JPH09213345A - Material for air electrode in fused carbonate fuel cell and air electrode - Google Patents
Material for air electrode in fused carbonate fuel cell and air electrodeInfo
- Publication number
- JPH09213345A JPH09213345A JP8017658A JP1765896A JPH09213345A JP H09213345 A JPH09213345 A JP H09213345A JP 8017658 A JP8017658 A JP 8017658A JP 1765896 A JP1765896 A JP 1765896A JP H09213345 A JPH09213345 A JP H09213345A
- Authority
- JP
- Japan
- Prior art keywords
- air electrode
- fuel cell
- molar ratio
- conductivity
- carbonate fuel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Inert Electrodes (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】この発明は、溶融炭酸塩型燃
料電池(MCFC)の空気極に関し、特に、耐溶融塩性の空気
極材料に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a molten carbonate fuel cell (MCFC) air electrode, and more particularly to a molten salt resistant air electrode material.
【0002】[0002]
【従来の技術】溶融炭酸塩型燃料電池は、通常、燃料極
(負極)としてニッケル(Ni),空気極(陽極)とし
て酸化ニッケル(NiO)を用い、電解質として、溶融
炭酸塩を用いている。かかる溶融炭酸塩型燃料電池が実
用化されるためには、40,000時間以上の寿命が必要とさ
れているが、電解質の損失、空気極の溶出やセパレータ
の腐食等の課題を抱えているため、その達成は難しい。
現在、空気極用材料としては溶融塩炭酸塩中で比較的安
定な、LiをドープしたNiOが用いられている。2. Description of the Related Art A molten carbonate fuel cell normally uses nickel (Ni) as a fuel electrode (negative electrode), nickel oxide (NiO) as an air electrode (anode), and molten carbonate as an electrolyte. . In order for such a molten carbonate fuel cell to be put into practical use, a life of 40,000 hours or more is required, but since it has problems such as loss of electrolyte, elution of air electrode and corrosion of separator, That is difficult to achieve.
Currently, Li-doped NiO, which is relatively stable in a molten salt carbonate, is used as an air electrode material.
【0003】[0003]
【発明が解決しようとする課題】しかし、NiOを空気
極材料として使用した場合でも、電池運転中に、式(1)
の反応によるNi溶出と、この溶出したNiが電解質内
において還元されることによるNi析出により、長時間
の作動ではセルの内部短絡が起こり、電池としての作動
が不能となる。 NiO+CO2 →Ni2++CO3 2- ……式(1) 従って、溶融塩炭酸塩中で溶出しにくく安定な空気極材
料の開発が必要であると考えられている。However, even when NiO is used as the air electrode material, the formula (1) is not satisfied during battery operation.
Due to the elution of Ni due to the reaction of 1 and the precipitation of Ni due to the reduction of the eluted Ni in the electrolyte, an internal short circuit of the cell occurs during long-term operation, and the battery cannot operate. NiO + CO 2 → Ni 2+ + CO 3 2-- Equation (1) Therefore, it is considered necessary to develop a stable cathode material that is difficult to elute in molten salt carbonate.
【0004】ここに、NiOよりも耐溶融塩性に優れた
材料としてLiCoO2 が知られている。しかしなが
ら、LiCoO2 においては、コバルトに対するリチウ
ムのモル比(Li/Coのモル比)により導電率が変化
することが知られており、一般的に、NiOに比べ導電
性が低い。例えば、Li/Coモル比=1.2では、電
池作動温度である650℃での導電率が3〜4S/cm
まで向上するものの、依然、従来材料であるLiドープ
NiOの同温度での導電率(約9S/cm)よりも低
い。[0004] Here, LiCoO 2 is known as a material having a higher resistance to molten salts than NiO. However, it is known that the conductivity of LiCoO 2 changes depending on the molar ratio of lithium to cobalt (the molar ratio of Li / Co), and in general, the conductivity is lower than that of NiO. For example, when the Li / Co molar ratio is 1.2, the conductivity at the battery operating temperature of 650 ° C. is 3 to 4 S / cm.
However, it is still lower than the conductivity (about 9 S / cm) at the same temperature of Li-doped NiO which is a conventional material.
