JPH09210942A - Particle/mist measuring device - Google Patents

Particle/mist measuring device

Info

Publication number
JPH09210942A
JPH09210942A JP2131096A JP2131096A JPH09210942A JP H09210942 A JPH09210942 A JP H09210942A JP 2131096 A JP2131096 A JP 2131096A JP 2131096 A JP2131096 A JP 2131096A JP H09210942 A JPH09210942 A JP H09210942A
Authority
JP
Japan
Prior art keywords
duct
particles
salt
mist
fan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2131096A
Other languages
Japanese (ja)
Inventor
Shigeru Nakamura
茂 中村
Naoyuki Mitsusaka
直行 三坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2131096A priority Critical patent/JPH09210942A/en
Publication of JPH09210942A publication Critical patent/JPH09210942A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To establish a stable sea salt particle attaching efficiency by equipping a duct with a rotating mechanism to work in pursuit after the wind direction, capturing sea salt particles into this duct using a fan fitted with a revolving speed controller, and attaching the particles in a constant flow speed field to a column fixed to the inside of the duct. SOLUTION: A duct 21 is moved as facing in the wind direction by a tail blade 34 and a rotating mechanism 32, wherein the blade 34 is furnished in the rear of the duct 21. A flow field is given to the inside of the duct 21 by a suction fan 26, so that sea salt particles 23 are introduced into the duct 21. The particles 23 are attached to a column 24 installed in the duct 21 by the inertial force. The flow speed in the duct is held constant by a revolving speed controller 27 for the suction fan 26. After a certain time, the column 24 is removed, followed by washing with fresh water. The electric conductivity of this fresh water is measured by a conductivity meter, and from the measuring results, the salt content of the fresh water is determined. From the obtained salt content, the amount of salt attachment per unit area is calculated, and the aerial salt concentration is presumed using the attaching efficiency.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は粒子・ミスト計測
装置に関し、特に大気中の粒子・ミストを計測する装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a particle / mist measuring device, and more particularly to a device for measuring particle / mist in the atmosphere.

【0002】[0002]

【従来の技術】周知の如く、大気中には多種・多様の粒
子・ミストが存在するが、これらの粒子・ミストの中に
は環境に悪影響を与えるものがある。例えば、海洋から
発生する海塩粒子は、送電線や発電所の開閉所の碍子の
部分に付着すると、電気絶縁がおびやかされると共に屋
外機器等に付着すると錆の発生につながり耐久性を損な
う。また、冷却塔から排出される水蒸気ミストが周辺樹
木に付着し、冬場の寒冷時は樹木が凍結する恐れもあ
る。
2. Description of the Related Art As is well known, there are various kinds of particles and mists in the atmosphere, and some of these particles and mists adversely affect the environment. For example, when sea salt particles generated from the ocean adhere to the power line or the insulator of the switchgear of a power plant, the electrical insulation is impaired, and if it adheres to outdoor equipment or the like, rust is generated and the durability is impaired. In addition, steam mist discharged from the cooling tower may adhere to the surrounding trees, and the trees may freeze during cold weather in winter.

【0003】以下、海塩粒子の例について従来の計測方
法を述べる。前述したように、海塩粒子の碍子への付着
は無視できないものがあり、特に台風等の強風時には多
量の海塩粒子が付着するため、その汚損に耐える設計が
必要となる。信頼性が高く、経済的な屋外機器(送電線
や開閉所)を建設するためには、的確な碍子への海塩粒
子(塩分)付着量の推定が要求される。この推定方法と
して、流体力学を基礎とした数値計算や実際に野外大気
中の海塩粒子を計測する方法が挙げられる。
A conventional measuring method for sea salt particles will be described below. As described above, the adhesion of sea salt particles to the insulator is not negligible, and a large amount of sea salt particles adhere, especially during strong winds such as typhoons, and therefore a design that can withstand the contamination is required. In order to build reliable and economical outdoor equipment (transmission lines and switchyards), it is necessary to accurately estimate the amount of sea salt particles (salt) deposited on the insulator. As the estimation method, there are a numerical calculation based on fluid dynamics and a method of actually measuring sea salt particles in the outdoor atmosphere.

