
(b)のように一方向に均一配向した2つの安定状態を
示し、印加電界の方向により、どちらか一方の状態に安
定化され、電界を切ってもその状態が保持される。しか
しながら実際には、強誘電性液晶分子の配向状態は、液
晶分子のダイレクターが捩れたツイスト二状態を示した
り、層がくの字に折れ曲ったシェブロン構造を示す。シ
ェブロン層構造では、スイッチング角が小さくなり低コ
ントラストの原因になるなど、実用化へ向けて大きな障
害になっている。一方、“反”強誘電性液晶は三安定状
態を示すS*(3)相では、上記液晶電気光学装置におい
て、無電界時には、図3(a)に示すごとく隣り合う層
毎に分子は逆方向に傾き反平行に配列し、液晶分子の双
極子はお互に打ち消し合っている。したがって、液晶層
全体として自発分極は打ち消されている。この分子配列
を示す液晶相は、図1Dの1に対応している。さらに、
(+)又は(−)のしきい値より充分大きい電圧を印加
すると、図3(b)および(c)に示す液晶分子が同一
方向に傾き平行に配列する。この状態では、分子の双極
子も同一方向に揃うため自発分極が発生し、強誘電相と
なる。すなわち、“反”強誘電性液晶のS*(3)相におい
ては、無電界時の“反”強誘電相と印加電界の極性によ
る2つの強誘電相が安定になり、“反”強誘電相と2つ
の強誘電相間を直流的しきい値を持って三安定状態間ス
イッチングを行うものである。このスイッチングに伴う
液晶分子配列の変化により図4に示すダブル・ヒステリ
シスを描いて光透過率が変化する。このダブル・ヒステ
リシスに、図4の(A)に示すようにバイアス電圧を印
加して、さらにパルス電圧を重畳することによりメモリ
ー効果を実現できる特徴を有する。さらに、電界印加に
より強誘電相は層がストレッチされ、ブックシェルフ構
造となる。一方、第三安定状態の“反”強誘電相では類
似ブックシェルフ構造となる。この電界印加による層構
造スイッチングが液晶層に動的シェアーを与えるため駆
動中に配向欠陥が改善され、良好な分子配向が実現でき
る。そして、“反”強誘電性液晶では、プラス側とマイ
ナス側の両方のヒステリシスを交互に使い画像表示を行
なうため、自発分極に基づく内部電界の蓄積による画像
の残像現象を防止することができる。以上のように、
“反”強誘電性液晶は、1)高速応答が可能で、2)高
いコントラストと広い視野角および3)良好な配向特性
とメモリー効果が実現できる、非常に有用な液晶化合物
と言える。“反”強誘電性液晶の三安定状態を示す液晶
相については、1)A.D.L.Chandani e
tal.,Japan J.Appl.Phys.,
,L−1265(1989)、2)H.Orihar
a etal.,JapanJ.Appl.Phys.,
29,L−333(1990)に報告されており、
“反”強誘電的性質にちなみS*CA相(Antife
rroelectric Smectic C*相)と
命名している。本発明者らは、この液晶相が三安定状態
間のスイッチングを行なうためS*(3)相と定義した。三
安定状態を示す“反”強誘電相S*(3)を相系列に有する
液晶化合物は、本発明者の出願した特開平1−3163
67号、特開平1−316372号、特開平1−316
339号、特開平2−28128号及び市橋等の特開平
1−213390号公報があり、また三安定状態を利用
した液晶電気光学装置としては本出願人は特開平2−4
0625号、特開平2−153322号、特開平2−1
73724号において新しい提案を行っている。“反”
強誘電性液晶を液晶ディスプレイへ応用する場合、1)
動作温度範囲、2)応答速度、3)自発分極、4)ヒス
テリシス特性等を単一液晶で全て満足させることは困難
であり、通常十数種類の混合液晶として調製される。従
来、光学活性部位がCF3のものは、キラル側の炭素数
が最も短いものでも4であり、強誘電性液晶材料および
反強誘電性液晶材料に求められているさらなる応答速度
の高速化のためには、光学活性部位がCF3で、キラル
側の炭素数が3である強誘電性液晶化合物及び反強誘電
性液晶化合物の開発が必要である。
2. Description of the Related Art Liquid crystal display devices are 1) low-voltage operable 2).
Since it has excellent features such as low power consumption, 3) thin display, and 4) light receiving type, TN method, STN method,
A guest-host method has been developed and put to practical use. However, a nematic liquid crystal that is widely used at present has a response speed of several mse.
It has a drawback as slow as c to several tens of msec, and is subject to various restrictions in application. In order to solve these problems, an STN method and an active matrix method using a thin layer transistor have been developed, but the STN type display element has excellent display quality such as display contrast and viewing angle. However, there are problems that high accuracy is required for controlling the cell gap and the tilt angle and that the response is rather slow. For this reason, the development of a new liquid crystal display system having excellent responsiveness has been demanded, and the development of a ferroelectric liquid crystal capable of realizing an ultrahigh-speed device having an extremely short optical response time on the order of μsec has been attempted. Ferroelectric liquid crystal has 1
In 975, DOBAMBC (p-decyloxybenzylidene-p-amino-2-methylbutyl cinnamate) was first synthesized by Meyer et al. (Le Jour).
nal de Physique, vol. 36, 1975, L
-69). In addition, 1980, Clark and Laga
Since the characteristics of display devices such as sub-microsecond high-speed response of DOBAMBC and memory characteristics have been reported by WALL, ferroelectric liquid crystals have attracted great attention [N. A. Clark, et al. , Appl. P
hys. Lett. 36.899 (1980)]. However, their method has many technical problems for practical use, and in particular, there are few materials that exhibit a ferroelectric liquid crystal phase at room temperature, and they are effective and practical for controlling the alignment of liquid crystal molecules that are indispensable for display displays. No specific method was established. Since this report, various attempts have been made from both sides of liquid crystal materials / devices, prototype display devices utilizing switching between twisted two states have been produced, and high-speed electro-optical devices using the same have been disclosed, for example, in JP-A-56-107216. However, high contrast and proper threshold characteristics have not been obtained. From such a viewpoint, other switching schemes have been searched, and a transient scattering scheme has been proposed. Then, in 1988, the present inventors reported a three-state switching method of a liquid crystal having a tristable state [A. D. L. Chandani, T .; Hagiwar
a, Y. Suzuki et al. , Japan. J.
ofAppl. Phys. , 27, (5), L729-
L732 (1988)]. The above-mentioned “having three states” means a liquid crystal electro-optical device in which a ferroelectric liquid crystal is sandwiched between a first electrode substrate and a second electrode substrate which is arranged with a predetermined gap. It is configured to apply a voltage for forming an electric field to the first and second electrode substrates,
When a voltage is applied as the triangular wave shown in FIG. 1A, the ferroelectric liquid crystal has a first stable state (1 in FIG. 1D) with no electric field, and the electric field is applied as shown in FIG. 1D. Occasionally, a molecular orientation has a second stable state (2 in FIG. 1D) different from the first stable state with respect to one electric field direction,
Furthermore, it means having a third molecular orientation stable state (3 in FIG. 1D) different from the first and second stable states with respect to the other electric field direction. Regarding the liquid crystal electro-optical device utilizing the tri-stable state, that is, the tri-state, the applicant of the present application filed as Japanese Patent Application No. 63-70212 and is disclosed in Japanese Patent Laid-Open No. 2-153322. The characteristics of the antiferroelectric liquid crystal exhibiting the tristable state will be described in more detail.
Clark-Lagawal
In the surface-stabilized ferroelectric liquid crystal device proposed by l), the ferroelectric liquid crystal molecules in the S * C phase are shown in FIG.
As shown in (b), it shows two stable states that are uniformly oriented in one direction. Depending on the direction of the applied electric field, it is stabilized in either one of the states, and the state is maintained even when the electric field is cut off. However, in reality, the alignment state of the ferroelectric liquid crystal molecules shows a twisted two state in which the director of the liquid crystal molecules is twisted, or a chevron structure in which the layers are bent in a V shape. In the chevron layer structure, the switching angle becomes small, which causes low contrast, which is a major obstacle to practical use. On the other hand, in the S * (3) phase in which the “anti” ferroelectric liquid crystal exhibits a tristable state, in the above-mentioned liquid crystal electro-optical device, when there is no electric field, the molecules are reversed in each adjacent layer as shown in FIG. The dipoles of the liquid crystal molecules cancel each other. Therefore, the spontaneous polarization is canceled in the entire liquid crystal layer. The liquid crystal phase exhibiting this molecular arrangement corresponds to 1 in FIG. 1D. further,
When a voltage sufficiently higher than the threshold value of (+) or (−) is applied, the liquid crystal molecules shown in FIGS. 3B and 3C are aligned in parallel in the same direction. In this state, the dipoles of the molecules are also aligned in the same direction, so that spontaneous polarization occurs and a ferroelectric phase is formed. That is, in the S * (3) phase of the “anti” ferroelectric liquid crystal, the “anti” ferroelectric phase when there is no electric field and the two ferroelectric phases depending on the polarity of the applied electric field are stable, and the “anti” ferroelectric liquid crystal is stable. Switching between the three stable states is performed with a DC threshold value between the phase and the two ferroelectric phases. Due to the change in the liquid crystal molecule arrangement accompanying the switching, the light transmittance changes in a double hysteresis shown in FIG. As shown in FIG. 4A, a memory effect can be realized by applying a bias voltage to this double hysteresis and further superimposing a pulse voltage. Further, by applying an electric field, the layer of the ferroelectric phase is stretched to form a bookshelf structure. On the other hand, the third stable state “anti” ferroelectric phase has a similar bookshelf structure. Since the layer structure switching by the application of the electric field gives a dynamic shear to the liquid crystal layer, alignment defects are improved during driving, and good molecular alignment can be realized. In the "anti-" ferroelectric liquid crystal, image display is performed by using both the hysteresis on the plus side and the hysteresis on the minus side alternately, so that an afterimage phenomenon of an image due to accumulation of an internal electric field based on spontaneous polarization can be prevented. As mentioned above,
"Anti" ferroelectric liquid crystal is a very useful liquid crystal compound that can 1) achieve high-speed response, 2) achieve high contrast and wide viewing angle, and 3) achieve good alignment characteristics and memory effect. Regarding the liquid crystal phase showing the tristable state of "anti" ferroelectric liquid crystal, 1) A. D. L. Chandani e
tal., Japan J. Appl. Phys., 2
8 , L-1265 (1989), 2) H.E. Orihar
a et al., JapanJ. Appl. Phys.,
29 , L-333 (1990),
Due to its "anti" ferroelectric properties, the S * CA phase (Antive
rroelectric Sectic C * phase). The present inventors have defined this liquid crystal phase as the S * (3) phase because it switches between the three stable states. A liquid crystal compound having an “anti” ferroelectric phase S * (3) in a phase series showing a tristable state is disclosed in Japanese Patent Application Laid-Open No. 1-3163 of the present application.
67, JP-A-1-316372, and JP-A-1-316.
No. 339, No. 2-28128, and No. 1-213390 of Ichihashi et al., And as a liquid crystal electro-optical device utilizing a tristable state, the present applicant discloses in Japanese Patent Application Laid-Open No. 2-4.
No. 0625, JP-A-2-153322, and JP-A2-1.
A new proposal is made in No. 73724. "Anti"
When applying ferroelectric liquid crystals to liquid crystal displays, 1)
It is difficult to satisfy all of the operating temperature range, 2) response speed, 3) spontaneous polarization, 4) hysteresis characteristics, etc. with a single liquid crystal, and it is usually prepared as a dozen or more kinds of mixed liquid crystals. Conventionally, an optically active site having CF 3 has a carbon number of 4 on the chiral side even though it has the shortest carbon number, and thus it is possible to further increase the response speed required for a ferroelectric liquid crystal material and an antiferroelectric liquid crystal material. For this purpose, it is necessary to develop a ferroelectric liquid crystal compound and an antiferroelectric liquid crystal compound in which the optically active site is CF 3 and the number of carbon atoms on the chiral side is 3.