【0005】したがって、耐溶融塩性に優れたLiCo
O2 を実用的な空気極用材料とするには、導電率を向上
させることが必要となる。Therefore, LiCo excellent in molten salt resistance
In order to use O 2 as a practical air electrode material, it is necessary to improve the electric conductivity.
【0006】そこで、本発明では、LiとCoの他に第
3の金属元素を固溶化した酸化物固溶体を用いることに
より、耐溶融塩性に優れるとともに、導電性に優れた溶
融炭酸塩型燃料電池の空気極用材料を提供すること目的
とする。また、本発明では、LiとCoの他に第3の金
属元素を固溶化した酸化物固溶体を用いることにより、
耐溶融塩性に優れて長時間の作動が可能な溶融炭酸塩型
燃料電池の空気極を提供することを目的とする。Therefore, in the present invention, by using an oxide solid solution in which a third metal element is solid-solubilized in addition to Li and Co, the molten carbonate fuel excellent in the resistance to molten salt and the conductivity is excellent. It is an object to provide a material for an air electrode of a battery. Further, in the present invention, by using an oxide solid solution obtained by solidifying a third metal element in addition to Li and Co,
It is an object of the present invention to provide an air electrode of a molten carbonate fuel cell which has excellent molten salt resistance and can be operated for a long time.
【0007】[0007]
【課題を解決するための手段】上記した課題を解決する
ための手段として、第1の発明は、金属元素としてリチ
ウム(Li)、コバルト(Co)及びマグネシウム(M
g)を含む酸化物固溶体からなる溶融炭酸塩型燃料電池
の空気極用材料である。この発明によれば、LiとCo
とMgとを固溶することにより、耐溶融塩性を有し、し
かも、従来のLiCoO2 に比して導電率が向上され
る。[Means for Solving the Problems] As means for solving the above-mentioned problems, the first invention relates to lithium (Li), cobalt (Co) and magnesium (M) as metal elements.
It is a material for an air electrode of a molten carbonate fuel cell, which is composed of an oxide solid solution containing g). According to this invention, Li and Co
By forming a solid solution with Mg and Mg, it has resistance to molten salt, and further, the conductivity is improved as compared with the conventional LiCoO 2 .
【0008】特に、第3の元素としてMgを固溶するこ
とにより、Li/Coモル比が1より小さい場合に溶融
炭酸塩中におけるLi/Coモル比=1となるような相
変化、すなわち、Li化が抑制される。したがって、従
来、LiCoO2 においてLi/Coモル比が1より小
さい場合にLi化によって作動時に導電率が低下すると
いう問題点が、LiとCoとMgとを固溶することによ
り解決されることになる。なお、LiCoO2 において
は、Li/Coのモル比が1より小さい場合に、Li/
Coのモル比を小さくするにつれ、導電率は向上し、L
i/Coモル比が1に近くなるにつれ、導電率が低下す
る。また、LiとCoとMgとを固溶することにより、
Li/Coモル比が1より小さい場合の上述の相変化に
よる微細構造(細孔分布)の変化が抑制される。したが
って、従来、LiCoO2 において、かかる相変化によ
ってLiCoO2 粒子が欠落しやすく脆くなり、空気極
が構造的に不安定になるという問題点が解決されること
になる。In particular, by solid solution of Mg as the third element, a phase change such that the Li / Co molar ratio in the molten carbonate becomes 1 when the Li / Co molar ratio is less than 1, that is, Li conversion is suppressed. Therefore, conventionally, in LiCoO 2 , when the Li / Co molar ratio is smaller than 1, the problem that the conductivity is lowered during operation due to Li formation is solved by solid solution of Li, Co and Mg. Become. In addition, in LiCoO 2 , when the molar ratio of Li / Co is smaller than 1, Li / Co
As the molar ratio of Co is decreased, the conductivity is improved and L
As the i / Co molar ratio approaches 1, the conductivity decreases. Further, by solid solution of Li, Co and Mg,
When the Li / Co molar ratio is less than 1, the change in the fine structure (pore distribution) due to the above phase change is suppressed. Therefore, conventionally, in LiCoO 2 , the problem that LiCoO 2 particles are likely to be lost and become brittle due to such a phase change and the air electrode is structurally unstable is solved.
