JPH09211117A - Movement detection radar device - Google Patents

Movement detection radar device

Info

Publication number
JPH09211117A
JPH09211117A JP8046551A JP4655196A JPH09211117A JP H09211117 A JPH09211117 A JP H09211117A JP 8046551 A JP8046551 A JP 8046551A JP 4655196 A JP4655196 A JP 4655196A JP H09211117 A JPH09211117 A JP H09211117A
Authority
JP
Japan
Prior art keywords
signal
antenna
frequency signal
high frequency
radio wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8046551A
Other languages
Japanese (ja)
Inventor
Tetsuo Adachi
哲夫 安達
Iwao Shioda
巌 潮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AIBIJIYON KK
Original Assignee
AIBIJIYON KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AIBIJIYON KK filed Critical AIBIJIYON KK
Priority to JP8046551A priority Critical patent/JPH09211117A/en
Publication of JPH09211117A publication Critical patent/JPH09211117A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a movement detection radar device wherein the electromagnetic wave of a microwave band being put to practical use for the purpose of detection of presence of a human life or guard at a disaster site is used without lowering the performance thereof due to a slight shock of the device itself. SOLUTION: The phase of a station transmitting high frequency signal 106 is modulated with a phase modulator by the use of the minute movement signal 105 of output of a tremor sensor 14 for detecting the tremor of an antenna and made a station transmitting high frequency signal 107. Thereby an unnecessary component included in a receiving high frequency signal 104 is eliminated, furthermore the unnecessary component due to the slight shock of the antenna 4 included in an output low frequency signal 109 is eliminated with a low frequency variable attenuator 13 and a low frequency adder 12 by the use of minute moving signal 105, and a low frequency signal 110 which includes only the movement of a moving electric wave reflection object 6 is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

[産業上の利用分野]この発明は主には生命の存在の検
出や警備などの目的で,マイクロ波帯域の電磁波を用い
る動き検出レーダ装置の改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement of a motion detection radar device that uses electromagnetic waves in the microwave band, mainly for the purpose of detecting the existence of life and security.