【0003】[0003]

【発明が解決しようとする課題】本発明の目的は、光学
活性部位がCF3で、キラル側の炭素数が3であり、室
温付近で従来の強誘電性液晶化合物および反強誘電性液
晶化合物よりも応答速度が高速であるという特徴を有す
る強誘電性液晶化合物あるいは反強誘電性液晶化合物お
よびそれらを含有する組成物を提供することである。
The object of the present invention is to provide a conventional ferroelectric liquid crystal compound and an antiferroelectric liquid crystal compound having an optically active site of CF 3 and having 3 carbon atoms on the chiral side, and at room temperature. Another object of the present invention is to provide a ferroelectric liquid crystal compound or an antiferroelectric liquid crystal compound having a characteristic that the response speed is faster than that, and a composition containing them.

【0004】[0004]

【課題を解決するための手段】本発明者らは、前記目的
を達成するため、光学活性部位がCF3で、キラル側の
炭素数が3である強誘電性液晶化合物及び反強誘電性液
晶化合物の合成に関する鋭意努力を行った結果、従来の
液晶化合物よりも室温付近で高い応答速度を示す強誘電
性液晶化合物及び反強誘電性液晶化合物を見出し、本発
明を完成するに至ったものである。
Means for Solving the Problems In order to achieve the above object, the present inventors have proposed a ferroelectric liquid crystal compound having an optically active site of CF 3 and having 3 carbon atoms on the chiral side, and an antiferroelectric liquid crystal. As a result of earnest efforts on the synthesis of the compound, the inventors have found a ferroelectric liquid crystal compound and an antiferroelectric liquid crystal compound exhibiting a higher response speed at around room temperature than conventional liquid crystal compounds, and completed the present invention. is there.

【0005】すなわち、本発明の1つは、下記一般式
(1)
That is, one of the present inventions is represented by the following general formula (1)

【化3】 (式中、環A、環B、環Cおよび環Dはハロゲン原子で
置換されていてもよいフェニル環よりなる群から独立し
て選らばれた基を表わし、Rは炭素数が8から16まで
の二重結合を含んでもよいアルキル基を表わし、m+n
は1または2、p+qは1または2であり、XはO、C
OO、CO、OCOまたは単結合を表わし、*は光学活
性部位を表わす)で表わされる液晶化合物に関する。
Embedded image (In the formulae, ring A, ring B, ring C and ring D represent a group independently selected from the group consisting of a phenyl ring optionally substituted with a halogen atom, and R represents a group having 8 to 16 carbon atoms. Represents an alkyl group which may contain a double bond of
Is 1 or 2, p + q is 1 or 2, X is O, C
OO, CO, OCO or a single bond, and * represents an optically active site).

【0006】前記液晶化合物は、下記一般式(2)The liquid crystal compound is represented by the following general formula (2)

【化4】 (式中、環A、環Bおよび環Cはハロゲン原子で置換さ
れていてもよいフェニル環よりなる群から独立して選ら
ばれた基を表わし、m+nは1または2であり、Rは炭
素数が8から16までの二重結合を含んでもよいアルキ
ル基を表わし、XはO、COO、CO、OCOまたは単
結合を表わし、*は光学活性部位を表わす)で表わされ
る液晶化合物であることが好ましい。
Embedded image (In the formula, ring A, ring B and ring C represent a group independently selected from the group consisting of a phenyl ring optionally substituted with a halogen atom, m + n is 1 or 2, and R is the number of carbon atoms. Represents an alkyl group which may contain a double bond from 8 to 16, X represents O, COO, CO, OCO or a single bond, and * represents an optically active site). preferable.

【0007】本発明の他の1つは、請求項1または2記
載の液晶化合物を少なくとも1種含有することを特徴と
する液晶組成物に関する。
Another aspect of the present invention relates to a liquid crystal composition containing at least one liquid crystal compound according to claim 1 or 2.