【0009】さらに、Li/Coモル比が1を越える場
合に、Mgが固溶化されていると、固溶体合成の際のL
i成分(Li2 CO3 等)の残存が抑制される。この結
果、固溶体合成時のLi成分の残存程度により空気極の
導電率にバラツキが生じるというLiCoO2 の問題点
が解決される。Further, when the Li / Co molar ratio exceeds 1, if Mg is solid-solubilized, L in solid solution synthesis is increased.
Remaining i component (Li 2 CO 3, etc.) is suppressed. As a result, the problem of LiCoO 2 that the conductivity of the air electrode varies due to the degree of remaining Li component during solid solution synthesis is solved.
【0010】この発明においては、前記酸化物固溶体に
おけるコバルトに対するリチウムのモル比が1以上1.
2以下であり、コバルトに対するマグネシウムのモル比
が0.2を越えないことが好ましい態様である。Li/
Coモル比が1より小さいと、Mgを固溶化しても、導
電率の増加が少ないからであり、Li/Coモル比が
1.2を越えると前記酸化物固溶体合成時において、L
i成分が残存しやすくなるからである。また、Mg/C
oモル比が0.2を越えないとしたのは、Mg/Coモ
ル比が0.2を越えると、導電率が減少されるからであ
る。より好ましくは、Mg/Coモル比が0.1を越え
ない範囲である。In the present invention, the molar ratio of lithium to cobalt in the oxide solid solution is 1 or more.
In a preferred embodiment, it is 2 or less and the molar ratio of magnesium to cobalt does not exceed 0.2. Li /
This is because when the Co molar ratio is less than 1, the increase in conductivity is small even if Mg is solid-solved.
This is because the i component is likely to remain. Also, Mg / C
The reason that the o molar ratio does not exceed 0.2 is that the conductivity decreases when the Mg / Co molar ratio exceeds 0.2. More preferably, the Mg / Co molar ratio does not exceed 0.1.
【0011】また、第2の発明は、リチウム(Li)、
コバルト(Co)の他に、銀(Ag)、ニッケル(N
i)、銅(Cu)、又はストロンチウム(Sr)のうち
から選ばれた1以上の金属元素を含む酸化物固溶体から
なる溶融炭酸塩型燃料電池用空気極材料である。この発
明によれば、Li及びCoの他に、Ag、Ni、Cu、
あるいはSrから選ばれた1以上の金属元素の含んだ酸
化物固溶体により、従来のLiCoO2に比して導電率
が向上される。また、空気極の構造安定化、導電率のバ
ラツキの低減が図られる。例えば、LiCoO2 の65
0℃の導電率0.1S/cmに対して、Li1.05CoA
g0.1 O2 では、1.2S/cmであり、Li1.05Co
Ni0.1 O2 では、0.7S/cmであり、Li1.05C
oCu0.1 O2 では、0.5S/cmであり、Li1.05
CoSr0.1 O2 では、0.4S/cmである。なお、
導電率の測定は、直流4端子法にて行い、条件は、表1
と同様とした。The second invention is lithium (Li),
In addition to cobalt (Co), silver (Ag), nickel (N
A molten carbonate fuel cell air electrode material comprising an oxide solid solution containing one or more metal elements selected from i), copper (Cu), and strontium (Sr). According to the present invention, in addition to Li and Co, Ag, Ni, Cu,
Alternatively, the oxide solid solution containing one or more metal elements selected from Sr improves the conductivity as compared with the conventional LiCoO 2 . Further, the structure of the air electrode can be stabilized and the variation in conductivity can be reduced. For example, LiCoO 2 65
Li 1.05 CoA for conductivity of 0.1 S / cm at 0 ° C
It is 1.2 S / cm at g 0.1 O 2 , and Li 1.05 Co
Ni 0.1 O 2 has 0.7 S / cm, and Li 1.05 C
With oCu 0.1 O 2 , it is 0.5 S / cm, and Li 1.05
For CoSr 0.1 O 2 , it is 0.4 S / cm. In addition,
The conductivity is measured by the DC 4-terminal method, and the conditions are shown in Table 1.
The same as above.
【0012】また、第3の発明は、金属元素としてリチ
ウム(Li)、コバルト(Co)及びマグネシウム(M
g)を含む酸化物固溶体、または、この酸化物固溶体に
おけるコバルトに対するリチウムのモル比が1以上1.