【従来の技術】マイクロ波帯域の電磁波をアンテナを用
いて放射して,アンテナのエネルギー照射空間の中にあ
る電波反射物体からの反射波を受信すると,もしその物
体が動いている場合,一般的に受信波はその周波数にド
ップラー偏移を受け,その周波数偏移を測定すれば動い
ている物体のアンテナに対する相対速度が遠隔的に観測
できるので広く応用されている。しかし動いている電波
反射体の速度が非常に遅く僅かな動きになり放射電磁波
の1/2波長内の位相変化しかない場合周波数の変化は
観測不可能になる。この場合受信機で局発送信高周波電
力を受信信号の無変調成分が消去されるように位相およ
び振幅を調整して受信信号に混合して変調された成分の
みを残して,さらに局発信号を用いて位相検波すること
により,その包絡線振幅に距離の変化に関する情報を持
った信号が得られることがChan等の報告(An X
−bandmicrowave life detec
tion system.IEEE Transact
ions on BiomedicalEnginee
ring;Vol.BME−33,No.7 July
1986)に述べられており,その信号を検出して電
波反射物体の比較的微少で緩やかな動きの検出が可能と
なる。この原理に基づいての導電体である人間の呼吸や
心臓の動悸による体表面の特徴ある振動をマイクロ波の
反射信号で検出してコンクリート壁や瓦礫など電波が透
過できる障害物に遮られた向こうの生命体の存在検出
や,患者のバイタルサインの無接触モニターリングに応
用する装置が多く提案されている。このような装置のマ
イクロ波段階および低周波段階での細部の信号処理の方
法についての種々の工夫は多く報告または提案されてい
るが,基本原理は上記に述べたとおりである。この検出
原理は結局アンテナから対象反射面までの距離の微少変
化を測定しているので,当該アンテナが微動すると,そ
の距離方向成分はそのまま出力に影響を及ぼす。火災の
現場や地震直後の現場でこの動き検出レーダ装置を生命
体検出目的で使用しようとする場合のレーダ装置では小
型のパラボラまたは同等の効果を有する構造物(検出用
電子装置と一体の場合も含めて)が一般的に用いられて
いる。このアンテナを振動,微動がないよう災害現場な
どで緊急時に確実に固定する事は非常に困難である。手
持ちか簡単な支持体に乗せて迅速に探索を行おうとする
と,人の静止の努力には限界がある。また床,地盤の振
動もあり,それらの合成信号をからほしい呼吸や心拍信
号を抽出するのは,後に述べるような各種の高度の信号
処理を出力信号に施すとしても電子装置の信号に対する
ダイナミックレンジにも限界があって実用価値にかけ
る。例えば人間の胴体正面での呼吸による振幅は高々
0.3mm程度といわれ,一方もしアンテナと装置を肩
に担いで立っている人が数mm程度振れる事は容易に想
像できる。この場合アンテナが振れる事は全反射電力が
変調をうけることであり,更に遠方の限られた面積から
の呼吸による変調波成分を充分にマスクしてしまい目的
とする信号の識別は全く不可能になる。
2. Description of the Related Art When an electromagnetic wave in the microwave band is radiated by an antenna and a reflected wave from a radio wave reflecting object in the energy irradiation space of the antenna is received, if the object is moving, the general In addition, the received wave undergoes a Doppler shift in its frequency, and if the frequency shift is measured, the relative velocity of the moving object to the antenna can be remotely observed, and is widely applied. However, if the speed of the moving radio wave reflector is very slow and becomes a slight movement, and there is only a phase change within 1/2 wavelength of the radiated electromagnetic wave, the change in frequency becomes unobservable. In this case, the receiver adjusts the phase and amplitude of the locally transmitted high frequency power so that the non-modulated component of the received signal is erased, mixes it with the received signal, and leaves only the modulated component. It is reported by Chan et al. (An X) that a signal having information about a change in distance in its envelope amplitude can be obtained by phase detection using it.
-Bandmicrowave life detec
section system. IEEE Transact
ions on BiomedicalEngine
ring; Vol. BME-33, No. 7 July
1986), it is possible to detect a relatively small and gentle movement of the radio wave reflecting object by detecting the signal. Based on this principle, the characteristic vibrations of the body surface due to human respiration and heart palpitations, which are conductors, are detected by the microwave reflection signal, and beyond the obstacles that can transmit radio waves such as concrete walls and rubble. Many devices have been proposed that are applied to the detection of the presence of other living organisms and the contactless monitoring of vital signs of patients. Many proposals have been made for various signal processing methods in the microwave stage and low-frequency stage of such an apparatus, but the basic principle is as described above. Since this detection principle after all measures a slight change in the distance from the antenna to the target reflection surface, if the antenna moves slightly, the component in the distance direction directly affects the output. When you want to use this motion detection radar device for the purpose of detecting living things at the scene of fire or immediately after the earthquake, the radar device is a small parabola or a structure with the same effect (even if it is integrated with the detection electronic device. (Including) is commonly used. It is extremely difficult to securely fix this antenna in an emergency such as a disaster site so that it will not vibrate or move. There is a limit to a person's stationary effort when trying to search quickly by carrying it on a hand-held or simple support. In addition, there is vibration of the floor and the ground, and the desired respiratory and heartbeat signals are extracted from the combined signals of them, even if various advanced signal processing as described later is applied to the output signal. However, there is a limit to the practical value. For example, it is said that the amplitude due to respiration in front of the human torso is about 0.3 mm at the most, while it can be easily imagined that a person standing with the antenna and the device on his shoulder swings about several mm. In this case, the fact that the antenna fluctuates means that the total reflection power undergoes modulation, and furthermore, the modulated wave component due to respiration from a distant limited area is sufficiently masked, making it impossible to identify the target signal. Become.

【発明が解決しようとする課題】この動き検出レーダ装
置の振動に弱い欠点を補う方法をこの発明では解決す
る。
SUMMARY OF THE INVENTION The present invention solves the method of compensating for the weakness of the motion detecting radar device which is weak against vibration.