【0008】本発明の化合物の例を下記表に列挙する。Examples of compounds of the invention are listed in the table below.

【表1】 [Table 1]

【表2】 [Table 2]

【表3】 *1 Ph :フェニル *4 3′FPh:3′−フルオロフェニル *2 3FPh:3−フルオロフェニル *5 − :単結合 *3 2FPh :2−フルオロフェニル[Table 3] * 1 Ph: Phenyl * 4 3'FPh: 3'-Fluorophenyl * 2 3FPh: 3-Fluorophenyl * 5- : Single bond * 3 2FPh: 2-Fluorophenyl

【0009】なお、本発明の液晶化合物については、R
が炭素数10のものは強誘電性を示し(実施例2参
照)、その他のもの例えばRが炭素数9(実施例1参
照)および11(実施例3参照)のものは反強誘電性を
も示す。したがって、本発明の液晶化合物同士あるいは
他の液晶化合物とブレンドして強誘電性液晶組成物や反
強誘電性液晶組成物として利用することができる。
Regarding the liquid crystal compound of the present invention, R
Those having 10 carbon atoms show ferroelectricity (see Example 2), and others having R 9 carbon atoms (see Example 1) and 11 (see Example 3) show antiferroelectricity. Also shows. Therefore, the liquid crystal compounds of the present invention can be blended with each other or with other liquid crystal compounds to be used as a ferroelectric liquid crystal composition or an antiferroelectric liquid crystal composition.

【0010】光学活性側のアルキル基の炭素数が3であ
る1,1,1−トリフルオロ−2−ペンタノールの合成
方法を以下に示す。削り状のマグネシウム83g(3.
4mol)に臭化n−プロピル400g(3.3mo
l)のエーテル1000ml溶液を1.5時間かけて滴
下し、グリニャール試薬を調製した。次にトリフルオロ
酢酸エチル416g(2.93mol)のエーテル10
00ml溶液に氷冷下、先に調製したグリニャール試薬
を滴下し、溶液温度を5℃以下に保ちながら4時間反応
させた。反応液を12N塩酸800mlと氷800g中
にクエンチし、エーテル層を分離し、飽和重曹水と水で
洗浄した。得られた1,1,1−トリフルオロ−2−ペ
ンタノン(i)のエーテル溶液約2500mlに水20
0mlを加え、35℃以下に冷却しながら水素化ホウ素
ナトリウム29gの水100ml溶液を30分で滴下し
た。滴下後、室温で2時間撹拌した。反応液からエーテ
ル層を分離後、飽和食塩水で洗浄し、無水硫酸マグネシ
ウムで脱水後、エーテルを留去して1,1,1−トリフ
ルオロ−2−ペンタノール(ii)を含む粗油497gを
得た。1,1,1−トリフルオロ−2−ペンタノールを
含む粗油497g、塩化アセチル275g(3.50m
ol)、塩化メチレン1500mlを均等に混合し、氷
冷下撹拌しながらピリジン316g(4.0mol)を
1.5時間で滴下した。滴下後、室温で3時間反応し、
12N塩酸500mlと氷500gの混合液にクエンチ
した。塩化メチレン層を水洗、飽和重曹水洗浄後、水洗
を繰返し、無水硫酸マグネシウムで脱水後、常圧下で塩
化メチレンを留去し、続いて精密蒸留により留出温度1
15〜123℃の1,1,1−トリフルオロ−2−ペン
チルアセテート(iii)を含む留分448gを得た(ト
リフルオロ酢酸エチルからの収率は79.8%)。次
に、1,1,1−トリフルオロ−2−ペンチルアセテー
ト445g、リパーゼMY45g、水4500mlを混
合し、40℃の恒温槽中で22時間撹拌した。使用した
リパーゼMYを除去するためにセライトを用いて吸着さ
せ、1500mlの抽出液を得た。抽出液を塩化メチレ
ンでさらに抽出し、飽和重曹水、飽和食塩水で洗浄後、
無水硫酸マグネシウムで脱水後、常圧下で塩化メチレン
を留去した。この濃縮物をカラムクロマトを用いてR体
とS体とに分離し、濃縮し、(+)−1,1,1−トリ
フルオロ−2−ペンタノール(iv)111g(光学純度
97.4%e.e.、収率33.2%)を得た。上記方
法の酵素の分離、カラムクロマトグラフィー、その他の
精製法については、公知の方法で代替することができ
る。
A method for synthesizing 1,1,1-trifluoro-2-pentanol in which the alkyl group on the optically active side has 3 carbon atoms is shown below. 83 g of scraped magnesium (3.
4 mol) n-propyl bromide 400 g (3.3 mo)
A solution of l) in 1000 ml of ether was added dropwise over 1.5 hours to prepare a Grignard reagent. Then 416 g (2.93 mol) of ethyl trifluoroacetate in ether 10
The Grignard reagent prepared above was added dropwise to the 00 ml solution under ice cooling, and the reaction was carried out for 4 hours while maintaining the solution temperature at 5 ° C or lower. The reaction solution was quenched into 800 ml of 12N hydrochloric acid and 800 g of ice, the ether layer was separated, and washed with saturated aqueous sodium hydrogen carbonate and water. Approximately 2500 ml of the obtained 1,1,1-trifluoro-2-pentanone (i) ether solution was added to 20 ml of water.
0 ml was added, and a solution of 29 g of sodium borohydride in 100 ml of water was added dropwise over 30 minutes while cooling to 35 ° C or lower. After the dropping, the mixture was stirred at room temperature for 2 hours. The ether layer was separated from the reaction solution, washed with a saturated saline solution, dehydrated with anhydrous magnesium sulfate, and then the ether was distilled off to obtain a crude oil containing 1,1,1-trifluoro-2-pentanol (ii) (497 g). Got 497 g of crude oil containing 1,1,1-trifluoro-2-pentanol, 275 g of acetyl chloride (3.50 m
ol) and 1500 ml of methylene chloride were uniformly mixed, and 316 g (4.0 mol) of pyridine was added dropwise over 1.5 hours while stirring under ice cooling. After dropping, react at room temperature for 3 hours,
It was quenched with a mixture of 500 ml of 12N hydrochloric acid and 500 g of ice. The methylene chloride layer was washed with water, washed with saturated sodium bicarbonate water, and then washed with water repeatedly. After dehydration with anhydrous magnesium sulfate, methylene chloride was distilled off under atmospheric pressure, and then the distillation temperature was 1 by precision distillation.
A fraction 448 g containing 1,1,1-trifluoro-2-pentyl acetate (iii) at 15 to 123 ° C. was obtained (yield from ethyl trifluoroacetate 79.8%). Next, 445 g of 1,1,1-trifluoro-2-pentyl acetate, 45 g of lipase MY, and 4500 ml of water were mixed, and the mixture was stirred for 22 hours in a constant temperature bath at 40 ° C. To remove the used lipase MY, adsorption was performed using Celite to obtain 1500 ml of extract. The extract was further extracted with methylene chloride, washed with saturated aqueous sodium hydrogen carbonate and saturated brine,
After dehydration with anhydrous magnesium sulfate, methylene chloride was distilled off under normal pressure. This concentrate was separated into R form and S form using column chromatography, concentrated, and 111 g of (+)-1,1,1-trifluoro-2-pentanol (iv) (optical purity 97.4%). ee, yield 33.2%). The enzyme separation, column chromatography and other purification methods in the above method can be replaced by known methods.