2以下であり、コバルトに対するマグネシウムのモル比
が0.2を越えないことを特徴とする酸化物固溶体を用
いて形成してなる溶融炭酸塩型燃料電池用空気極であ
る。この発明によれば、Li及びCoの他に、Mgを含
む酸化物固溶体を材料として用いた炭酸溶融塩型燃料電
池の空気極は、耐溶融塩性を有するとともに、充分な導
電率を備えた空気極となっている。したがって、長時間
の作動時間に耐えうる空気極となっている。さらに、M
gを含んでいるために、溶融炭酸塩中での微細構造の変
化が抑制された空気極となっているとともに、導電率の
バラツキのない空気極となっている。なお、リチウム
(Li)、コバルト(Co)の他に、銀(Ag)、ニッ
ケル(Ni)、銅(Cu)、又はストロンチウム(S
r)のうちから選ばれた1以上の金属元素を含む酸化物
固溶体を用いて形成してなる溶融炭酸塩型燃料電池用空
気極も、耐溶融塩性に優れるとともに、導電率の向上さ
れた空気極を提供することができる。The third aspect of the invention is to use lithium (Li), cobalt (Co) and magnesium (M) as metal elements.
g), or a molar ratio of lithium to cobalt in the oxide solid solution of 1 or more.
An air electrode for a molten carbonate fuel cell, which is formed by using an oxide solid solution having a molar ratio of magnesium to cobalt of 2 or less and not exceeding 0.2. According to the present invention, in addition to Li and Co, the air electrode of a carbonated molten salt fuel cell using an oxide solid solution containing Mg as a material has molten salt resistance and sufficient electrical conductivity. It is an air electrode. Therefore, the air electrode can withstand a long operating time. Further, M
Since it contains g, it is an air electrode in which the change of the fine structure in the molten carbonate is suppressed, and at the same time, it is an air electrode with no variation in conductivity. In addition to lithium (Li) and cobalt (Co), silver (Ag), nickel (Ni), copper (Cu), or strontium (S).
The air electrode for a molten carbonate fuel cell, which is formed by using an oxide solid solution containing one or more metal elements selected from among r), also has excellent molten salt resistance and improved conductivity. An air electrode can be provided.
【0013】[0013]
【発明の実施の形態】以下、本発明を詳細に説明する。
本発明において、金属元素の酸化物固溶体を得るには、
金属元素の酢酸塩あるいは硝酸塩水溶液を熱分解して酸
化物の混合体とした後に仮焼する方法、金属元素の酸化
物粉末あるいは塩化物粉末を混合して仮焼する方法など
の通常固溶体を得るのに用いられる方法を用いることが
できる。したがって、LiCoO2 粉末にMgの酢酸塩
等を添加して、Li、Co及びMgの3種の金属元素を
含む酸化物固溶体を合成してもよく、また、それぞれの
酢酸塩等を原料として固溶体を合成してもよい。なお、
仮焼条件は固溶体を形成できるように設定されることが
必要である。BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below.
In the present invention, in order to obtain an oxide solid solution of a metal element,
Usually, a solid solution is obtained, such as a method of pyrolyzing an aqueous solution of acetate or nitrate of a metal element to form a mixture of oxides and then calcining, a method of mixing oxide powder or chloride powder of a metal element and calcining. The method used for can be used. Therefore, Mg acetate or the like may be added to LiCoO 2 powder to synthesize an oxide solid solution containing three metal elements of Li, Co, and Mg. May be synthesized. In addition,
The calcination conditions need to be set so that a solid solution can be formed.
【0014】また、本発明の溶融炭酸塩型燃料電池とし
ては、外部改質型であっても内部改質型であってもよ
い。また、本発明の溶融炭酸塩型燃料電池の空気極は、
その形態を問うものではない。The molten carbonate fuel cell of the present invention may be an external reforming type or an internal reforming type. Further, the air electrode of the molten carbonate fuel cell of the present invention,
It does not question its form.
