JPH09209806A - Idle engine speed controller for internal combustion engine - Google Patents

Idle engine speed controller for internal combustion engine

Info

Publication number
JPH09209806A
JPH09209806A JP1735096A JP1735096A JPH09209806A JP H09209806 A JPH09209806 A JP H09209806A JP 1735096 A JP1735096 A JP 1735096A JP 1735096 A JP1735096 A JP 1735096A JP H09209806 A JPH09209806 A JP H09209806A
Authority
JP
Japan
Prior art keywords
starting
internal combustion
combustion engine
control valve
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1735096A
Other languages
Japanese (ja)
Inventor
Tomiya Itakura
富彌 板倉
Mitsuru Nagase
永瀬  満
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Automotive Systems Engineering Co Ltd
Original Assignee
Hitachi Ltd
Hitachi Car Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Car Engineering Co Ltd filed Critical Hitachi Ltd
Priority to JP1735096A priority Critical patent/JPH09209806A/en
Publication of JPH09209806A publication Critical patent/JPH09209806A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PROBLEM TO BE SOLVED: To stably perform feedback correction transition so as to provide stable starting performance and the stability of an engine speed just after starting by shifting from starting time fixing output means to feedback correcting means on the basis of starting time intake pressure judging means. SOLUTION: Air is sucked from an air cleaner 1 through a throttle chamber 2 and an intake manifold 3, and an airflow control valve 5 is mounted in a pass bypassing a throttle valve 4 in the throttle chamber 2. The airflow control valve 5 is controlled by a duty signal from a control unit 6. A driving signal in its feedback condition may not be generated from the airflow control valve 5 until pressure by which the airflow control valve 5 can be operated is developed by inlet negative pressure conditions for judgement after starting from starting. An always stable opening area can be secured regardless of the magnitude and fluctuation of the intake pressure, hereby, the starting performance of an engine and rotational stability after starting can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、内燃機関の始動時
から、始動後におけるアイドル回転数を制御するアイド
ル回転数制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an idle speed control device for controlling an idle speed after starting an internal combustion engine.

【0002】[0002]

【従来の技術】スロットルバルブをバイパスするバイパ
ス通路に空気流量制御弁を設けた内燃機関では、始動時
に空気流量制御弁を所定のデューティ比で固定し、機関
の運転状態が安定した時点から目標回転数に収束させる
フィードバック補正を行い、所望の回転数が得られるよ
うに設定していた(特開昭58−158344号公報)。この場
合、始動時から始動後への移行条件は一般的に機関の回
転数が所定回転数に達したことを検出して実施してい
た。
2. Description of the Related Art In an internal combustion engine in which an air flow control valve is provided in a bypass passage that bypasses a throttle valve, the air flow control valve is fixed at a predetermined duty ratio at the time of starting, and a target rotation is started when the engine operating condition becomes stable. Feedback correction is performed so that the rotation speed converges to a desired number, and the setting is made so that a desired rotation speed can be obtained (JP-A-58-158344). In this case, the transition condition from the time of starting to the time of starting is generally carried out by detecting that the number of revolutions of the engine has reached a predetermined number of revolutions.

【0003】[0003]