【0011】前記方法で調製した(+)−1,1,1−
トリフルオロ−2−ペンタノールを出発原料として、従
来の方法(4−ベンジルオキシ安息香酸クロリドとのエ
ステル化反応、カラム分離精製、パラジウムカーボンを
用いた水素化、カラム分離精製)により、(+)−1,
1,1−トリフルオロ−2−ペンチル−4−ヒドロキシ
ベンゾエート(v)を調製する。また、4′−アルキル
−4−ビフェニルカルボン酸と塩化チオニル等の塩素化
剤とを反応させることにより、4′−アルキル−4−ビ
フェニルカルボン酸クロリド(vi)を調製する。上記調
製した1,1,1−トリフルオロ−2−ペンチル−4−
ヒドロキシベンゾエートと4′−アルキル−4−ビフェ
ニルカルボン酸クロリドを塩化メチレンを溶媒とし、ト
リエチルアミン(以下TEAと略す)とジメチルアミノ
ピリジン(以下DMAPと略す)を触媒として、窒素雰
囲気下室温で一晩以上反応させる。この反応溶液を塩酸
溶液で洗浄し、無水硫酸マグネシウムで脱水し、塩化メ
チレンを蒸留することにより、粗生成物を得る。この粗
生成物をヘキサン/酢酸エチルの混合溶液でシリカゲル
を用いて分離精製し、(+)−4−(1,1,1−トリ
フルオロ−2−ペンチルオキシカルボニル)フェニル−
4′−アルキルビフェニル−4−カルボキシレート(vi
i)を得る。これは、エタノールを用いて更に精製する
ことができる。また、上記の粗生成物の分離精製、エス
テル合成及び液晶の再結晶は記載の方法以外にも公知の
手法により代替することができる。また、(+)体だけ
でなく(−)体についても、同様の方法で作製すること
ができる。
(+)-1,1,1-prepared by the above method
By using trifluoro-2-pentanol as a starting material and a conventional method (esterification reaction with 4-benzyloxybenzoic acid chloride, column separation purification, hydrogenation using palladium carbon, column separation purification), (+) -1,
Prepare 1,1-trifluoro-2-pentyl-4-hydroxybenzoate (v). Moreover, 4'-alkyl-4-biphenylcarboxylic acid chloride (vi) is prepared by reacting 4'-alkyl-4-biphenylcarboxylic acid with a chlorinating agent such as thionyl chloride. The above-prepared 1,1,1-trifluoro-2-pentyl-4-
Hydroxybenzoate and 4'-alkyl-4-biphenylcarboxylic acid chloride in methylene chloride as a solvent, triethylamine (hereinafter abbreviated as TEA) and dimethylaminopyridine (hereinafter abbreviated as DMAP) as a catalyst, and at room temperature under a nitrogen atmosphere overnight or more. React. The reaction solution is washed with a hydrochloric acid solution, dehydrated with anhydrous magnesium sulfate, and methylene chloride is distilled to obtain a crude product. The crude product was separated and purified using silica gel with a mixed solution of hexane / ethyl acetate to obtain (+)-4- (1,1,1-trifluoro-2-pentyloxycarbonyl) phenyl-
4'-alkylbiphenyl-4-carboxylate (vi
get i). It can be further purified using ethanol. Further, the separation and purification of the crude product, the ester synthesis, and the recrystallization of the liquid crystal can be replaced by known methods other than the methods described above. Further, not only the (+) body but also the (-) body can be manufactured by the same method.

【0012】[0012]

【化5】 Embedded image

【0013】本発明における応答速度の測定方法は下記
のとおりである。すなわち、化合物をポリイミドを塗布
しラビング処理を施した透明電極付ガラスからなる厚さ
2μmのセルに注入し、液晶物性測定セルをホットステ
ージにセットし、これを2枚の偏光板を直交させた光電
子倍増管付き偏光顕微鏡に無電界の状態で暗視野となる
ように配置した。セル中の液晶が反強誘電性相であると
きに、セルに図5に示すような±50Vの矩形波を印加
したときの光の相対透過率の変化から応答時間τを求め
ることができる。τは強誘電相の状態(マイナス側の矩
形波電圧終了時)から反強誘電相の状態を経由して次の
強誘電相の状態(プラス側の矩形波電圧印加により相対
透過率が90%に達したとき)になるまでの時間であ
り、その単位はμsec.である。
The method of measuring the response speed in the present invention is as follows. That is, the compound was injected into a cell having a thickness of 2 μm and made of glass with a transparent electrode, which was coated with polyimide and subjected to rubbing treatment, and the cell for measuring liquid crystal physical properties was set on a hot stage, and the two polarizing plates were made orthogonal to each other. It was placed in a polarization microscope with a photomultiplier so as to have a dark field in the absence of an electric field. When the liquid crystal in the cell is in the antiferroelectric phase, the response time τ can be determined from the change in the relative transmittance of light when a rectangular wave of ± 50 V as shown in FIG. 5 is applied to the cell. τ is from the state of the ferroelectric phase (at the end of the rectangular wave voltage on the negative side) to the state of the next ferroelectric phase via the state of the antiferroelectric phase (the relative transmittance is 90% when the rectangular wave voltage on the positive side is applied. When the value reaches (), the unit is μsec. It is.

【0014】[0014]

【実施例】以下に実施例を挙げて本発明を説明するが、
本発明はこれにより限定されるものではない。
The present invention will be described below with reference to examples.
The present invention is not limited to this.

【0015】実施例1 下記式Example 1 The following formula

【化6】 で示される4−(1,1,1−トリフルオロ−2−ペン
チルオキシカルボニル)フェニル−4′−n−ノニルビ
フェニル−4−カルボキシレートの合成 (+)−1,1,1−トリフルオロ−2−ペンタノール
2.00g(13.4mmol)を出発原料として、従
来の方法(4−ベンジルオキシ安息香酸クロリドとのエ
ステル化反応、カラム分離精製、パラジウムカーボンを
用いた水素化、カラム分離精製)により、1,1,1−
トリフルオロ−2−ペンチル−4−ヒドロキシベンゾエ
ート2.54g(9.8mmol、73%)を調製す
る。また、4′−ノニル−4−ビフェニルカルボン酸と
塩化チオニル等の塩素化剤とを反応させることにより、
4′−ノニル−4−ビフェニルカルボン酸クロリドを調
製する。上記調製した1,1,1−トリフルオロ−2−
ペンチル−4−ヒドロキシベンゾエート0.20g
(0.8mmol)と4′−ノニル−4−ビフェニルカ
ルボン酸クロリド0.24g(0.7mmol)を塩化
メチレンを溶媒とし、TEA0.07g(0.7mmo
l)とDMAP0.03g(0.2mmol)を触媒と
して、窒素雰囲気下室温で一晩以上反応させる。この反
応溶液を塩酸溶液で洗浄し、無水硫酸マグネシウムで脱
水し、塩化メチレンを蒸留することにより、粗生成物を
得る。この粗生成物をヘキサン/酢酸エチルの混合溶液
でシリカゲルを用いて分離精製し、4−(1,1,1−
トリフルオロ−2−ペンチルオキシカルボニル)フェニ
ル−4′−n−ノニルビフェニル−4−カルボキシレー
ト0.36g(83%)を得る。これは、エタノールを
用いて更に精製することができる。
[Chemical 6] Synthesis of 4- (1,1,1-trifluoro-2-pentyloxycarbonyl) phenyl-4′-n-nonylbiphenyl-4-carboxylate represented by (+)-1,1,1-trifluoro- Using 2.00 g (13.4 mmol) of 2-pentanol as a starting material, a conventional method (esterification reaction with 4-benzyloxybenzoic acid chloride, column separation purification, hydrogenation using palladium carbon, column separation purification) , 1,1,1-
Prepare 2.54 g (9.8 mmol, 73%) of trifluoro-2-pentyl-4-hydroxybenzoate. In addition, by reacting 4'-nonyl-4-biphenylcarboxylic acid with a chlorinating agent such as thionyl chloride,
Prepare 4'-nonyl-4-biphenylcarboxylic acid chloride. 1,1,1-trifluoro-2-prepared above
Pentyl-4-hydroxybenzoate 0.20 g
(0.8 mmol) and 4'-nonyl-4-biphenylcarboxylic acid chloride 0.24 g (0.7 mmol) in methylene chloride as a solvent, TEA 0.07 g (0.7 mmo)
1) and DMAP 0.03 g (0.2 mmol) as a catalyst are reacted overnight or more at room temperature under a nitrogen atmosphere. The reaction solution is washed with a hydrochloric acid solution, dehydrated with anhydrous magnesium sulfate, and methylene chloride is distilled to obtain a crude product. This crude product was separated and purified on silica gel with a mixed solution of hexane / ethyl acetate to give 4- (1,1,1-
This gives 0.36 g (83%) of trifluoro-2-pentyloxycarbonyl) phenyl-4′-n-nonylbiphenyl-4-carboxylate. It can be further purified using ethanol.