【課題を解決するための手段】図において,アンテナ4
の微動を検出する揺れセンサ14をアンテナ4に取り付
けて,揺れセンサ14の出力の微動信号105を用い
て,受信高周波信号104に混合する無変調の局発高周
波信号106の位相を位相変調器15で更に変調して局
発高周波信号107としておくことにより,アンテナ4
の微動が静止電波反射物体5からの反射成分102を変
調して発生する受信高周波信号104に含まれる不要成
分を消去して出力低周波信号109を得て,更にアンテ
ナ4の微動が動きのある電波反射物体6からの反射成分
103を変調して発生し出力低周波信号109に含まれ
る不要成分をアンテナ4の微動信号105を低周波可変
減衰器13を通して振幅を調整し極性を反転して低周波
加算器12を用いて出力低周波信号109に加える事に
より消去して動きのある電波反射物体6の動きの低周波
信号110を得る。 [作用]無変調反射電波成分102を消去するための局
発高周波信号106を,位相変調器15でアンテナ4の
微動信号105を用いて,無変調反射電波102へのア
ンテナ4の揺れによる変調がちょうど打ち消されるよう
になるように予め装置の調整時に設定しておく事によ
り,アンテナ4の揺れによる静止電波反射物体5からの
反射電力102による受信高周波信号104に含まれる
変調成分は継続的に消去され 求めている動きのある電
波反射物体6からの反射電波103から得られる動きの
出力低周波信号109が選択的に得られる。さらに動き
のある電波反射物体6からの反射電力103にも及んで
いるアンテナ4の揺れによる変調のために出力低周波信
号109に含まれるアンテナ4の微動成分もアンテナ4
の微動信号105を低周波可変減衰器13を用いて振幅
を調整し極性を反転して低周波加算器12で出力低周波
信号109に加える事により除去できる。 [実施例]図は本発明による動き検出レーダ装置の構成
の例である。この構成はChen等による方式とほとん
ど同じ構成であり,図中のアンテナ4に固定する揺れ検
出センサ14,その信号を用いる位相変調器15,低周
波可変減衰器13,および低周波加算器12が含まれる
点が異なっている。以下この動作を説明する。位相を安
定化した高周波発振器1は1〜10GHz程度のマイク
ロ波連続波電力を発生する。この周波数の選択は使用目
的,環境によって使い分ける。例えば対象探索空間を限
定して非常に小さな動きまで検出したい場合,比較的高
い周波数を選ぶべきであるし,探索空間を大きく遠く想
定する場合,伝搬損失の少ない低い周波数を選ぶ。この
高周波電力を,後に述べる目的に使用するために高周波
方向性結合器2で一部分割して,主たる電力はサーキュ
レータ3を経由してマイクロ波用のアンテナ4に結合し
て探索対象空間に放射する。アンテナ4に探索空間から
反射して返ってくる成分は静止電波反射物体5(例えば
静止している自動車など金属物体)からの反射波の成分
102と,探索空間にある動きのある電波反射物体6
(例えば人がいてその体表が呼吸で動いている)に反射
して返ってくる成分103がある。後者はその動きによ
って位相変調を受けている。これらの反射成分102お
よび103はまとめてサーキュレータ3を通って高周波
方向性結合器7の入力ポートのひとつに受信高周波信号
104として入力される。一方,高周波発振器1の高周
波方向性結合器2からの分割成分111は反射受信電力
のうち静止電波反射物体5からの反射電力102に対応
する成分を打ち消す目的のものである。信号111は高
周波方向性結合器16を通過してから高周波可変減衰器
8及び高周波可変位相偏移器9で振幅および位相を調整
されて局発高周波信号106となり,更に本発明で必要
なアンテナ4の揺れに相当する位相変調を与える位相変
調器15を経由して局発高周波信号107として高周波
方向性結合器7のもうひとつの入力ポートに入力され
る。アンテナ4が静止して揺れがない場合,この分割高
周波成分111は静止電波反射物体5からの受信反射成
分102の振幅に等しくかつ位相が反転しているように
高周波可変減衰器8および高周波可変位相偏移器9で調
整されて局発高周波信号106となる。本発明で必要と
なる位相変調器15ではアンテナ4が静止している場合
は局発高周波信号106はなんら変調を加えられる事な
く局発高周波信号107として高周波方向性結合器7に
加えられる。従って高周波方向性結合器7で静止電波反
射物体5からの反射入力102の成分は消去さ札 動き
のある電波反射体6からの動きによる変調を受けた受信
高周波信号108のみが残留して高周波方向性結合器7
の出力として得られることになる。アンテナ4が揺れて
いる場合,静止電波反射物体5からの受信反射成分10
2も動きのある電波反射体6からの成分103も同じよ
うにアンテナ4の揺れによる変調を受けている。このこ
とに対応して位相変調器15はアンテナ4の揺れの量に
相当する揺れセンサ14からの微動信号105により前
記分割された局発高周波信号106をさらに変調する。
その変調の深さの設定は,あらかじめ装置を運転した状
態で電波を静止電波反射物体5に反射させながらアンテ
ナ4に静止している対象電波反射物体102の方向に振
動を与えた状態で,方向性結合器6の出力がゼロになる
ように調整するのが現実的である。このように位相変調
器15の変調深度を設定しておく事により,,アンテナ
4が動いても探索空間で無変調で反射されてきた成分に
ついては方向性結合器6の出力で消去される。アンテナ
4の揺れを検出する揺れセンサ14の例としては加速度
センサで加速度を測定して積分する方式がある。補償し
たいアンテナ4の揺れの例としては物を支えて立ってい
る人の僅かな揺れや,建物の中でのエレベータの動きに
伴う床の揺れ,コンプレッサ等大型回転機の振動などで
比較的低周波の小振幅の揺れである。残留した動きのあ
る電波反射物体6から変調を受けた受信高周波信号10
8は必要により高周波増幅器10で増幅されてからダブ
ルバランスドミキサ11に入力される。ダブルバランス
ドミキサ11のレファレンス信号はまた高周波発振器1
の出力を高周波方向性結合器16で分割した連続波11
2を用いる。タブルバランスドミキサ11の出力低周波
成分は動きのある電波反射物体6の動きに対応する目的
の出力低周波信号109である。しかしアンテナ4が揺
れている場合は動きのある電波反射物体6からの受信電
波103も同時にアンテナ4の揺れで変調されており,
出力低周波信号109にはアンテナ4の動きが合算され
ており,探索空間での人間の呼吸などの動きに混入し識
別を困難にする。しかしこの場合は低周波での混入であ
るから,フィルタリングや周波数解析等の処理を行う事
により目的の信号を選択的に摘出できる可能性がある。
しかしこのシステムではアンテナ4の揺れ信号が利用で
きるのでさらに信号対雑音比を改善できる。すなわち低
周波のアンテナ4の微動信号105の振幅を,出力低周
波信号109に現れるアンテナ4の動きのみの場合の振
幅と等しくなるよう低周波可変減衰器13で予め調整し
ておき,低周波加算器12で位相反転して加える事によ
りアンテナ4の揺れは消去され動きのある電波反射物体
6の動きの低周波信号110が得られる。 [発明のの効果]以上のような動作により動き検出レー
ダ装置自体(厳密にはそのアンテナ)の揺れで変調され
た高周波成分を選択的に消去したあと,更に得られる出
力低周波信号109においてもアンテナ4の揺れ信号を
用いての信号処理によって,探索空間の中で発生してい
る動きを信号対雑音比よく抽出する事が可能になる。動
き検出レーダ装置を火災発生現場や地震発生後の被災現
場で煙にまかれて倒れている人や,瓦礫の下の人を検出
するためにいざ使用に際して,従来の動き検出レーダ装
置では揺れのない床を探し,三脚などのしっかりした支
持台を用意して固定しなければならず緊急の用に使えな
い恐れがあるが,本発明による動き検出レーダ装置であ
れば,救急隊の人が手持ちですぐに短時間で使用開始可
能であり,たとえこの方法が人命発見の万能の方法でな
くても,迅速かつ救急要員の安全面から利点で,他の方
法との補完の形での使用に大きな意味を持ち得る。本発
明の内容はもちろん人命発見を目的とする装置だけでは
なくマイクロ波を用いる動き検出装置を他の目的で使う
場合も同様な原理で活用可能であり,本発明の請求範囲
に含まれる。一例としては,動き検出レーダ装置を,軌
道上を走行中の車両から軌道とプラットホームやトンネ
ルの壁の距離を測定する目的にこの装置を応用するとき
に,本発明の原理を用いて測定開始点で停止時に初期距
離値の認識後に,車両上の測定用アンテナが走行中に大
地に対して相対的に揺れる誤差を連続的に補正し続ける
事が可能になる。最近のマイクロエレクトロニクス素子
を利用する事によりマイクロ波部分を含む装置全体は一
人で持ち操作できる可搬型が可能であり,其の場合に本
発明が特に有効となる。
In the figure, an antenna 4 is shown.