【0015】[0015]
【実施例】以下、本発明を実施例を挙げて具体的に説明
する。なお、本発明は、以下の実施例に限定されるもの
では決してない。 (実施例1) (Mg/Coモル比と導電率)LiCoO2 (Li/C
oモル比=1.05)粉末と所定の量のMg(CH3COO)2・4
H2O(特級試薬)とをボールミルを用いて混合し、80
0℃で12時間仮焼した後、24時間粉砕処理を行い、
Mg/Coモル比(図1におけるMg添加量:x)がそ
れぞれ異なる4 種類の組成のLi1.05CoMgx O2 (
x =0 、0.05、0.1 、0.2)の粉末を得た。各組成の粉末
を加圧成形後、900℃にて焼成して、5mm × 5mm×25
mmの多孔質の焼結体試料1 〜4 を得た。EXAMPLES Hereinafter, the present invention will be described specifically with reference to examples. It should be noted that the present invention is by no means limited to the following examples. (Example 1) (Mg / Co molar ratio and conductivity) LiCoO 2 (Li / C
o molar ratio = 1.05) powder and a predetermined amount Mg (CH 3 COO) 2 · 4
H 2 O (special grade reagent) is mixed using a ball mill,
After calcination for 12 hours at 0 ° C, crushing treatment for 24 hours,
Li 1.05 CoMg x O 2 (composition of four different Mg / Co molar ratios (Mg addition amount: x in FIG. 1))
x = 0, 0.05, 0.1, 0.2) was obtained. After powder compaction of each composition, it is baked at 900 ℃, 5mm × 5mm × 25
mm porous sintered body samples 1 to 4 were obtained.
【0016】これらの試料1〜4に金(Au)電極を焼
付けして、表1の測定条件にしたがって直流4端子法で
導電率を測定した。図1にMg添加量と導電率の関係を
示す。図1から明らかなように、Mg/Coモル比が
0.2(20mol %)までは導電率は増大し、0.1(10
mol %)付近で極大(約9S/cm)を示し、それ以上
では低下した。この実施例での極大値は、ほぼ、従来の
空気極材料であるLiドープNiOに匹敵するものであ
った。なお、これらの試料1〜4について、X線回折を
したところ、図2に示すように、Mg/Coモル比が
0.1(Mg添加量が10mol %) (試料3)までは完全
に固溶化しているが、0.2(同20mol%) (試料4)では
Mgは完全に固溶化しておらず、MgOに相当するピー
クが観察された。したがって、Li、Co及びMgの酸
化物固溶体におけるCoに対するMgのモル比は、0.
2を越えない範囲が好ましく、さらに好ましくは、0.
1を越えない範囲であることが明らかであった。Gold (Au) electrodes were baked on these samples 1 to 4 and the electrical conductivity was measured by the DC 4-terminal method according to the measurement conditions shown in Table 1. FIG. 1 shows the relationship between the amount of added Mg and the conductivity. As is clear from FIG. 1, the conductivity increases until the Mg / Co molar ratio reaches 0.2 (20 mol%), and the conductivity increases to 0.1 (10 mol%).
The maximum (about 9 S / cm) was shown in the vicinity of (mol%), and it decreased when it was higher than that. The maximum value in this example was almost comparable to that of Li-doped NiO, which is a conventional air electrode material. When these samples 1 to 4 were subjected to X-ray diffraction, as shown in FIG. 2, they were completely solid until the Mg / Co molar ratio was 0.1 (the amount of Mg added was 10 mol%) (sample 3). Although dissolved, 0.2 (20 mol% in the same) (Sample 4) did not completely solidify Mg, and a peak corresponding to MgO was observed. Therefore, the molar ratio of Mg to Co in the oxide solid solution of Li, Co, and Mg is 0.
A range not exceeding 2 is preferable, and a range of 0.
It was clear that the range did not exceed 1.
【0017】[0017]
【表1】 [Table 1]
【0018】(実施例2) (LiCoMgO2 中のLi/Coモル比と導電率)次
に、Li/Coモル比が 0.5、0.9 、1.0 、1.1 及び1.
2 の各種LiCoO 2 と、Mg/Coモル比が0.1
(Mgの添加量:10mol %)となるような量のMg(CH3CO
O)2 ・4H2O(特級試薬)とについて、実施例1と同様に
操作して、各種LiCoMgO2 の粉末を得た。これら
の粉末を加圧成形後、実施例1と同様にして焼結体試料
5〜9を得た。なお、比較例として、Li/Coモル比
が 0.4〜 1.1の範囲のLiCoO2 粉末を用い、Mg(CH3
COO)2 ・4H2O(特級試薬)を添加しない以外は、実施例
1と同様に操作して、比較例の焼結体試料を調製した。(Example 2) (LiCoMgOTwoLi / Co molar ratio and conductivity)
And Li / Co molar ratios of 0.5, 0.9, 1.0, 1.1 and 1.