【0016】本化合物の1H−NMR(CDCl3中、T
MS基準、δ値ppm)は8.3〜7.1(m,12
H),5.7〜5.5(m,1H),2.8〜2.6
(t,2H),2.1〜0.8(m,24H)であっ
た。また、上記化合物をポリイミドを塗布しラビング処
理を施した透明電極付ガラスからなる厚さ2μmのセル
に注入し、ホットステージ付偏光顕微鏡観察による相転
移温度を表4に示す。本化合物は強誘電性液晶化合物及
び反誘電性液晶化合物であった。また、50℃における
応答速度も表4に示す。
1 H-NMR of this compound (T in CDCl 3
MS standard, δ value ppm) is 8.3 to 7.1 (m, 12)
H), 5.7-5.5 (m, 1H), 2.8-2.6.
(T, 2H), 2.1 to 0.8 (m, 24H). Also, the above compound was injected into a cell having a thickness of 2 μm and made of glass with a transparent electrode, which was coated with polyimide and subjected to rubbing treatment, and Table 4 shows the phase transition temperatures observed by a polarization microscope with a hot stage. This compound was a ferroelectric liquid crystal compound and an anti-dielectric liquid crystal compound. Table 4 also shows the response speed at 50 ° C.

【0017】実施例2 下記式Example 2 The following formula

【化7】 で示される4−(1,1,1−トリフルオロ−2−ペン
チルオキシカルボニル)フェニル−4′−n−デシルビ
フェニル−4−カルボキシレートの合成 実施例1と同様の方法で1,1,1−トリフルオロ−2
−ペンチル−4−ヒドロキシベンゾエートを調製する。
また、4′−デシル−4−ビフェニルカルボン酸と塩化
チオニル等の塩素化剤とを反応させることにより、4′
−デシル−4−ビフェニルカルボン酸クロリドを調製す
る。上記調製した1,1,1−トリフルオロ−2−ペン
チル−4−ヒドロキシベンゾエート0.20g(0.8
mmol)と4′−デシル−4−ビフェニルカルボン酸
クロリド0.25g(0.7mmol)を塩化メチレン
を溶媒とし、TEA0.07g(0.7mmol)とD
MAP0.03g(0.2mmol)を触媒として、窒
素雰囲気下室温で一晩以上反応させる。この反応溶液を
塩酸溶液で洗浄し、無水硫酸マグネシウムで脱水し、塩
化メチレンを蒸留することにより、粗生成物を得る。こ
の粗生成物をヘキサン/酢酸エチルの混合溶液でシリカ
ゲルを用いて分離精製し、4−(1,1,1−トリフル
オロ−2−ペンチルオキシカルボニル)フェニル−4′
−n−デシルビフェニル−4−カルボキシレート0.3
7g(91%)を得る。これは、エタノールを用いて更
に精製することができる。
Embedded image Synthesis of 4- (1,1,1-trifluoro-2-pentyloxycarbonyl) phenyl-4′-n-decylbiphenyl-4-carboxylate represented by 1,1,1 in the same manner as in Example 1 -Trifluoro-2
-Prepare pentyl-4-hydroxybenzoate.
Further, by reacting 4'-decyl-4-biphenylcarboxylic acid with a chlorinating agent such as thionyl chloride, 4'-
-Prepare decyl-4-biphenylcarboxylic acid chloride. 0.20 g (0.80) of the 1,1,1-trifluoro-2-pentyl-4-hydroxybenzoate prepared above
mmol) and 0.25 g (0.7 mmol) of 4'-decyl-4-biphenylcarboxylic acid chloride in methylene chloride as a solvent, and 0.07 g (0.7 mmol) of TEA and D.
Using MAP 0.03 g (0.2 mmol) as a catalyst, the reaction is carried out overnight at room temperature under a nitrogen atmosphere. The reaction solution is washed with a hydrochloric acid solution, dehydrated with anhydrous magnesium sulfate, and methylene chloride is distilled to obtain a crude product. The crude product was separated and purified on silica gel with a mixed solution of hexane / ethyl acetate to give 4- (1,1,1-trifluoro-2-pentyloxycarbonyl) phenyl-4 '.
-N-decylbiphenyl-4-carboxylate 0.3
7 g (91%) are obtained. It can be further purified using ethanol.

【0018】本化合物の1H−NMR(CDCl3中、T
MS基準、δ値ppm)は8.3〜7.1(m,12
H),5.7〜5.5(m,1H),2.8〜2.6
(t,2H),2.1〜0.8(m,26H)であっ
た。また、上記化合物をポリイミドを塗布しラビング処
理を施した透明電極付ガラスからなる厚さ2μmのセル
に注入し、ホットステージ付偏光顕微鏡観察による相転
移温度を表4に示す。本化合物は強誘電性液晶化合物で
あった。また、50℃における応答速度も表4に示す。
1 H-NMR of this compound (T in CDCl 3
MS standard, δ value ppm) is 8.3 to 7.1 (m, 12)
H), 5.7-5.5 (m, 1H), 2.8-2.6.
It was (t, 2H) and 2.1-0.8 (m, 26H). Also, the above compound was injected into a cell having a thickness of 2 μm and made of glass with a transparent electrode, which was coated with polyimide and subjected to rubbing treatment, and Table 4 shows the phase transition temperatures observed by a polarization microscope with a hot stage. This compound was a ferroelectric liquid crystal compound. Table 4 also shows the response speed at 50 ° C.

【0019】実施例3 下記式Example 3 The following formula

【化8】 で示される4−(1,1,1−トリフルオロ−2−ペン
チルオキシカルボニル)フェニル−4′−n−ウンデシ
ルビフェニル−4−カルボキシレートの合成 実施例1と同様の方法で1,1,1−トリフルオロ−2
−ペンチル−4−ヒドロキシベンゾエートを調製する。
また、4′−ウンデシル−4−ビフェニルカルボン酸と
塩化チオニル等の塩素化剤とを反応させることにより、
4′−ウンデシル−4−ビフェニルカルボン酸クロリド
を調製する。上記調製した1,1,1−トリフルオロ−
2−ペンチル−4−ヒドロキシベンゾエート0.20g
(0.8mmol)と4′−ウンデシル−4−ビフェニ
ルカルボン酸クロリド0.26g(0.7mmol)を
塩化メチレンを溶媒とし、TEA0.07g(0.7m
mol)とDMAP0.03g(0.2mmol)を触
媒として、窒素雰囲気下室温で一晩以上反応させる。こ
の反応溶液を塩酸溶液で洗浄し、無水硫酸マグネシウム
で脱水し、塩化メチレンを蒸留することにより、粗生成
物を得る。この粗生成物をヘキサン/酢酸エチルの混合
溶液でシリカゲルを用いて分離精製し、4−(1,1,
1−トリフルオロ−2−ペンチルオキシカルボニル)フ
ェニル−4′−n−ウンデシルビフェニル−4−カルボ
キシレート0.37g(89%)を得る。これは、エタ
ノールを用いて更に精製することができる。
Embedded image Synthesis of 4- (1,1,1-trifluoro-2-pentyloxycarbonyl) phenyl-4′-n-undecylbiphenyl-4-carboxylate represented by 1,1,1 in the same manner as in Example 1 1-trifluoro-2
-Prepare pentyl-4-hydroxybenzoate.
Further, by reacting 4′-undecyl-4-biphenylcarboxylic acid with a chlorinating agent such as thionyl chloride,
4'-Undecyl-4-biphenylcarboxylic acid chloride is prepared. 1,1,1-trifluoro-prepared above
2-pentyl-4-hydroxybenzoate 0.20 g
(0.8 mmol) and 4'-undecyl-4-biphenylcarboxylic acid chloride 0.26 g (0.7 mmol) in methylene chloride as a solvent, TEA 0.07 g (0.7 m)
(mol) and 0.03 g (0.2 mmol) of DMAP as a catalyst are reacted overnight or more at room temperature under a nitrogen atmosphere. The reaction solution is washed with a hydrochloric acid solution, dehydrated with anhydrous magnesium sulfate, and methylene chloride is distilled to obtain a crude product. The crude product was separated and purified using silica gel with a mixed solution of hexane / ethyl acetate to give 4- (1,1,
0.37 g (89%) of 1-trifluoro-2-pentyloxycarbonyl) phenyl-4′-n-undecylbiphenyl-4-carboxylate are obtained. It can be further purified using ethanol.