【0004】図2は海塩粒子の発生,輸送(飛散),付
着のメカニズムを示した概念図である。図中の符番1は
風、符番2は海洋上(外洋)の白波現象、符番3は防波
堤4の破砕現象、符番5は白波現象2,破砕現象3で発
生した海塩粒子、符番6は屋外機器(ボイラハウス,煙
突,タービンハウス)、符番7は開閉所、符番8は送電
線を示す。
FIG. 2 is a conceptual diagram showing the mechanism of generation, transportation (scattering) and adhesion of sea salt particles. In the figure, reference numeral 1 is the wind, reference numeral 2 is the white wave phenomenon on the ocean (open sea), reference numeral 3 is the breakage phenomenon of the breakwater 4, reference numeral 5 is the sea salt particles generated in the white wave phenomenon 2 and the breakage phenomenon 3, Reference numeral 6 indicates outdoor equipment (boiler house, chimney, turbine house), reference numeral 7 indicates an opening / closing station, and reference numeral 8 indicates a transmission line.

【0005】強風時には外洋において白波が発生し、そ
の際、海塩粒子も発生する。また、海岸線の防波堤4に
波が打ちつけられて波が砕ける白波現象3も発生する。
これらの現象によって発生した海塩粒子5は風1によっ
て陸上へ輸送され、開閉所7や送電線8の碍子の部分に
付着したり、あるいは屋外機器6へ付着する。この結
果、電気絶縁をおびやかしたり、錆の発生を引き起こ
し、機器の耐久性が損なわれる。
During strong winds, white waves are generated in the open sea, and sea salt particles are also generated at that time. In addition, a white wave phenomenon 3 occurs in which a wave is struck on a breakwater 4 on the coastline and the wave breaks.
The sea salt particles 5 generated by these phenomena are transported to the land by the wind 1 and adhere to the switch part 7 and the insulator part of the power transmission line 8 or adhere to the outdoor equipment 6. As a result, the electrical insulation is impaired, rust is generated, and the durability of the device is impaired.

【0006】図3は、海塩粒子の塩分付着量の計測方法
について示した図である。この方法は、気中塩分濃度
(Ci)を推定するためや、あるいは実際の機器及び碍
子への付着量を推定するためのものであるが、通常は気
中塩分濃度(Ci)が分かれば、機器及び碍子への付着
量は数値計算によって簡単に求められる。ここでは、気
中塩分濃度の推定方法ついて述べる。図3中の符番9は
海塩粒子5を付着させる円柱、符番10は円柱9を支持す
る支持材、符番11はこの支持材を支持する鉛直方向のサ
ポート、符番12はベース、符番13は風向・風速計、符番
14はこの風向・風速計13に信号ケーブル15を介して接続
する指示計、符番16はベース、符番17は地盤を示す。
FIG. 3 is a diagram showing a method of measuring the amount of salt adhering to sea salt particles. This method is for estimating the air salt concentration (Ci), or for estimating the amount attached to the actual equipment and the insulator. Normally, if the air salt concentration (Ci) is known, The amount adhered to the device and the insulator can be easily obtained by numerical calculation. Here, a method for estimating the atmospheric salt concentration will be described. In FIG. 3, reference numeral 9 is a cylinder to which the sea salt particles 5 are attached, reference numeral 10 is a support member for supporting the cylinder 9, reference numeral 11 is a vertical support for supporting this support material, reference numeral 12 is a base, Reference numeral 13 is the wind direction and anemometer, reference numeral
Reference numeral 14 is an indicator connected to the wind direction / anemometer 13 via a signal cable 15, reference numeral 16 is a base, and reference numeral 17 is a ground.

【0007】海塩粒子5は、風1によって空気中を飛散
しながらその慣性力によって円柱9(直径D)に付着す
る。一定時間(T秒)経過後、この円柱9を取り外して
純粋で洗浄する。この純水の電気伝導度を伝導度計で測
定し、その測定結果から純水中の塩分量(qグラム)を
求める。この塩分量を円柱9の表面積(Sm2 )で割
り、単位時間,単位面積当たりの円柱9への塩分付着量
W(=q/S・T)(g・m-2sec-1)を計算する。
The sea salt particles 5 are scattered in the air by the wind 1 and adhere to the cylinder 9 (diameter D) by the inertial force. After a certain time (T seconds) has elapsed, the cylinder 9 is removed and washed with pure water. The electric conductivity of this pure water is measured with a conductivity meter, and the amount of salt (q grams) in the pure water is obtained from the measurement result. This amount of salt is divided by the surface area (Sm 2 ) of the cylinder 9 to calculate the amount W (= q / S · T) of salt adhering to the cylinder 9 per unit time and unit area (g · m −2 sec −1 ). To do.

【0008】円柱に付着する粒子の付着効率(η)は、
理論計算及び野外実測から図4に示す付着効率曲線に従
うことが確認されている。ここで、図4の縦軸は付着効
率を、縦横軸はパラメータを示す。横軸のパラメータ
(f)は次式で定義される。
The adhesion efficiency (η) of particles adhering to a cylinder is
It has been confirmed from theoretical calculations and field measurements that the adhesion efficiency curve shown in FIG. 4 is followed. Here, the vertical axis in FIG. 4 represents the adhesion efficiency, and the vertical and horizontal axes represent the parameters. The parameter (f) on the horizontal axis is defined by the following equation.