2 various LiCoO TwoAnd the Mg / Co molar ratio is 0.1
(Mg addition: 10mol%)ThreeCO
O)Two・ 4HTwoO (special grade reagent) is the same as in Example 1.
Operate various LiCoMgOTwoOf powder was obtained. these
After pressure molding the powder of No. 1, the sintered body sample was processed in the same manner as in Example 1.
5-9 were obtained. In addition, as a comparative example, Li / Co molar ratio
Of LiCoO in the range of 0.4 to 1.1TwoUsing powder, Mg (CHThree
COO)Two・ 4HTwoExample except that O (special grade reagent) was not added
A sintered body sample of a comparative example was prepared in the same manner as in 1.
【0019】これらの試料に金電極を焼付けして、表1
の測定条件にしたがって直流4端子法で導電率を測定し
た。図3にこの結果を示す。図3から明らかなように、
Li/Coモル比が1より小さい場合は、Li/Coモ
ル比が小さくなるにつれ、導電率は増大する。一方、L
i/Coモル比が1以上の場合は、Li/Coモル比が
大きくなるにつれて導電率が著しく増大されて、1.2
付近で導電率の増加率が小さくなった。Gold electrodes were baked on these samples, and the results are shown in Table 1.
The electrical conductivity was measured by the direct current 4-terminal method according to the measurement conditions of. This result is shown in FIG. As is clear from FIG.
When the Li / Co molar ratio is less than 1, the conductivity increases as the Li / Co molar ratio decreases. On the other hand, L
When the i / Co molar ratio is 1 or more, the conductivity is remarkably increased as the Li / Co molar ratio increases, and
In the vicinity, the rate of increase in conductivity decreased.
【0020】これに対して、比較例では、Li/Coモ
ル比が1未満では、Li/Coモル比が小さくなるにつ
れ、実施例と同様に導電率が増大するものの、実施例に
比して低い導電率であった。また、Li/Coモル比が
1以上では、Li/Coモル比が大きくなるにつれて、
導電率が増大するが、実施例に比して低い導電率であっ
た。したがって、LiCoMgO2 におけるLi/Co
モル比は、1以上1.2以下であることが好ましく、よ
り好ましくは、1.05以上1.2以下であることが明
らかであった。On the other hand, in the comparative example, when the Li / Co molar ratio is less than 1, the conductivity increases as the Li / Co molar ratio decreases, similar to the example, but compared with the example. It had a low conductivity. Further, when the Li / Co molar ratio is 1 or more, as the Li / Co molar ratio increases,
Although the conductivity was increased, the conductivity was lower than that in the examples. Therefore, Li / Co in LiCoMgO 2
It was clear that the molar ratio was preferably 1 or more and 1.2 or less, and more preferably 1.05 or more and 1.2 or less.
【0021】(実施例3) (LiCoMgO2 の溶出性)次に、先の実施例1の試
料3と同様にして、Li1.05CoMg0.1 O2 の焼結体
試料を調製し、この試料の溶融炭酸塩中における溶出の
程度を確認するための溶出試験を行った。試験条件を表
2に示す。試験は、1気圧での、溶融塩炭酸塩(Li2
CO3 :K2 CO3 =62:38mol%)完全浸漬法
で行い、ICP発光分光分析によりCo溶出量を測定し
た。なお、比較例として、LiドープNiOについても
溶出試験を行い、Ni溶出量を測定した。(Example 3) (LiCoMgO 2 elution property) Next, a Li 1.05 CoMg 0.1 O 2 sintered sample was prepared in the same manner as the sample 3 of Example 1 above, and this sample was melted. An elution test was conducted to confirm the degree of elution in carbonate. Table 2 shows the test conditions. The test was carried out at 1 atm of molten salt carbonate (Li 2
CO 3 : K 2 CO 3 = 62: 38 mol%) The complete elution method was performed, and the amount of Co elution was measured by ICP emission spectroscopy. As a comparative example, an elution test was also performed on Li-doped NiO to measure the amount of Ni elution.