【0020】本化合物の1H−NMR(CDCl3中、T
MS基準、δ値ppm)は8.3〜7.1(m,12
H),5.7〜5.5(m,1H),2.8〜2.6
(t,2H),2.1〜0.8(m,28H)であっ
た。また、上記化合物をポリイミドを塗布しラビング処
理を施した透明電極付ガラスからなる厚さ2μmのセル
に注入し、ホットステージ付偏光顕微鏡観察による相転
移温度を表4に示す。本化合物は強誘電性液晶化合物及
び反強誘電性液晶化合物であった。また、50℃におけ
る応答速度も表4に示す。
1 H-NMR of this compound (T in CDCl 3
MS standard, δ value ppm) is 8.3 to 7.1 (m, 12)
H), 5.7-5.5 (m, 1H), 2.8-2.6.
It was (t, 2H) and 2.1-0.8 (m, 28H). Also, the above compound was injected into a cell having a thickness of 2 μm and made of glass with a transparent electrode, which was coated with polyimide and subjected to rubbing treatment, and Table 4 shows the phase transition temperatures observed by a polarization microscope with a hot stage. This compound was a ferroelectric liquid crystal compound and an antiferroelectric liquid crystal compound. Table 4 also shows the response speed at 50 ° C.

【0021】[0021]

【表4】 [Table 4]

【0022】実施例4 実施例3の化合物4−(1,1,1−トリフルオロ−2
−ペンチルオキシカルボニル)フェニル−4′−n−ウ
ンデシルビフェニル−4−カルボキシレート
Example 4 Compound 4- (1,1,1-trifluoro-2) of Example 3
-Pentyloxycarbonyl) phenyl-4'-n-undecylbiphenyl-4-carboxylate

【化9】 と4−(2−オクチルオキシカルボニル)フェニル−
4′−n−ノニルオキシ−2−フルオロビフェニル−4
−カルボキシレート
Embedded image And 4- (2-octyloxycarbonyl) phenyl-
4'-n-nonyloxy-2-fluorobiphenyl-4
-Carboxylate

【化10】 とを70重量%と30重量%の割合で混合した反強誘電
性液晶組成物の50℃、30℃及び20℃における応答
速度を表6に示す。
Embedded image Table 6 shows the response speeds at 50 ° C., 30 ° C. and 20 ° C. of the antiferroelectric liquid crystal composition in which and were mixed at a ratio of 70% by weight and 30% by weight.

【0023】実施例5 下記式Example 5 The following formula

【化11】 で示される4−(1,1,1−トリフルオロ−2−ペン
チルオキシカルボニル)フェニル−4−(10−ウンデ
セノイルオキシ)フェニル−4−カルボキシレートの合
成 実施例1と同様の方法で1,1,1−トリフルオロ−2
−ペンチル−4−ヒドロキシベンゾエートを調製する。
また、4−(10−ウンデセノイルオキシ)安息香酸と
塩化チオニル等の塩素化剤とを反応させることにより、
4−(10−ウンデセノイルオキシ)安息香酸クロリド
を調製する。上記調製した1,1,1−トリフルオロ−
2−ペンチル−4−ヒドロキシベンゾエート0.2g
(0.8mmol)と4−(10−ウンデセノイルオキ
シ)安息香酸クロリド0.23g(0.7mmol)を
塩化メチレンを溶媒とし、TEA0.07g(0.7m
mol)とDMAP0.03g(0.2mmol)を触
媒として、窒素雰囲気下室温で一晩以上反応させる。こ
の反応溶液を塩酸溶液で洗浄し、無水硫酸マグネシウム
で脱水し、塩化メチレンを蒸留することにより、粗生成
物を得る。この粗生成物をヘキサン/酢酸エチルの混合
溶液でシリカゲルを用いて分離精製し、4−(1,1,
1−トリフルオロ−2−ペンチルオキシカルボニル)フ
ェニル−4−(10−ウンデセノイルオキシ)フェニル
−4−カルボキシレート0.30g(77%)を得る。
これは、エタノールを用いて更に精製することができ
る。
Embedded image Synthesis of 4- (1,1,1-trifluoro-2-pentyloxycarbonyl) phenyl-4- (10-undecenoyloxy) phenyl-4-carboxylate represented by 1 in the same manner as in Example 1 , 1,1-trifluoro-2
-Prepare pentyl-4-hydroxybenzoate.
Further, by reacting 4- (10-undecenoyloxy) benzoic acid with a chlorinating agent such as thionyl chloride,
4- (10-Undecenoyloxy) benzoic acid chloride is prepared. 1,1,1-trifluoro-prepared above
2-pentyl-4-hydroxybenzoate 0.2 g
(0.8 mmol) and 4- (10-undecenoyloxy) benzoic acid chloride 0.23 g (0.7 mmol) using methylene chloride as a solvent, TEA 0.07 g (0.7 m)
(mol) and 0.03 g (0.2 mmol) of DMAP as a catalyst are reacted overnight or more at room temperature under a nitrogen atmosphere. The reaction solution is washed with a hydrochloric acid solution, dehydrated with anhydrous magnesium sulfate, and methylene chloride is distilled to obtain a crude product. The crude product was separated and purified using silica gel with a mixed solution of hexane / ethyl acetate to give 4- (1,1,
0.30 g (77%) of 1-trifluoro-2-pentyloxycarbonyl) phenyl-4- (10-undecenoyloxy) phenyl-4-carboxylate is obtained.
It can be further purified using ethanol.

【0024】本化合物の1H−NMR(CDCl3中、T
MS基準、δ値ppm)は8.3〜6.9(m,8
H),5.9〜5.7(m,2H),5.7〜5.5
(m,1H),5.1〜4.9(dd,2H),4.1
〜3.9(t,2H),2.2〜2.0(q,2H),
2.0〜0.8(m,21H)であった。また、上記化
合物をポリイミドを塗布しラビング処理を施した透明電
極付ガラスからなる厚さ2μmのセルに注入し、ホット
ステージ付偏光顕微鏡観察による相転移温度は以下の通
りであった。本化合物は降温時のみではあるが反強誘電
性を示す反強誘電性液晶化合物であった。
1 H-NMR of this compound (T in CDCl 3
MS standard, δ value ppm) is 8.3 to 6.9 (m, 8)
H), 5.9 to 5.7 (m, 2H), 5.7 to 5.5.
(M, 1H), 5.1-4.9 (dd, 2H), 4.1
-3.9 (t, 2H), 2.2-2.0 (q, 2H),
It was 2.0-0.8 (m, 21H). Further, the above compound was injected into a cell having a thickness of 2 μm, which was made of glass with a transparent electrode and which was coated with polyimide and subjected to rubbing treatment, and the phase transition temperature by observation with a polarizing microscope with a hot stage was as follows. This compound was an antiferroelectric liquid crystal compound that exhibited antiferroelectricity only when the temperature was lowered.