【0009】f=D/U・dp2 (sec・m-2) ここで、Dは円柱の直径、Uは円柱付近の流速、dp は
粒子直径である。D,dp は既知であるから、風速Uを
測定することにより付着効率(η)は求められる。風速
Uは、円柱9の近辺に設けられた風向・風速計13により
測定されたデータを用いる。一方、気中塩分濃度(C
i)と塩分付着量(W)との関係は次式で表される。
F = D / U · dp 2 (sec · m −2 ) where D is the diameter of the cylinder, U is the flow velocity near the cylinder, and dp is the particle diameter. Since D and dp are known, the adhesion efficiency (η) can be obtained by measuring the wind speed U. The wind speed U uses the data measured by the wind direction and anemometer 13 provided near the cylinder 9. On the other hand, the airborne salt concentration (C
The relationship between i) and the amount of deposited salt (W) is expressed by the following equation.

【0010】W=U・Ci・η/π ここで、Uは風速、ηは付着効率、πは円周率である。
したがって、塩分付着量(W)と風速(U)と付着効率
(η)が分かれば気中塩分濃度(Ci)を推定すること
ができる。気中塩分濃度(Ci)は次式で表される。
W = UCiη / π where U is the wind speed, η is the adhesion efficiency, and π is the circular constant.
Therefore, if the salt adhesion amount (W), the wind speed (U) and the adhesion efficiency (η) are known, the air salt concentration (Ci) can be estimated. The air salt concentration (Ci) is represented by the following equation.

【0011】Ci=W・π/U・η また、海岸線付近の鉛直方向の円柱の塩分付着(W)を
測定することにより、これらの気中塩分濃度(Ci)分
布から、海洋および防波堤から発生した海塩粒子(塩
分)発生量(Q)を求めることができる。この発生量
(Q)は数値計算を行う場合、重要なデータとなる。
Ci = W · π / U · η In addition, by measuring the salt adhesion (W) of a vertical cylinder near the coastline, it is possible to calculate the salt concentration (Ci) distribution in the air from these oceans and breakwaters. The generated amount (Q) of sea salt particles (salt content) can be obtained. This amount (Q) becomes important data when performing numerical calculation.

【0012】[0012]

【発明が解決しようとする課題】円柱への塩分付着量
(w)及び付着効率(η)を求めることにより、気中塩
分濃度(Ci)を推定することができるが、付着効率
(η)及び気中塩分濃度(Ci)のパラメータに風速
(U)が用いられる。この風速(U)は円柱付近に設け
らた風向・風速計により測定したデータを用いるが、野
外ではこの風速は時間経過と共に変化するケースが多
い。従来は、塩分付着量を計測した時間(T)の平均風
速(Uavm/s)を用いたが、塩分付着量(W)が少な
すぎると、測定精度(バラツキ)が悪くなるので、必然
的に長時間の計測になり、それに伴って風速の変化も大
きくなる。この風速の変化が大きくなることにより付着
効率(η)の変化(幅)も大きくなり、平均風速
(Uav)から求めた付着効率(η)を用いて気中塩分濃
度(Ci)を推定するには、精度上問題が生じる。
The airborne salt concentration (Ci) can be estimated by obtaining the salt adhering amount (w) and the adhering efficiency (η) on the cylinder, but the adhering efficiency (η) and The wind speed (U) is used as a parameter of the air salt concentration (Ci). This wind speed (U) uses the data measured by the wind direction and anemometer installed near the cylinder, but in the outdoors, this wind speed often changes with the passage of time. Conventionally, the average wind speed (U av m / s) of the time (T) for measuring the amount of deposited salt is used, but if the amount of deposited salt (W) is too small, the measurement accuracy (variation) will deteriorate, so it is inevitable. Therefore, the measurement is performed for a long time, and the change in the wind speed increases accordingly. As the change in the wind speed increases, the change (width) of the adhesion efficiency (η) also increases, and the air salt concentration (Ci) is estimated using the adhesion efficiency (η) obtained from the average wind speed (U av ). Has a problem in accuracy.