【発明が解決しようとする課題】上記の従来技術による
アイドル回転数制御装置は、一般に制御の対象となる空
気流量制御弁は、空気流量制御部とそれを動かす電気的
駆動部、すなわち、電磁弁との組合せで構成される。こ
の様な空気流量制御弁は構造上電磁弁の電気的駆動力と
流量制御部を押さえる機械的な力とが平衡することで所
望の空気流量を得るようにしている。この状態は換言す
ると電磁弁の電気的駆動力がない状態、すなわち、非通
電時に流量制御弁は作動範囲の全閉側か全開側のどちら
か一方に固定されるのが一般的な力関係となる。流量制
御弁が非通電時に全閉側か全開側のどちらに固定される
かは通常全閉側に設定される。これは流量制御弁の故障
時に空気量が内燃機関に供給されず運転者の意思に反し
た回転数の上昇がないよう安全サイドに設定することか
ら選択される。一方、前述の安全性の観点とともに、流
量制御弁の固着という問題も近年顕在化している。これ
は、内燃機関の燃料であるガソリンやエンジンの駆動系
の潤滑剤であるオイル等の粘着成分が機関運転中に変質
しながら流量制御部に堆積し、経時的に固着力を増加さ
せ、結果的に流量制御部を固着させアイドル回転数制御
を不能の状態にする。固着の現象は流量制御部が非通電
時に流量計量部が全閉状態にあることに起因しており、
この対策として流量制御弁を非通電時に全閉でも、全開
でもない中間位置に保持する空気流量制御弁が提案され
ており、特に、固着力に対し制御弁側でより大きな引き
離し力を発生させるため、流量制御部をダイヤフラムを
介し装着する空気流量制御弁が提案されている(USP4,8
23,750)。この様な非通電時に流量制御部を中間位置に
保持する空気流量制御弁であれば、前述の安全性と固着
の両方の問題を解決できる。しかし、この構造の空気流
量制御弁の場合、エンジンが発生する吸入負圧を利用し
て流量制御弁の位置を制御するため、始動時の動作は電
磁弁の電気的駆動力より吸入負圧に依存する割合が多
い。つまり、始動時にある程度の負圧が発生して初めて
空気流量制御弁は作動するものであり、従来技術のよう
に機関の回転数条件で始動時制御から、目標回転数に収
束させるフィードバック補正に移行することは、始動直
後の機関回転数の安定性を悪化させていた。機関の始動
時から始動後への判定は通常機関回転数がたとえば、4
00rpm に達したか否かで判定される。しかし、この時
点でダイヤフラムを使用した空気流量制御弁の場合、吸
入負圧がダイヤフラムの作動負圧に達していないことも
考えられ、始動時の吸入負圧が作動負圧に達するまでは
動作せず、設定値通りの空気量は得られない結果にな
る。特に、ダイヤフラムはゴムで成形されているため、
温度に対し硬度が変化することは避けられず、低温では
硬化し通常の作動圧力に対し高圧力側に移行する。この
ことは低温始動時に大きく影響し、所定のデューティを
設定しても、ダイヤフラムの低温硬化力に対応する始動
時吸入負圧が発生するまでは、空気流量制御弁は動作し
ない。また、低温硬化力は一定ではなく、製品によるば
らつきもあり、結果として空気流量制御弁の動作は始動
時に極めて不安定なものになり、供給空気量のばらつき
による空燃比の変動等を引き起こし、機関の始動性と始
動後の回転安定性を悪化させていた。
In the idle speed control device according to the above-mentioned prior art, generally, the air flow rate control valve to be controlled is an air flow rate control part and an electric drive part for moving it, that is, a solenoid valve. Composed of and. In such an air flow rate control valve, a desired air flow rate is obtained by structurally balancing the electric driving force of the solenoid valve and the mechanical force pressing the flow rate control unit. In other words, this state is a state where there is no electric driving force of the solenoid valve, that is, the flow control valve is fixed to either the fully closed side or the fully open side of the operating range when not energized. Become. Whether the flow control valve is fixed to the fully closed side or the fully open side when not energized is normally set to the fully closed side. This is selected because the air amount is not supplied to the internal combustion engine when the flow control valve is out of order and the rotation speed is not increased against the driver's intention. On the other hand, in addition to the above-mentioned viewpoint of safety, the problem of sticking of the flow rate control valve has recently become apparent. This is because sticky components such as gasoline, which is the fuel for the internal combustion engine, and oil, which is the lubricant for the drive system of the engine, accumulates in the flow rate control unit while deteriorating during engine operation, increasing the sticking force over time. The flow rate control unit is fixed so that the idle speed control is disabled. The phenomenon of sticking is due to the flow measuring unit being fully closed when the flow control unit is not energized.