The shake sensor 14 for detecting the slight movement of the sensor is attached to the antenna 4, and the fine movement signal 105 output from the shake sensor 14 is used to change the phase of the unmodulated local high frequency signal 106 mixed with the received high frequency signal 104 into the phase modulator 15 By further modulating the signal with the local high frequency signal 107, the antenna 4
Of the stationary radio wave reflecting object 5 modulates the reflected component 102 to generate an output low-frequency signal 109 by eliminating unnecessary components included in the received high-frequency signal 104, and the fine movement of the antenna 4 causes movement. The unnecessary component contained in the output low frequency signal 109 generated by modulating the reflected component 103 from the radio wave reflecting object 6 is adjusted by adjusting the amplitude of the fine motion signal 105 of the antenna 4 through the low frequency variable attenuator 13 and inverting the polarity to reduce the amplitude. The low frequency signal 110 of the moving low frequency signal 110 of the radio wave reflecting object 6 is obtained by erasing by adding to the output low frequency signal 109 using the frequency adder 12. [Operation] The local high frequency signal 106 for eliminating the unmodulated reflected radio wave component 102 is modulated by the phase modulator 15 using the fine movement signal 105 of the antenna 4 by the vibration of the antenna 4 to the unmodulated reflected radio wave 102. The modulation component contained in the received high frequency signal 104 due to the reflected power 102 from the stationary radio wave reflecting object 5 due to the shaking of the antenna 4 is continuously erased by setting in advance when the device is adjusted so that it is just canceled. The output low-frequency signal 109 of the motion obtained from the reflected radio wave 103 from the radio wave reflecting object 6 having the desired motion is selectively obtained. Further, the fine movement component of the antenna 4 included in the output low-frequency signal 109 is also included in the output low-frequency signal 109 due to the modulation due to the shake of the antenna 4 that reaches the reflected power 103 from the moving radio wave reflecting object 6.
The fine movement signal 105 can be removed by adjusting the amplitude using the low frequency variable attenuator 13, reversing the polarity, and adding it to the output low frequency signal 109 by the low frequency adder 12. [Embodiment] FIG. 1 is an example of the configuration of a motion detection radar device according to the present invention. This configuration is almost the same as the system by Chen et al., And the shake detection sensor 14 fixed to the antenna 4 in the figure, the phase modulator 15 using the signal, the low frequency variable attenuator 13, and the low frequency adder 12 are The difference is that it is included. Hereinafter, this operation will be described. The phase-stabilized high frequency oscillator 1 generates microwave continuous wave power of about 1 to 10 GHz. This frequency is selected according to the purpose of use and environment. For example, if the target search space is limited to detect very small movements, a relatively high frequency should be selected, and if a large search space is assumed, a low frequency with a small propagation loss is selected. This high frequency power is partially divided by the high frequency directional coupler 2 for use for the purpose described later, and the main power is coupled to the microwave antenna 4 via the circulator 3 and radiated to the space to be searched. . The component reflected back from the search space to the antenna 4 is the component 102 of the reflected wave from the stationary radio wave reflecting object 5 (for example, a stationary metal object such as a car) and the moving radio wave reflecting object 6 in the search space.