【0013】この発明はこうした事情を考慮してなされ
たもので、ダクトを用いてその内部に海塩粒子を補集
し、ダクト内部に取り付けた円柱に一定の流速場で海塩
粒子を付着させることにより、安定した付着効率を得る
ことが可能な粒子・ミスト計測装置を提供することを目
的とする。
The present invention has been made in view of the above circumstances, and collects sea salt particles inside the duct using a duct, and attaches the sea salt particles to a cylinder attached inside the duct at a constant flow velocity field. Thus, it is an object of the present invention to provide a particle / mist measuring device capable of obtaining stable adhesion efficiency.

【0014】[0014]

【課題を解決するための手段】本発明は、大気中に円柱
を気流に対して直角に設置し、前記円柱に付着した粒子
状物質を水で洗浄し、この洗浄した水に含まれる粒子状
物質を定量分析して溶解質量を求めるとともに大気中濃
度を推定する粒子・ミスト計測装置において、粒子・ミ
ストを補集するためのダクトと、このダクト内に配置さ
れた、粒子・ミストを付着させるための円柱と、前記ダ
クト内に流れの場を与えるファンと、このファンに電気
的に接続され該ファンの回転数を制御する回転数制御器
と、前記ダクト内の風速を測定する流速測定器と、前記
ダクトを風向に追従させるための回転機構を具備するこ
とを特徴とする粒子・ミスト計測装置である。
According to the present invention, a cylinder is installed in the atmosphere at a right angle to an air stream, the particulate matter attached to the cylinder is washed with water, and the particulate matter contained in the washed water is used. In a particle / mist measuring device that quantitatively analyzes a substance to determine its dissolved mass and estimates its atmospheric concentration, a duct for collecting the particles / mist and particles / mists arranged in this duct are attached. Column, a fan for providing a flow field in the duct, a rotation speed controller electrically connected to the fan for controlling the rotation speed of the fan, and a flow velocity measuring device for measuring the wind speed in the duct. And a rotation mechanism for causing the duct to follow the wind direction.

【0015】この発明は、塩分付着量(W)を計測する
時間中の円柱付近の風速(U)を一定に維持することに
より、付着効率(η)の一定化を図るものである。この
為、粒子を補集し円柱まで導くためのダクトを設け、そ
のダクト内に塩分付着用の円柱を取り付ける。ダクトに
は、ダクト内に流れ場を与える例えばファンが配設して
あり、ダクト内の流速を可変する為のファン回転数制御
器と連結してある。また、ダクト内流速を測定する風速
計も円柱風上側に取りつけてある。海塩粒子の飛散して
くる方向は、風向によって支配される為、この風向にダ
ストが追従できる回転機構も設けてある。
The present invention is intended to make the adhering efficiency (η) constant by maintaining the wind speed (U) in the vicinity of the cylinder constant during the time when the salt adhering amount (W) is measured. Therefore, a duct for collecting particles and guiding them to a cylinder is provided, and a cylinder for adhering salt is attached in the duct. For example, a fan that gives a flow field in the duct is arranged in the duct, and is connected to a fan rotation speed controller for varying the flow velocity in the duct. An anemometer for measuring the flow velocity in the duct is also installed on the windward side of the cylinder. The direction in which the sea salt particles are scattered is governed by the wind direction, so a rotation mechanism that allows dust to follow this wind direction is also provided.

【0016】この発明において、円柱は大気中に気流に
対して直角になるように設置するものであるが、「直
角」とは字句通りに直角である場合の他に、「略直
角」、つまり僅かに傾斜する場合も含む。
In the present invention, the cylinder is installed in the atmosphere so as to be at a right angle to the air flow. In addition to the case where the "right angle" is literally a right angle, "a right angle", that is, Including the case of slightly tilting.

【0017】この発明の作用は、以下の通りである。即
ち、野外の風向がθi である時、海塩粒子はθi の方向
から飛散してくる。この海塩粒子を効率よくダクト内へ
補集する(導く)為、回転機構及びダクトに取り付けた
尾羽根によりダクト入口部を風向に向ける。ダクト内フ
ァンによりダクト内へ流れ場を与える。この流れによ
り、海塩粒子はダクト内に導かれ、ダクト内に設けた円
柱に付着する。ダクト内流速はファンの回転数制御器に
より一定に保たれているから、円柱への海塩粒子の付着
効率(η)も一定となる。また、野外風速や塩分付着量
の大小によってダクト内流速を可変することもできる。
ダクト内に取り付けた風速計をモニターしながら、ファ
ンの回転数制御器で調整すればよい。
The operation of the present invention is as follows. That is, when the outdoor wind direction is θi, sea salt particles are scattered from the direction of θi. In order to efficiently collect (introduce) the sea salt particles into the duct, the duct inlet part is directed in the wind direction by the rotating mechanism and the tail blade attached to the duct. A fan inside the duct provides a flow field into the duct. By this flow, the sea salt particles are guided into the duct and adhere to the cylinder provided in the duct. Since the flow velocity in the duct is kept constant by the fan speed controller, the adhesion efficiency (η) of the sea salt particles to the cylinder is also constant. Further, the flow velocity in the duct can be varied depending on the outdoor wind speed and the amount of salt adhering.
While monitoring the anemometer installed in the duct, adjust the fan speed controller.