As a countermeasure against this, an air flow rate control valve that holds the flow rate control valve in an intermediate position that is neither fully closed nor fully open when de-energized has been proposed.In particular, in order to generate a larger separation force on the control valve side with respect to the sticking force. , An air flow control valve with a flow control unit mounted via a diaphragm has been proposed (USP4,8
23,750). With such an air flow rate control valve that holds the flow rate control unit at the intermediate position when de-energized, both the above-mentioned problems of safety and sticking can be solved. However, in the case of the air flow control valve of this structure, since the position of the flow control valve is controlled by using the suction negative pressure generated by the engine, the operation at the time of starting is changed to the suction negative pressure from the electric driving force of the solenoid valve. Many depend on it. In other words, the air flow rate control valve operates only after a certain amount of negative pressure is generated at the time of start, and the control at the time of start is changed from the start time control under the engine speed condition as in the prior art to the feedback correction to converge to the target speed. Doing so deteriorated the stability of the engine speed immediately after starting. Normally, the engine speed is, for example, 4 when the engine is started and after it is started.
It is determined by whether or not it has reached 00 rpm. However, in the case of an air flow control valve that uses a diaphragm at this point, it may be possible that the suction negative pressure has not reached the operating negative pressure of the diaphragm, so operate it until the suction negative pressure at startup reaches the operating negative pressure. As a result, the amount of air as set is not obtained. Especially since the diaphragm is made of rubber,
It is unavoidable that the hardness changes with temperature, and it hardens at low temperatures and shifts to the higher pressure side with respect to normal operating pressure. This has a great influence at the time of cold start, and even if a predetermined duty is set, the air flow control valve does not operate until the suction negative pressure at start corresponding to the low temperature hardening force of the diaphragm is generated. In addition, the low temperature curing power is not constant and varies depending on the product.As a result, the operation of the air flow rate control valve becomes extremely unstable at the time of starting, causing fluctuations in the air-fuel ratio due to variations in the supply air amount, etc. It deteriorated the startability and the rotational stability after the start.