【0022】[0022]
【表2】 [Table 2]
【0023】結果は、図4に示すように、Co溶出量及
びNi溶出量は何れの場合も約 300時間で平衝に達して
いた。Li1.05CoMg0.1 O2 の溶出量は図4に点線
で示すMg無添加のLiCoO2 の溶出量と同程度であ
り、対照例であるLiドープNiOのNi溶出量の約1/
3 であった。したがって、Li1.05CoMg0.1 O2を
空気極の材料として使用すれば、溶融炭酸塩中での空気
極の溶出が抑制され、耐溶融塩性が確保されるため、細
孔構造の変化が抑制されるとともに、長期の使用に際し
ても短絡等の不都合が防止され、長時間の電池作動時間
が確保される。As a result, as shown in FIG. 4, the amount of Co elution and the amount of Ni elution reached the equilibrium level in about 300 hours in all cases. The elution amount of Li 1.05 CoMg 0.1 O 2 was about the same as the elution amount of LiCoO 2 without Mg shown by the dotted line in FIG. 4, which was about 1 / n of the elution amount of Ni of Li-doped NiO as a control example.
It was 3. Therefore, when Li 1.05 CoMg 0.1 O 2 is used as the material of the air electrode, the elution of the air electrode in the molten carbonate is suppressed and the molten salt resistance is secured, so that the change in the pore structure is suppressed. In addition, inconvenience such as short circuit is prevented even during long-term use, and a long battery operation time is secured.
【0024】[0024]
【発明の効果】本発明の溶融炭酸塩型燃料電池の空気極
材料によって空気極を形成すると、溶融炭酸塩中に溶出
しにくい耐溶融塩性に優れるとともに、導電性に優れる
空気極となる。また、本発明の空気極によれば、長時間
の作動に耐えうる溶融炭酸塩型燃料電池を形成すること
ができる。EFFECT OF THE INVENTION When an air electrode is formed from the air electrode material of the molten carbonate fuel cell of the present invention, it becomes an air electrode which is excellent in molten salt resistance which is difficult to elute in the molten carbonate and is also excellent in conductivity. Further, according to the air electrode of the present invention, it is possible to form a molten carbonate fuel cell that can withstand long-term operation.
【図1】Li1.05CoMgx O2 のMg添加量と導電率
との関係を示すグラフ図である。FIG. 1 is a graph showing the relationship between the amount of Mg added to Li 1.05 CoMg x O 2 and the electrical conductivity.
【図2】Li1.05CoMgx O2 のMg添加量とX線回
折結果を示す図である。FIG. 2 is a diagram showing a Mg addition amount of Li 1.05 CoMg x O 2 and an X-ray diffraction result.
【図3】LiCoMg0.1 O2 におけるLi/Co比と
導電率との関係を示すグラフ図である。FIG. 3 is a graph showing the relationship between the Li / Co ratio and the conductivity in LiCoMg 0.1 O 2 .
【図4】溶融炭酸塩中へのLi1.05CoMg0.1 O2 の
浸漬時間とLi1.05CoMg0. 1 O2 の溶出量との関係
を示すグラフ図である。4 is a graph showing the relationship between the immersion time of the Li 1.05 CoMg 0.1 O 2 into the molten carbonate and Li 1.05 elution amount of CoMg 0. 1 O 2.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 角岡 勉 愛知県名古屋市熱田区六野二丁目4番1号 財団法人ファインセラミックスセンター 内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tsutomu Kadooka 2-4-1 Rokuno, Atsuta-ku, Nagoya, Aichi Prefecture Fine Ceramics Center
Claims (4)
ト(Co)及びマグネシウム(Mg)を含む酸化物固溶
体からなる溶融炭酸塩型燃料電池の空気極用材料。1. A material for an air electrode of a molten carbonate fuel cell, which comprises an oxide solid solution containing lithium (Li), cobalt (Co) and magnesium (Mg) as metal elements.
空気極用材料であって、 前記酸化物固溶体におけるコバルトに対するリチウムの
モル比が1以上1.2以下であり、コバルトに対するマ
グネシウムのモル比が0.2を越えないことを特徴とす
る溶融炭酸塩型燃料電池の空気極用材料。2. The material for an air electrode of the molten carbonate fuel cell according to claim 1, wherein a molar ratio of lithium to cobalt in the oxide solid solution is 1 or more and 1.2 or less, and magnesium to cobalt is used. A material for an air electrode of a molten carbonate fuel cell, which has a molar ratio of not more than 0.2.