【0018】[0018]

【発明の実施の形態】以下、この発明の一実施例を図1
を参照して説明する。図中の符番21は、例えば風22によ
って飛散してくる海塩粒子23を補集するためのダクトで
ある。このダクト21の入口付近には、円柱24が気流に対
して直角に設置されている。前記ダクト21の入口付近で
前記円柱24の上流側には、ダクト21内の風速を計測する
風速計センサー25が配置されている。前記ダクト21の出
口付近には、ダクト21内に流れの場を与える吸引用ファ
ン26が配置されている。この吸引用ファン26には、該吸
引用ファン26の回転数を制御する回転数制御器27,演算
・制御器28,風速計指示部29を順次介装した信号ケーブ
ル30が電気的に接続されている。
BRIEF DESCRIPTION OF THE DRAWINGS FIG.
This will be described with reference to FIG. Reference numeral 21 in the figure is a duct for collecting sea salt particles 23 scattered by the wind 22, for example. A column 24 is installed near the entrance of the duct 21 at right angles to the air flow. An anemometer sensor 25 for measuring the wind speed in the duct 21 is arranged near the entrance of the duct 21 and upstream of the column 24. A suction fan 26 is provided near the outlet of the duct 21 to provide a flow field in the duct 21. A signal cable 30 in which a rotation speed controller 27 for controlling the rotation speed of the suction fan 26, a calculator / controller 28, and an anemometer instruction unit 29 are sequentially inserted is electrically connected to the suction fan 26. ing.

【0019】前記風速計指示部29は、信号ケーブル30を
介して前記風速計センサー25に接続されている。前記ダ
クト21には、連結棒31を介して前記ダクト21を風向に追
従させるための回転機構32が連結されている。この回転
機構32は、ダクト21を地上にセットするための支持棒33
により指示されている。また、図中の符番34はダクト21
の風向追従のためにダクト21の後端に設けた尾羽根、符
番35はダクト21内の流れを示す。
The anemometer indicator 29 is connected to the anemometer sensor 25 via a signal cable 30. A rotating mechanism 32 for making the duct 21 follow the wind direction is connected to the duct 21 via a connecting rod 31. This rotation mechanism 32 is a support rod 33 for setting the duct 21 on the ground.
Is indicated by The reference numeral 34 in the figure indicates the duct 21.
Reference numeral 35, a tail blade provided at the rear end of the duct 21 to follow the wind direction of the, indicates the flow in the duct 21.

【0020】こうした構成の粒子・ミスト計測装置にお
いて、海塩粒子23の発生,輸送(飛散),付着のメカニ
ズムは従来例と同じなので説明は省略し、粒子の塩分付
着量計測方法について説明する。野外での風22は向き
(風向)をもっており、この方向から海塩粒子23は計測
点に向かって飛散してくる。このため、ダクト21の後端
に設けた尾羽根34及び回転機構32によってダクト21を風
向に向ける。
In the particle / mist measuring device having such a structure, the mechanism of generation, transportation (scattering), and adhesion of the sea salt particles 23 are the same as in the conventional example, and therefore the description thereof will be omitted, and the method for measuring the amount of salt adhesion of particles will be described. The wind 22 in the field has a direction (wind direction), and the sea salt particles 23 scatter from this direction toward the measurement point. Therefore, the tail blade 34 and the rotation mechanism 32 provided at the rear end of the duct 21 direct the duct 21 in the wind direction.

【0021】ダクト21内は吸引用ファン26によって流れ
場(吸引状態)を与えているから、ダクト21の入口部付
近に飛散してきた海塩粒子23はダクト21内部へ導かれ
る。この海塩粒子23は、ダクト21内に設けた円柱24に慣
性力によって付着する。この場合、ダクト21内の流速
は、吸引用ファン26の回転数制御器27によって一定に保
持されている。
Since the inside of the duct 21 is provided with a flow field (suction state) by the suction fan 26, the sea salt particles 23 scattered near the entrance of the duct 21 are guided to the inside of the duct 21. The sea salt particles 23 adhere to a column 24 provided in the duct 21 by inertial force. In this case, the flow velocity in the duct 21 is kept constant by the rotation speed controller 27 of the suction fan 26.