【0004】[0004]

【課題を解決するための手段】本発明は、上記問題を解
決するために、始動時から始動後の判定に始動時吸入圧
力判定手段を設定する。
According to the present invention, in order to solve the above-mentioned problems, a starting suction pressure judging means is set in the judgment from the starting to the starting.

【0005】この構成のアイドル回転数制御装置によれ
ば、空気量制御弁は始動時から始動後の判定の吸入負圧
条件により空気流量制御弁が作動可能な圧力になるまで
フィードバック状態の駆動信号が発生されず、吸入圧力
の大きさや変動にとらわれず常に安定した開口面積を確
保することができ、機関の始動を安定させることができ
る。
According to the idle speed control device having this structure, the air amount control valve is a drive signal in a feedback state from the time of starting to a pressure at which the air flow rate control valve can operate depending on the suction negative pressure condition determined after starting. Is not generated, a stable opening area can be always secured regardless of the magnitude and fluctuation of the suction pressure, and the engine start can be stabilized.

【0006】[0006]

【発明の実施の形態】以下、本発明の一実施例を図面に
基づいて説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to the drawings.

【0007】図1は本発明のアイドル回転数制御装置を
備えた電子制御燃料噴射式内燃機関であって、エアクリ
ーナ1からスロットルチャンバ2,吸気マニホールド3
を経て空気を吸入し、スロットルチャンバ2内のスロッ
トルバルブ4をバイパスする通路に空気流量制御弁5が
装着される。空気流量制御弁5はコントロールユニット
6からのデューティ信号により制御される。コントロー
ルユニット6は、機関の冷却水温を検出する水温センサ
7,吸気管圧力を検出し吸入空気量演算等に用いる圧力
センサ8等の出力を入力し、コントロールユニット6内
のROM(図示せず)に予め記憶された制御プログラム
に従い、インジェクタ9や空気流量制御弁5等の各種ア
クチュエータを制御する。次に空気流量制御弁5の構造
を図2に示す。空気流量制御弁5は、デューティ信号で
駆動される電磁弁10とダイヤフラム12に保持された
空気量を計量するバルブ11を形成するボディ13とで
構成される。ボディ13の通路19は吸気通路のスロッ
トルバルブ4上流に連通しており大気圧側となる。通路
20はスロットルバルブ4下流の吸気マニホールド3に
連通しており負圧側となる。更に電磁弁10のスプリン
グ14を介したプランジャ15はコイル16のコントロ
ールユニット6のデューティ信号による電磁力により図
中の左右方向に制御される。一方、ダイヤフラム12に
保持された空気量を計量するバルブ11はスプリング1
7により電磁弁10のプランジャ15方向の力を受けて
いる。以上の力関係により空気量制御弁5の非通電時の
バルブ11の位置はスプリング17とスプリング14の
つりあう位置に保持され、バルブ11はボディ13のシ
ート18と接することがなく、バルブの固着に対して有
利な状態となる。空気量制御弁5の動作は、バルブ11
を直接作動させる吸入負圧の力と、電磁弁10の電磁力
によるプランジャ15の動作の二つの別々の動作が組み
合わされて行われる。まず機関の発生する吸入負圧は通
路20からバルブ11内の中空となった通路を経てダイ
ヤフラム12で形成された圧力室22に至る。ダイアフ
ラム12には、大気に連通するリークオリフィス23が
設けられており、吸入負圧が減圧されるようになってい
る。バルブ11には吸入負圧によりダイヤフラム12が
発生する図中左方向の力が加わることになる。一方、電
磁弁10のプランジャ15は、デューティ信号に見合っ
た位置に制御される。ここである一定デューティの状態
を考えると、プランジャ15の位置は一定であり、バル
ブ11の動作は圧力室22の吸入負圧がバルブ11内の
中空となった通路をプランジャ15が塞ぐ格好となるた
め一定位置に保持される。ところが、経時的にリークオ
リフィス23からの減圧によりある一定圧力になると、
バルブ11はダイヤフラム12が発生する力より、バル
ブ11の表面が吸入負圧により受圧し発生する力が上回
り、図中右方向に移動する。ところが、この瞬間にこれ
まで閉じていた圧力室22のバルブ11内の中空となっ
た通路出口とプランジャ15の間に隙間が形成され、吸
入負圧がダイヤフラム12に再び印加され、バルブ11
は、元のプランジャ15位置に追従するようになる。以
上の動作を繰り返すことにより、結果的にバルブ11