There is a component 103 that is reflected back to (for example, a person is present and their body surface is moving due to breathing). The latter is subject to phase modulation due to its movement. These reflection components 102 and 103 are collectively input as a received high frequency signal 104 to one of the input ports of the high frequency directional coupler 7 through the circulator 3. On the other hand, the divided component 111 from the high-frequency directional coupler 2 of the high-frequency oscillator 1 is for canceling the component of the reflected received power corresponding to the reflected power 102 from the stationary radio wave reflecting object 5. The signal 111 passes through the high frequency directional coupler 16 and is then adjusted in amplitude and phase by the high frequency variable attenuator 8 and the high frequency variable phase shifter 9 to become a local high frequency signal 106, and further, the antenna 4 required in the present invention. A local oscillator high-frequency signal 107 is input to the other input port of the high-frequency directional coupler 7 via a phase modulator 15 that provides a phase modulation corresponding to the fluctuation of the signal. When the antenna 4 is stationary and does not swing, the high frequency variable attenuator 8 and the high frequency variable phase are such that the divided high frequency component 111 is equal to the amplitude of the reflection component 102 received from the stationary radio wave reflecting object 5 and the phase is inverted. The local high frequency signal 106 is adjusted by the shifter 9. In the phase modulator 15 required in the present invention, when the antenna 4 is stationary, the locally generated high frequency signal 106 is added to the high frequency directional coupler 7 as the locally generated high frequency signal 107 without any modulation. Therefore, the component of the reflected input 102 from the stationary radio wave reflecting object 5 is erased by the high frequency directional coupler 7, and only the received high frequency signal 108 which is modulated by the movement from the moving radio wave reflecting body 6 remains and the high frequency direction is left. Sex coupler 7
Will be obtained as output. When the antenna 4 is shaking, the reception reflection component 10 from the stationary radio wave reflection object 5
Similarly, the component 103 from the radio wave reflector 6 in which 2 is moving is also modulated by the vibration of the antenna 4. In response to this, the phase modulator 15 further modulates the divided local high frequency signal 106 by the fine movement signal 105 from the shake sensor 14 corresponding to the amount of shake of the antenna 4.
The depth of the modulation is set in the direction in which the radio wave is reflected toward the stationary radio wave reflecting object 5 while the device is operating in advance and vibration is applied to the target radio wave reflecting object 102 which is stationary on the antenna 4. It is realistic to adjust so that the output of the sex coupler 6 becomes zero. By setting the modulation depth of the phase modulator 15 in this way, even if the antenna 4 moves, the component reflected without modulation in the search space is erased by the output of the directional coupler 6. An example of the shake sensor 14 that detects the shake of the antenna 4 is a method of measuring acceleration by an acceleration sensor and integrating the acceleration. Examples of the shake of the antenna 4 to be compensated are relatively low due to a slight shake of a person who supports the object, a shake of the floor due to the movement of the elevator in the building, and a vibration of a large rotating machine such as a compressor. It is a small amplitude swing of the frequency. Received high frequency signal 10 modulated from the remaining moving radio wave reflecting object 6