【0022】一定時間経過後、前記円柱体24を取り外し
て純水で洗浄する。この純水の電気伝導度を電導度計で
測定し、その測定結果から純水中の塩分量(q)を求め
る。この塩分量から単位面積当たりの塩分付着量(W)
を計算し、付着効率(η)を用いて、気中塩分濃度(C
i)を推定する方法は従来例と同じである。ここで特に
注記したいことは、ダクト21内の流速(U)を一定に保
持しているため、付着効率(η)も計測時間中、常に一
定に保たれることである。
After a certain period of time, the cylindrical body 24 is removed and washed with pure water. The electric conductivity of this pure water is measured by an electric conductivity meter, and the salt content (q) in the pure water is obtained from the measurement result. From this amount of salt, the amount of attached salt per unit area (W)
And the adhesion efficiency (η) is used to calculate the air salt concentration (C
The method of estimating i) is the same as the conventional example. It should be noted here that the flow velocity (U) in the duct 21 is kept constant, so that the adhesion efficiency (η) is always kept constant during the measurement time.

【0023】これにより、外部風速が変化しても、付着
効率(η)は一定であるため、海塩粒子の飛散量が少な
い時でも長時間の計測が可能となる。また、演算・制御
器28を用いて、付着効率(η)の調整(即ち、流速を
可変して)も行えるので、海塩粒子の飛散量の大小によ
って適性な塩分付着量を得ることも可能となる。塩分付
着量が多すぎると、円柱体まわりが液滴状となり、付着
特性が変化するので、この防止のためにも適性な付着量
にすることは重要なことである。
As a result, even if the external wind speed changes, the adhesion efficiency (η) is constant, so that long-time measurement is possible even when the amount of sea salt particles scattered is small. In addition, since the adhering efficiency (η) can be adjusted (that is, the flow velocity can be changed) by using the computing / controlling device 28, it is possible to obtain an appropriate salt adhering amount depending on the amount of sea salt particles scattered. Becomes When the amount of deposited salt is too large, droplets form around the cylinder, and the adhesive properties change. Therefore, it is important to make the amount suitable for preventing this.

【0024】このように、上記実施例に係る粒子・ミス
ト計測装置は、ダクト21を用いてその内部に海塩粒子
23を補集し、ダクト21内部に取り付けた円柱24に一定の
流速場で海塩粒子23を付着させることにより、安定した
付着効率を得ることができ、この粒子・ミスト計測装置
は以下の効果を有する。
As described above, the particle / mist measuring apparatus according to the above-mentioned embodiment uses the duct 21 and has sea salt particles inside.
By collecting 23 and adhering the sea salt particles 23 to the cylinder 24 attached inside the duct 21 at a constant flow velocity field, stable adhesion efficiency can be obtained, and this particle and mist measuring device has the following effects. Have.

【0025】1)計測時間中安定した付着効率が得られる
ので長時間の計測が可能となる。 2)ダクト21内に取り付けた風速計センサ25をモニターし
ながら吸引用ファン26の回転数を回転数制御器27で調整
することにより、ダクト21内の流速を可変できることに
より、付着効率も調整でき、適性な付着量を得ることが
できる。
1) Since stable adhesion efficiency is obtained during the measurement time, it is possible to measure for a long time. 2) By adjusting the rotation speed of the suction fan 26 with the rotation speed controller 27 while monitoring the anemometer sensor 25 installed in the duct 21, the flow velocity in the duct 21 can be varied, and the adhesion efficiency can also be adjusted. It is possible to obtain an appropriate amount of adhesion.

【0026】この効果は、気中塩分濃度(Ci)および
海塩粒子発生量(Qi)を推定する上で、非常に有効な手
法(精度アップ)となり、火力発電所の野外機器や送電
線,開閉所の碍子の汚損防止設計に必要なデータを提供
でき、ひいては信頼性が高く経済的な設備の建設に寄与
できる。
This effect is a very effective method (increase in accuracy) in estimating the atmospheric salt concentration (Ci) and the amount of sea salt particles generated (Qi), and can be used in the field equipment of power plants, transmission lines, It can provide the data necessary for the design to prevent the fouling of the insulators of the switchyard, and can contribute to the construction of highly reliable and economical equipment.

【0027】[0027]

【発明の効果】以上詳述したようにこの発明によれば、
ダクトを用いてその内部に海塩粒子を補集し、ダクト内
部に取り付けた円柱に一定の流速場で海塩粒子を付着さ
せることにより、安定した付着効率を得ることが可能な
粒子・ミスト計測装置を提供できる。
As described in detail above, according to the present invention,
Particle and mist measurement that can obtain stable adhesion efficiency by collecting sea salt particles inside the duct and adhering the sea salt particles to the cylinder installed inside the duct at a constant flow velocity field A device can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例に係る粒子・ミスト計測装
置の説明図。
FIG. 1 is an explanatory diagram of a particle / mist measuring device according to an embodiment of the present invention.