【表5】 [Table 5]

【0025】比較例1 下記式Comparative Example 1 The following formula

【化12】 で示される4−(1,1,1−トリフルオロ−2−ヘキ
シルオキシカルボニル)フェニル−4′−n−ウンデシ
ルビフェニル−4−カルボキシレートをポリイミドを塗
布しラビング処理を施した透明電極付ガラスからなる厚
さ2μmのセルに注入し、ホットステージ付偏光顕微鏡
観察による相転移温度を表4に示す。また、50℃にお
ける応答速度も表4に示す。
Embedded image A glass with a transparent electrode obtained by coating a 4- (1,1,1-trifluoro-2-hexyloxycarbonyl) phenyl-4′-n-undecylbiphenyl-4-carboxylate represented by Table 4 shows the phase transition temperatures observed by a polarizing microscope with a hot stage after injection into a cell having a thickness of 2 μm. Table 4 also shows the response speed at 50 ° C.

【0026】比較例2 4−(1,1,1−トリフルオロ−2−ヘキシルオキシ
カルボニル)フェニル−4′−n−ウンデシルビフェニ
ル−4−カルボキシレート
Comparative Example 2 4- (1,1,1-trifluoro-2-hexyloxycarbonyl) phenyl-4'-n-undecylbiphenyl-4-carboxylate

【化13】 と4−(2−オクチルオキシカルボニル)フェニル−
4′−n−ノニルオキシ−2−フルオロ−ビフェニル−
4−カルボキシレート
Embedded image And 4- (2-octyloxycarbonyl) phenyl-
4'-n-nonyloxy-2-fluoro-biphenyl-
4-carboxylate

【化14】 を70重量%と30重量%の割合で混合した反強誘電性
液晶組成物の50℃、30℃及び20℃における応答速
度を表6に示す。
Embedded image Table 6 shows the response speeds at 50 ° C., 30 ° C. and 20 ° C. of the antiferroelectric liquid crystal composition in which 70% by weight and 30% by weight were mixed.

【0027】[0027]

【表6】 [Table 6]

【0028】実施例6 下記組成物Example 6 The following composition

【化15】 をポリイミドを塗布しラビング処理を施した透明電極付
ガラスからなる厚さ2μmのセルに注入し、ホットステ
ージ付偏光顕微鏡を用いて測定した60℃および50℃
における応答速度を表7に示す。
Embedded image Was injected into a cell with a thickness of 2 μm made of glass with a transparent electrode which was coated with polyimide and subjected to rubbing treatment, and was measured using a polarization microscope with a hot stage at 60 ° C. and 50 ° C.
Table 7 shows the response speed in the above.

【0029】比較例3 下記組成物Comparative Example 3 The following composition

【化16】 をポリイミドを塗布しラビング処理を施した透明電極付
ガラスからなる厚さ2μmのセルに注入し、ホットステ
ージ付偏光顕微鏡を用いて測定した60℃および50℃
における応答速度を表7に示す。
Embedded image Was injected into a cell with a thickness of 2 μm made of glass with a transparent electrode which was coated with polyimide and subjected to rubbing treatment, and was measured using a polarization microscope with a hot stage at 60 ° C. and 50 ° C.
Table 7 shows the response speed in the above.

【0030】[0030]

【表7】 [Table 7]

【0031】実施例7 下記組成物Example 7 The following composition

【化17】 をポリイミドを塗布しラビング処理を施した透明電極付
ガラスからなる厚さ2μmのセルに注入し、ホットステ
ージ付偏光顕微鏡を用いて測定した60℃および50℃
における応答速度を表8に示す。
Embedded image Was injected into a cell with a thickness of 2 μm made of glass with a transparent electrode which was coated with polyimide and subjected to rubbing treatment, and was measured using a polarization microscope with a hot stage at 60 ° C. and 50 ° C.
Table 8 shows the response speed in the above.

【0032】比較例4 下記組成物Comparative Example 4 The following composition

【化18】 をポリイミドを塗布しラビング処理を施した透明電極付
ガラスからなる厚さ2μmのセルに注入し、ホットステ
ージ付偏光顕微鏡を用いて測定した60℃および50℃
における応答速度を表8に示す。
Embedded image Was injected into a cell with a thickness of 2 μm made of glass with a transparent electrode which was coated with polyimide and subjected to rubbing treatment, and was measured using a polarization microscope with a hot stage at 60 ° C. and 50 ° C.
Table 8 shows the response speed in the above.

【0033】[0033]

【表8】 [Table 8]

【0034】実施例8 下記組成物Example 8 The following composition

【化19】 をポリイミドを塗布しラビング処理を施した透明電極付
ガラスからなる厚さ2μmのセルに注入し、ホットステ
ージ付偏光顕微鏡を用いて測定した60℃および50℃
における応答速度を表9に示す。
Embedded image Was injected into a cell with a thickness of 2 μm made of glass with a transparent electrode which was coated with polyimide and subjected to rubbing treatment, and was measured using a polarization microscope with a hot stage at 60 ° C. and 50 ° C.
Table 9 shows the response speed in the above.

【0035】比較例5 下記組成物Comparative Example 5 The following composition

【化20】 をポリイミドを塗布しラビング処理を施した透明電極付
ガラスからなる厚さ2μmのセルに注入し、ホットステ
ージ付偏光顕微鏡を用いて測定した60℃および50℃
における応答速度を表9に示す。
Embedded image Was injected into a cell with a thickness of 2 μm made of glass with a transparent electrode which was coated with polyimide and subjected to rubbing treatment, and was measured using a polarization microscope with a hot stage at 60 ° C. and 50 ° C.
Table 9 shows the response speed in the above.

【0036】[0036]

【表9】 [Table 9]

【0037】[0037]

【効果】 (1)実施例6と比較例3を比較すると、実施例3の反
強誘電性液晶化合物を比較例3のような光学活性部位が
CF3系の組成物に配合することにより、具体的には、
実施例3の反強誘電性液晶化合物を30重量%配合する
(実施例6)ことにより、60℃または50℃における
応答速度(μ秒)が8〜12%も低下することが確認さ
れた。 (2)実施例7と比較例4を比較すると、実施例3の反
強誘電性液晶化合物を比較例4のような光学活性部位が
CF3系とCH3系の混合してある組成物に配合すること
により、具体的には、実施例3の反強誘電性液晶化合物
を30重量%配合する(実施例7)ことにより、60℃
または50℃における応答速度(μ秒)が4〜10%も
低下することが確認された。 (3)実施例8と比較例5を比較すると、実施例3の反
強誘電性液晶化合物を比較例5のような光学活性部位が
CF3系とCH3系と反強誘電性液晶化合物でない化合物
の混合してある組成物に配合することにより、具体的に
は、実施例3の反強誘電性液晶化合物を5重量%配合す
る(実施例8)ことにより、60℃または50℃におけ
る応答速度(μ秒)が2〜5%も低下することが確認さ
れた。 (4)(1)、(2)、(3)より、光学活性部位がC
3で、キラル側の炭素数が3である反強誘電性液晶化
合物を配合することにより、様々な反強誘電性液晶組成
物の応答速度を大きく改善することが確認された。つま
り、光学活性部位がCF3で、キラル側の炭素数が3で
ある反強誘電性液晶化合物を配合することにより、反強
誘電性液晶材料を利用したディスプレー材料に不可欠な
応答速度が大きく改善されたことがわかる。
[Effect] (1) Comparing Example 6 with Comparative Example 3, by adding the antiferroelectric liquid crystal compound of Example 3 to the composition having the CF 3 -based optically active site as in Comparative Example 3, In particular,
It was confirmed that by adding 30% by weight of the antiferroelectric liquid crystal compound of Example 3 (Example 6), the response speed (μsec) at 60 ° C. or 50 ° C. was lowered by 8 to 12%. (2) Comparing Example 7 with Comparative Example 4, a composition in which the antiferroelectric liquid crystal compound of Example 3 was mixed with the optically active site of CF 3 system and CH 3 system as in Comparative Example 4 was obtained. By blending, specifically, by adding 30 wt% of the antiferroelectric liquid crystal compound of Example 3 (Example 7), 60 ° C.
It was also confirmed that the response speed (μsec) at 50 ° C. decreased by 4 to 10%. (3) Comparing Example 8 and Comparative Example 5, the antiferroelectric liquid crystal compound of Example 3 has the optically active sites of CF 3 system, CH 3 system and antiferroelectric liquid crystal compound as in Comparative Example 5. By adding the compound to the composition in which the compounds are mixed, specifically, by adding 5% by weight of the antiferroelectric liquid crystal compound of Example 3 (Example 8), the response at 60 ° C. or 50 ° C. It was confirmed that the speed (μsec) was reduced by 2 to 5%. (4) From (1), (2), and (3), the optically active site is C
It was confirmed that by adding an antiferroelectric liquid crystal compound having 3 carbon atoms on the chiral side in F 3 , the response speed of various antiferroelectric liquid crystal compositions was significantly improved. In other words, by adding an antiferroelectric liquid crystal compound having an optically active site of CF 3 and having 3 carbon atoms on the chiral side, the response speed indispensable for a display material using an antiferroelectric liquid crystal material is greatly improved. You can see that it was done.