8 is amplified by the high frequency amplifier 10 if necessary, and then input to the double balanced mixer 11. The reference signal of the double balanced mixer 11 is also the high frequency oscillator 1
Of the continuous wave 11 obtained by dividing the output of
2 is used. The output low-frequency component of the table balanced mixer 11 is the output low-frequency signal 109 for the purpose of corresponding to the movement of the moving radio wave reflecting object 6. However, when the antenna 4 is shaking, the received radio wave 103 from the moving radio wave reflecting object 6 is also modulated by the shaking of the antenna 4 at the same time,
The output low-frequency signal 109 includes the movement of the antenna 4 and is mixed with the movement such as human breathing in the search space to make identification difficult. However, in this case, since the signals are mixed in at a low frequency, it is possible that the target signal can be selectively extracted by performing processing such as filtering and frequency analysis.
However, since the swing signal of the antenna 4 can be used in this system, the signal-to-noise ratio can be further improved. That is, the amplitude of the low-frequency antenna 4 fine movement signal 105 is adjusted in advance by the low-frequency variable attenuator 13 so as to be equal to the amplitude of only the movement of the antenna 4 appearing in the output low-frequency signal 109, and the low-frequency addition is performed. By inverting and adding the phase in the device 12, the sway of the antenna 4 is eliminated and the low frequency signal 110 of the motion of the moving radio wave reflecting object 6 is obtained. [Effects of the Invention] By the operation as described above, the high-frequency component modulated by the vibration of the motion detection radar device itself (strictly speaking, its antenna) is selectively erased, and then the output low-frequency signal 109 is further obtained. The signal processing using the swing signal of the antenna 4 makes it possible to extract the motion occurring in the search space with a good signal-to-noise ratio. When using the motion detection radar device to detect people who have fallen over in the smoke or in the stricken area after an earthquake due to smoke, or people under the rubble, the conventional motion detection radar device may cause sway. There is a risk that it cannot be used for emergencies because it is necessary to find a non-existent floor and prepare and fix a solid support stand such as a tripod. However, the motion detection radar device according to the present invention can be carried by an ambulance crew. Therefore, even if this method is not a universal method for finding lives, it has the advantage of being quick and of the safety of emergency personnel, and can be used as a complementary method to other methods. It can have a big meaning. The contents of the present invention are of course applicable not only to the device for the purpose of finding a human life but also to the case where the motion detecting device using the microwave is used for other purposes, based on the same principle and included in the scope of the claims of the present invention. As an example, when a motion detection radar device is applied to the purpose of measuring the distance between a vehicle running on the track and the track and the wall of the platform or tunnel, a measurement starting point is applied using the principle of the present invention. Thus, after the initial distance value is recognized when the vehicle is stopped, it is possible to continuously correct the error in which the measuring antenna on the vehicle shakes relative to the ground during traveling. By using recent microelectronic elements, the entire device including the microwave portion can be carried and operated by one person, and in this case, the present invention is particularly effective.