【図2】海塩粒子の発生,輸送,付着のメカニズムを示
す概念図。
FIG. 2 is a conceptual diagram showing the mechanism of generation, transportation, and adhesion of sea salt particles.

【図3】従来の粒子・ミスト計測装置の説明図。FIG. 3 is an explanatory diagram of a conventional particle / mist measuring device.

【図4】従来の粒子・ミスト計測装置に係る円柱への粒
子の付着特性を示す付着効率曲線特性図。
FIG. 4 is an adhesion efficiency curve characteristic diagram showing adhesion characteristics of particles to a cylinder according to a conventional particle / mist measuring device.

【符号の説明】[Explanation of symbols]

21…ダクト、 23…海塩粒子、 24…円柱、 25…風速計センサー、 26…吸引用ファン、 27…回転数制御器、 28…演算・制御器、 29…風速計指示部、 30…信号ケーブル、 32…回転機構、 33…指示棒、 34…尾羽根。 21 ... Duct, 23 ... Sea salt particles, 24 ... Cylinder, 25 ... Anemometer sensor, 26 ... Suction fan, 27 ... Rotation speed controller, 28 ... Computational controller, 29 ... Anemometer indicator, 30 ... Signal Cable, 32 ... Rotating mechanism, 33 ... Pointing rod, 34 ... Tail blade.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 大気中に円柱を気流に対して直角に設置
し、前記円柱に付着した粒子状物質を水で洗浄し、この
洗浄した水に含まれる粒子状物質を定量分析して溶解質
量を求めるとともに大気中濃度を推定する粒子・ミスト
計測装置において、 粒子・ミストを補集するためのダクトと、このダクト内
に配置された、粒子・ミストを付着させるための円柱
と、前記ダクト内に流れの場を与えるファンと、このフ
ァンに電気的に接続され該ファンの回転数を制御する回
転数制御器と、前記ダクト内の風速を測定する流速測定
器と、前記ダクトを風向に追従させるための回転機構を
具備することを特徴とする粒子・ミスト計測装置。
1. A column is placed in the atmosphere at a right angle to an air flow, the particulate matter attached to the column is washed with water, and the particulate matter contained in the washed water is quantitatively analyzed to obtain a dissolved mass. In a particle / mist measuring device for determining the air concentration and estimating the atmospheric concentration, a duct for collecting particles / mist, a cylinder for adhering particles / mist, and a duct for adhering particles / mist in the duct A fan that provides a flow field to the fan, a rotation speed controller that is electrically connected to the fan to control the rotation speed of the fan, a flow velocity measuring device that measures the wind speed in the duct, and the duct that follows the wind direction. A particle / mist measuring device comprising a rotating mechanism for moving the particle / mist.
JP2131096A 1996-02-07 1996-02-07 Particle/mist measuring device Withdrawn JPH09210942A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2131096A JPH09210942A (en) 1996-02-07 1996-02-07 Particle/mist measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2131096A JPH09210942A (en) 1996-02-07 1996-02-07 Particle/mist measuring device

Publications (1)

Publication Number Publication Date
JPH09210942A true JPH09210942A (en) 1997-08-15

Family

ID=12051586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2131096A Withdrawn JPH09210942A (en) 1996-02-07 1996-02-07 Particle/mist measuring device

Country Status (1)

Country Link
JP (1) JPH09210942A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010124711A (en) * 2008-11-25 2010-06-10 Kyowa Kogyo Kk Device for catching airborne substance
WO2010113520A1 (en) * 2009-04-01 2010-10-07 新日本製鐵株式会社 Device and method for continuously measuring horizontal flux of falling particulate matter in atmosphere
WO2013118267A1 (en) * 2012-02-09 2013-08-15 中国電力株式会社 Airborne salt capturing device for measuring amount of airborne salt
WO2014049716A1 (en) * 2012-09-26 2014-04-03 中国電力株式会社 Dispersed salt collecting device
WO2014097487A1 (en) * 2012-12-21 2014-06-26 中国電力株式会社 Dispersed salt capture device
US8850904B2 (en) 2009-04-01 2014-10-07 Nippon Steel & Sumitomo Metal Corporation Horizontal component catcher of dustfall in atmosphere and measuring method of horizontal component
CN104390817A (en) * 2014-11-26 2015-03-04 北京东方园林股份有限公司 Fog collector and fog collection method
JP5859711B1 (en) * 2014-02-04 2016-02-10 中国電力株式会社 Spattering salt capture device
JP5876615B2 (en) * 2014-01-27 2016-03-02 中国電力株式会社 Spattering salt capture device
CN112683600A (en) * 2020-12-17 2021-04-20 山东大学 Full-automatic fog sampler based on sensor control and application method thereof