【図面の簡単な説明】[Brief description of drawings]

【図1】(A)は印加される三角波を、(B)は市販の
ネマチック液晶の、(C)は二状態液晶の、(D)は三
安定状態液晶の、それぞれの光学応答特性を示す。
1 (A) shows an applied triangular wave, (B) shows a commercially available nematic liquid crystal, (C) shows a two-state liquid crystal, and (D) shows a tristable state liquid crystal. .

【図2】クラーク/ラガヴァルにより提案された強誘電
性液晶分子の二つの安定した配向状態を示す。
FIG. 2 shows two stable alignment states of a ferroelectric liquid crystal molecule proposed by Clark / Ragaval.

【図3】(A)は、本発明の“反”強誘電性液晶分子の
三つの安定した配向状態を示す。(B)は、Aの各
(a)、(b)、(c)に対応した三状態スイッチング
と液晶分子配列の変化を示す。
FIG. 3A shows three stable alignment states of the “anti” ferroelectric liquid crystal molecules of the present invention. (B) shows three-state switching corresponding to each of (a), (b), and (c) of A and a change in liquid crystal molecule alignment.

【図4】“反”強誘電性液晶分子が印加電圧に対してダ
ブルヒステリシスを描いて光透過率が変化することを示
す印加電圧−光透過率特性図である。
FIG. 4 is an applied voltage-light transmittance characteristic diagram showing that the “anti” ferroelectric liquid crystal molecules change their light transmittance by drawing a double hysteresis with respect to an applied voltage.

【図5】(A)は印加電圧と時間の関係を示し、(B)
はその印加電圧がかかったときの液晶分子の応答状態を
示すグラフである。
FIG. 5A shows a relationship between applied voltage and time, and FIG.
Is a graph showing a response state of liquid crystal molecules when the applied voltage is applied.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 磯崎 忠昭 東京都千代田区霞が関3丁目2番5号 昭 和シェル石油株式会社内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Tadaaki Isozaki 3-25 Kasumigaseki, Chiyoda-ku, Tokyo Akira Shell Oil Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 下記一般式(1) 【化1】 (式中、環A、環B、環Cおよび環Dはハロゲン原子で
置換されていてもよいフェニル環よりなる群から独立し
て選らばれた基を表わし、Rは炭素数が8から16まで
の二重結合を含んでもよいアルキル基を表わし、m+n
は1または2、p+qは1または2であり、XはO、C
OO、CO、OCOまたは単結合を表わし、*は光学活
性部位を表わす)で表わされる液晶化合物。
1. The following general formula (1): (In the formulae, ring A, ring B, ring C and ring D represent a group independently selected from the group consisting of a phenyl ring optionally substituted with a halogen atom, and R represents a group having 8 to 16 carbon atoms. Represents an alkyl group which may contain a double bond of
Is 1 or 2, p + q is 1 or 2, X is O, C
A liquid crystal compound represented by OO, CO, OCO or a single bond, and * represents an optically active site.
【請求項2】 下記一般式(2) 【化2】 (式中、環A、環Bおよび環Cはハロゲン原子で置換さ
れていてもよいフェニル環よりなる群から独立して選ら
ばれた基を表わし、m+nは1または2であり、Rは炭
素数が8から16までの二重結合を含んでもよいアルキ
ル基を表わし、XはO、COO、CO、OCOまたは単
結合を表わし、*は光学活性部位を表わす)で表わされ
る液晶化合物。
2. The following general formula (2): (In the formula, ring A, ring B and ring C represent a group independently selected from the group consisting of a phenyl ring optionally substituted with a halogen atom, m + n is 1 or 2, and R is the number of carbon atoms. Represents an alkyl group which may contain a double bond from 8 to 16, X represents O, COO, CO, OCO or a single bond, and * represents an optically active site).
【請求項3】 請求項1または2で表わされる液晶化合
物を少なくとも1種含有することを特徴とする液晶組成
物。
3. A liquid crystal composition comprising at least one liquid crystal compound represented by claim 1 or 2.
JP8338883A 1995-12-04 1996-12-04 Liquid crystal having rapid response and liquid crystal composition containing the same Pending JPH09216851A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8338883A JPH09216851A (en) 1995-12-04 1996-12-04 Liquid crystal having rapid response and liquid crystal composition containing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP33999095 1995-12-04
JP7-339990 1995-12-04
JP8338883A JPH09216851A (en) 1995-12-04 1996-12-04 Liquid crystal having rapid response and liquid crystal composition containing the same

Publications (1)

Publication Number Publication Date
JPH09216851A true JPH09216851A (en) 1997-08-19

Family

ID=26576247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8338883A Pending JPH09216851A (en) 1995-12-04 1996-12-04 Liquid crystal having rapid response and liquid crystal composition containing the same

Country Status (1)

Country Link
JP (1) JPH09216851A (en)

Similar Documents

Publication Publication Date Title
EP0739884B1 (en) Liquid crystal compound and liquid crystal composition containing the same
US5972243A (en) Ferrielectric liquid crystal compound
JPH03275651A (en) Ester compound and liquid crystal composition containing the same
JPH09216851A (en) Liquid crystal having rapid response and liquid crystal composition containing the same
JPH09301929A (en) Antiferroelectric liquid crystal compound large in response speed and antiferroelectric liquid crystal composition containing the same
JPH01311051A (en) Novel lactic acid derivative, liquid crystal composition containing said derivative and optical switching element
JP2700339B2 (en) Novel ester compound and liquid crystal composition containing the same
JP3065734B2 (en) Cinnamic acid derivative
JP2857231B2 (en) Ester compound and liquid crystal composition containing the same
JP3333078B2 (en) Antiferroelectric liquid crystal compound with excellent temperature dependence of response speed
JPH0832665B2 (en) Antiferroelectric liquid crystal compound
JP2980962B2 (en) Ester compound and liquid crystal composition containing the same
JP2869236B2 (en) Fluorine-containing optically active compound and liquid crystal composition
US5118442A (en) Optically active compound
JPH08253441A (en) Liquid crystal compound having asymmetric carbon in 5-membered ring and liquid crystal composition containing the same
JP2980951B2 (en) Ester compound containing trifluoromethyl group and liquid crystal composition containing the same
JP3095435B2 (en) Liquid crystal compound
JPH10158219A (en) New antiferroelectric liquid crystal compound and antiferroelectric liquid crystal composition containing the compound
JP2575782B2 (en) New optically active ester compound
JP3470725B2 (en) Antiferroelectric liquid crystal material and liquid crystal display device
JPH08113553A (en) Strong antiferroelectric liquid crystal compound and liquid crystal composition containing the same
JPH09157264A (en) Antiferrodielectric liquid crystal compound having piperazine skeleton and composition
JPH10147554A (en) Antiferroelectric liquid crystal compound excellent in dependence of response speed on temperature
JPH0912509A (en) Antiferroelectric liquid crystal compound and its composition
JPH0632770A (en) Antiferroelectric liquid crystal compound