【図面の簡単な説明】[Brief description of drawings]

【図】本発明による動き検出レーダ装置の構成図。FIG. 1 is a configuration diagram of a motion detection radar device according to the present invention.

【符号の説明】[Explanation of symbols]

1.高周波発振器 2.高周波方向性結合器 3.サーキュレータ 4.アンテナ 5.静止電波反射体 6.動きのある電波反射体 7.高周波方向性結合器 8.高周波可変減衰器 9.高周波可変位相偏移器 10.高周波増幅器 11.ダブルバランスドミキサ 12.低周波加算器 13.低周波可変減衰器 14.揺れセンサ 15.高周波位相変調器 16.高周波方向性結合器 104.受信高周波信号 105.アンテナ4の微動信号 106.局発高周波信号 107.局発高周波信号 108.受信高周波信号 109.出力低周波出力 110.動きの低周波出力 1. High frequency oscillator 2. High frequency directional coupler 3. Circulator 4. Antenna 5. Stationary radio wave reflector 6. Moving radio wave reflector 7. High frequency directional coupler 8. High frequency variable attenuator 9. High frequency variable phase shifter 10. High frequency amplifier 11. Double balanced mixer 12. Low frequency adder 13. Low frequency variable attenuator 14. Shake sensor 15. High frequency phase modulator 16. High frequency directional coupler 104. Received high frequency signal 105. Fine motion signal of antenna 4 106. Local high frequency signal 107. Local high frequency signal 108. Received high frequency signal 109. Output low frequency output 110. Low frequency output of movement

Claims (1)