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010124711A (en) * 2008-11-25 2010-06-10 Kyowa Kogyo Kk Device for catching airborne substance
US8850904B2 (en) 2009-04-01 2014-10-07 Nippon Steel & Sumitomo Metal Corporation Horizontal component catcher of dustfall in atmosphere and measuring method of horizontal component
WO2010113520A1 (en) * 2009-04-01 2010-10-07 新日本製鐵株式会社 Device and method for continuously measuring horizontal flux of falling particulate matter in atmosphere
JP4870243B2 (en) * 2009-04-01 2012-02-08 新日本製鐵株式会社 Apparatus and method for continuous measurement of dust horizontal flux in the atmosphere
US8578788B2 (en) 2009-04-01 2013-11-12 Nippon Steel & Sumitomo Metal Corporation Device and method for continuously measuring horizontal flux of dustfall in atmosphere
WO2013118267A1 (en) * 2012-02-09 2013-08-15 中国電力株式会社 Airborne salt capturing device for measuring amount of airborne salt
JP5752328B2 (en) * 2012-09-26 2015-07-22 中国電力株式会社 Spattering salt capture device
WO2014049716A1 (en) * 2012-09-26 2014-04-03 中国電力株式会社 Dispersed salt collecting device
WO2014097487A1 (en) * 2012-12-21 2014-06-26 中国電力株式会社 Dispersed salt capture device
JP5763850B2 (en) * 2012-12-21 2015-08-12 中国電力株式会社 Spattering salt capture device
JP5876615B2 (en) * 2014-01-27 2016-03-02 中国電力株式会社 Spattering salt capture device
JP5859711B1 (en) * 2014-02-04 2016-02-10 中国電力株式会社 Spattering salt capture device
CN104390817A (en) * 2014-11-26 2015-03-04 北京东方园林股份有限公司 Fog collector and fog collection method
CN104390817B (en) * 2014-11-26 2017-07-04 北京东方园林股份有限公司 A kind of fog collector and fog collection method
CN112683600A (en) * 2020-12-17 2021-04-20 山东大学 Full-automatic fog sampler based on sensor control and application method thereof

Similar Documents

Publication Publication Date Title
DeCosmo et al. Air‐sea exchange of water vapor and sensible heat: The Humidity Exchange Over the Sea (HEXOS) results
JPH09210942A (en) Particle/mist measuring device
Titos et al. Aerosol light-scattering enhancement due to water uptake during the TCAP campaign
Fitzjarrald et al. Turbulent transport observed just above the Amazon forest
EP2667022A2 (en) Method and system for wind velocity field measurements on a wind farm
Nystuen et al. The underwater sound generated by heavy rainfall
CN111366509B (en) Fine control method and control system for dust in bulk cargo storage yard based on whole-yard monitoring
CN109696287B (en) Atmospheric boundary layer environment wind tunnel wet deposition simulation device
JP2011007187A (en) Arrangement and method to control yawing of wind turbine
CN117048775B (en) Marine environment monitoring method and monitoring device
Dierer et al. Wind turbines in icing conditions: performance and prediction
CN109973330A (en) A kind of upstream fan wake flow influences the detection method of situation on downstream blower
JP4434661B2 (en) Horizontal axis wind turbine and wind-up angle measurement method
CN109239711A (en) A kind of all solid state Doppler radar system of X-band and movement station
Cornelis et al. The ICE wind tunnel for wind and water interaction research
Leith et al. Quantifying dry NH 3 deposition to an ombrotrophic bog from an automated NH 3 field release system
WO2013171154A1 (en) Method for controlling the pitch angle of at least one wind turbine blade
Hulsman et al. Turbine wake deflection measurement in a wind tunnel with a lidar windscanner
Sempreviva et al. Transport of temperature and humidity variance and covariance in the marine surface layer
Järvi et al. Micrometeorological observations of a microburst in southern Finland
King et al. Evaluation of center pivot sprinkler wind drift and evaporation loss
van Mook Full-scale measurements and numeric simulations of driving rain on a building
US20240110902A1 (en) A method and an unmanned aerial vehicle for determining emissions
CN113446171B (en) Wind generating set control method and device
JPH0933418A (en) Measuring method of concentration in air of particulate material

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030506