に、銀(Ag)、ニッケル(Ni)、銅(Cu)、又は
ストロンチウム(Sr)のうちから選ばれた1以上の金
属元素を含む酸化物固溶体からなる溶融炭酸塩型燃料電
池の空気極用材料。3. In addition to lithium (Li) and cobalt (Co), at least one metal element selected from silver (Ag), nickel (Ni), copper (Cu), or strontium (Sr) is used. A material for an air electrode of a molten carbonate fuel cell, which comprises an oxide solid solution containing.
料電池の空気極用材料を用いて形成したことを特徴とす
る溶融炭酸塩型燃料電池の空気極。4. An air electrode for a molten carbonate fuel cell, which is formed by using the material for an air electrode for a molten carbonate fuel cell according to claim 1 or 2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8017658A JPH09213345A (en) | 1996-02-02 | 1996-02-02 | Material for air electrode in fused carbonate fuel cell and air electrode |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8017658A JPH09213345A (en) | 1996-02-02 | 1996-02-02 | Material for air electrode in fused carbonate fuel cell and air electrode |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH09213345A true JPH09213345A (en) | 1997-08-15 |
Family
ID=11949956
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8017658A Pending JPH09213345A (en) | 1996-02-02 | 1996-02-02 | Material for air electrode in fused carbonate fuel cell and air electrode |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH09213345A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009120480A (en) * | 2001-08-03 | 2009-06-04 | Toda Kogyo Corp | Cobalt oxide particle powder and process for producing the same, cathode active material for non-aqueous electrolyte secondary cell and process for producing the same, and non-aqueous electrolyte secondary cell |
-
1996
- 1996-02-02 JP JP8017658A patent/JPH09213345A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009120480A (en) * | 2001-08-03 | 2009-06-04 | Toda Kogyo Corp | Cobalt oxide particle powder and process for producing the same, cathode active material for non-aqueous electrolyte secondary cell and process for producing the same, and non-aqueous electrolyte secondary cell |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW560097B (en) | Improved cathode compositions for lithium-ion batteries | |
JP5163122B2 (en) | Nickel oxide powder material for solid oxide fuel cell, method for producing the same, raw material composition used therefor, and fuel electrode material using the same | |
EP0017400A1 (en) | Electrochemical cell and method of making ion conductors for said cell | |
KR20020070495A (en) | Nonaqueous electrolyte secondary cell and positive electrode active material | |
CN104900887B (en) | Double-perovskite type intermediate temperature solid oxide fuel cell cathode material and preparation method | |
EP1912271A1 (en) | Positive electrode active material, positive electrode for nonaqueous electrolyte battery, and nonaqueous electrolyte battery | |
JP3536611B2 (en) | Positive electrode active material, method for producing the same, and lithium ion secondary battery using the same | |
KR100819718B1 (en) | Positive electrode active material for alkaline cell | |
JP2007012599A (en) | Heat-activated battery | |
US20060073390A1 (en) | Solid electrolyte | |
JPH0737591A (en) | Molten carbonate type fuel cell cathode and its melting suppressing method | |
US4564567A (en) | Electronically conductive ceramics for high temperature oxidizing environments | |
JP2000323122A (en) | Positive electrode active material for non-aqueous electrolyte secondary battery and manufacture thereof | |
JPH09213345A (en) | Material for air electrode in fused carbonate fuel cell and air electrode | |
JP2006134871A (en) | Solid electrolyte | |
JP3578503B2 (en) | Positive active material for lithium secondary battery and secondary battery using the same | |
AU2004302092B2 (en) | Alkaline battery | |
JP3121993B2 (en) | Method for producing conductive ceramics | |
JPH04219364A (en) | Lanthanum chromite-based oxide and its use | |
JPH04147570A (en) | Material of air electrode for molten carbonate fuel cell | |
JPH09295866A (en) | Mixed ion connector | |
US5510210A (en) | Solid electrolyte for sodium-sulfur secondary cell and process for preparing the same | |
JPH10233212A (en) | Electrode active material for nonaqueous battery | |
JP2002151081A (en) | Positive pole active material for non-aqueous electrolytic liquid secondary battery, its manufacturing method, and non-aqueous electrolytic liquid secondary battery | |
Wijayasinghe et al. | New cathode materials for molten carbonate fuel cells |