【特許請求の範囲】[Claims] 図に示す公知の動き検出レーダ装置において,アンテナ
4の微動を検出する揺れセンサ14をアンテナ4に取り
付けて,揺れセンサ14の出力の微動信号105を用い
て,受信信号104に混合する無変調の局発高周波信号
106の位相を位相変調器15で更に変調して局発高周
波信号107としておくことにより,アンテナ4の微動
が静止電波反射物体5からの反射成分102を変調して
発生する受信高周波信号104に含まれる不要成分を消
去して出力低周波信号109を得て,更にアンテナ4の
微動が動きのある電波反射物体6からの反射成分103
を変調して発生し出力低周波信号109に含まれる不要
成分をアンテナ4の微動信号105を低周波可変減衰器
13を通して振幅を調整し極性を反転して低周波加算器
12を用いて出力低周波信号109に加える事により消
去して動きのある電波反射物体6の動きの低周波信号1
10を得る事を特徴とする動き検出レーダ装置。
In the well-known motion detection radar device shown in the figure, a shake sensor 14 for detecting fine movement of the antenna 4 is attached to the antenna 4, and a fine movement signal 105 output from the shake sensor 14 is used to mix the received signal 104 with an unmodulated signal. By further modulating the phase of the local oscillator high-frequency signal 106 with the phase modulator 15 and setting it as the local oscillator high-frequency signal 107, the reception high frequency generated by the fine movement of the antenna 4 modulating the reflection component 102 from the stationary radio wave reflecting object 5. The unnecessary component contained in the signal 104 is eliminated to obtain the output low-frequency signal 109, and the reflected component 103 from the radio wave reflecting object 6 in which the fine movement of the antenna 4 is moving.
The unnecessary component contained in the output low-frequency signal 109 is modulated by the low-frequency variable attenuator 13 to adjust the amplitude, and the polarity is inverted. Low-frequency signal 1 of the motion of the radio wave reflecting object 6 which is deleted by adding to the frequency signal 109 to move
A motion detection radar device characterized by obtaining 10.
JP8046551A 1996-01-29 1996-01-29 Movement detection radar device Pending JPH09211117A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8046551A JPH09211117A (en) 1996-01-29 1996-01-29 Movement detection radar device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8046551A JPH09211117A (en) 1996-01-29 1996-01-29 Movement detection radar device

Publications (1)

Publication Number Publication Date
JPH09211117A true JPH09211117A (en) 1997-08-15

Family

ID=12750464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8046551A Pending JPH09211117A (en) 1996-01-29 1996-01-29 Movement detection radar device

Country Status (1)

Country Link
JP (1) JPH09211117A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014512526A (en) * 2011-03-11 2014-05-22 トータルフェルスバレッツ フォルスクニングスインスティテュート Method and apparatus for searching through collapsed ground
CN104698455A (en) * 2013-12-06 2015-06-10 北京天必达科技有限公司 Radar life detection system and method
JP2019531566A (en) * 2016-08-31 2019-10-31 陳 凱柏 Smart type home security device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014512526A (en) * 2011-03-11 2014-05-22 トータルフェルスバレッツ フォルスクニングスインスティテュート Method and apparatus for searching through collapsed ground
CN104698455A (en) * 2013-12-06 2015-06-10 北京天必达科技有限公司 Radar life detection system and method
JP2019531566A (en) * 2016-08-31 2019-10-31 陳 凱柏 Smart type home security device

Similar Documents

Publication Publication Date Title
Peng et al. A portable FMCW interferometry radar with programmable low-IF architecture for localization, ISAR imaging, and vital sign tracking
CA2181680C (en) Method of and apparatus for detecting living bodies
US7639178B1 (en) System and method for detecting receivers
Kiriazi et al. Dual-frequency technique for assessment of cardiopulmonary effective RCS and displacement
JP2001525925A (en) A method for finding the position of a living body and a microwave probe using the same
JPH07151854A (en) Portable radar for detecting obstacle penetrating motion
US6633254B1 (en) Self-modulating remote moving target detector
CA2568842A1 (en) Uwb location system for rescuing avalanche victims
CN104459688A (en) Life form detection processing method and apparatus, and terminal
JPH09211117A (en) Movement detection radar device
US11397241B2 (en) Radio frequency life detection radar system
JP7106734B1 (en) Frequency modulated continuous wave radar system and its identity and information detection method
US20060210102A1 (en) Local telemetry device and method
JPH02228139A (en) Inter-moving body conceal communication equipment
Nguyen Techniques to Leverage RF Signals for Context Sensing
Zhao et al. A life-detection system for special rescuing robots
JP3533260B2 (en) Wave period detector
JPH0593778A (en) Synthetic aperture radar device
CN218824702U (en) Rescue system based on unmanned aerial vehicle
JPH09230038A (en) Electronic monitoring device
JPH09230059A (en) Organism detecting method using millimeter wave
Cruz et al. Rubble-penetrating S-band Life Detector using a Software-Defined Radio
JPH01267486A (en) Speed measuring device incorporated in data transmission apparatus
Ishmael Non-Contact Physiological Signal Sensing System Based on Doppler Radar and Communication System
Donà Frequency Hopped UWB radar for through-the-wall breathing detection and area surveillance tracking