は、デューティ信号で設定されるプランジャ位置に制御
される。このことは、プランジャ15の位置は圧力室2
2の圧力だけを制御することになり、電磁弁10の電磁
力による駆動力はバルブ11の駆動力に対し一切関与し
ないことになる。よって、バルブ11はダイヤフラム1
2が発生する力とバルブ11表面積が吸入負圧により発
生する力の差によって駆動され、ダイヤフラム12の発
生する力は電磁弁で発生する力よりはるかに大きいた
め、バルブ固着に対する引き離し力を大きく設定するこ
とができる。空気量制御弁の場合、ダイヤフラム12に
印加される吸入負圧がある一定値に達しない限り動作し
ないことが分る。このことは、吸入負圧が発生し始める
始動時に最も影響が大きくなる。次に、始動時の制御方
法について説明する。図3は始動時の機関回転数と吸入
負圧の関係を示す。機関回転数は始動開始後クランキン
グ状態から初爆を経て完爆後目標回転に向かって上昇す
る。ここで、図中N1は従来技術で記載した完爆判定回
転数であり、始動時から始動後の判定条件となってい
る。この条件が成立することにより、燃料,点火、およ
び空気流量制御弁の制御は始動時モードから始動後モー
ドに移行することになり、空気流量制御弁は始動時の固
定出力からフィードバック補正制御に移行する。N1は
通常400rpm 前後の値を設定している。400rpm 前
後の低い値に設定する根拠は始動時の小さい空燃比(混
合比が過濃)を達成するための永い燃料噴射パルス時間
をなるべく早めに終了させるためである。つまり、たと
え1回の機関始動に失敗しても混合気が過濃になること
を防ぐ目的から機関が安定回転するであろう低めの回転
数を設定している。次に始動時の吸入負圧の動きに着目
してみると、機関回転数と同様に初爆から完爆を経て徐
々に高吸入負圧に達する。図中、P1は空気流量制御弁
のダイヤフラムが作動する圧力を示す。ところが、P1
に達する機関回転数はN2となっており、N2>N1で
あることが分る。このことは空気量制御弁の始動時モー
ドから始動後モードに切り替える際、機関回転数で判定
しては所望の空気量が供給されず、空燃比のばらつきを
助長させ、その結果、始動性の悪化や始動直後の安定性
を著しく疎外する原因となる。また、図4は空気流量制
御弁5の吸入負圧に対する空気流量を表した図である。
空気流量制御弁5のバルブ11は、非通電時に中間位置
に保持されている。この状態のまま仮に吸入負圧を上昇
させると、吸入負圧に対する空気流量は図4の実線aの
ようになる。次に電磁弁10に与えるデューティを仮に
70%とした場合の、吸入負圧に対する空気流量を図4
の破線bに示す。更に、空気流量制御弁5のダイヤフラ
ム12が作動する吸入負圧をP1として記載してある。
ここで注意しなければならないのは、破線bはバルブ1
1がデューティ70%の位置に強制的に固定された場合
の空気流量であり、実際にはダイヤフラムが作動しない
P1以下の吸入負圧領域では実線aの特性を示すことで
ある。つまり、始動時から始動後に至りフィードバック
開始デューティが仮に70%であったとすると、始動後
の吸入負圧上昇に対し空気流量は図中のo−ア−イ−ウ
の軌跡をたどることになる。更に、ダイヤフラム12の
作動吸入負圧P1は、温度に対する硬度変化があるため
図中のPLからPHの間でばらつく。例えば、作動吸入
負圧がPLの場合に前述と同様にフィードバックを開始
したとすると、始動後の吸入負圧上昇に対し空気流量は
図中のo−エ−オ−ウの軌跡をたどり、作動吸入負圧が
PHの場合は同様に図中のo−カ−キ−ウの軌跡をたど
ることになる。この現象はフィードバック開始時の空気
量がQLからQHの間(斜線部)でばらつくことにな
り、始動直後の空燃比設定を困難にさせる結果となる。
また、図中のPFは図3の完爆回転数N1の時の吸入負
圧を示しており、空気流量制御弁の作動圧力より低い。
よってこの状態でフィードバックを開始しても所望の空
気量は得られない。本発明では、フィードバック開始条
件を吸入負圧が所定値に達したとき、すなわち、図4の
Pokに達したときに判定するようにしてある。Pok
であれば作動負圧のばらつきの最大であるPHの圧力に
対しマージンを持っているため、製品ばらつき等に対し
ても充分な考慮がされており、その結果、安定した空燃
比設定が可能であり、始動性と始動直後の回転安定性に
優れた内燃機関のアイドル回転数制御装置を提供するこ
とができる。また、Pokに達した後、所定時間経過後
にフィードバックを開始するようにすることにより、更
に安定したフィードバック制御への移行が実現できる。
次に本発明によるアイドル回転数制御装置の始動時から
始動後における制御プログラムのフローチャートを図5
に示す。まず、ステップ101で機関の始動モードか否
かを判定する。始動モードの状態判定はイグニッション
スイッチのオン/オフ状態や、スタータSWのオン/オ
フ状態等を検出し、更に回転数条件等を判定して行う。
次に始動モードであると判定された場合、ステップ10
2に進む。ステップ102ではフィードバック許可条件で
ある吸入負圧の上昇を見る。ここでは機関の吸入負圧P
Mが空気流量制御弁の作動開始可能圧力であるPokに
達したか否かを判定する。吸入負圧PMが作動開始可能
圧力であるPokに達していない場合には、ステップ1
03で始動時の空気流量制御弁制御の始動時デューティ
をセットする。ここでは始動時出力デューティ(DUT
Y)のレジスタにSTDUTYをセットする。その後、プログ
ラムはステップ102の判定を繰り返し、始動モードを
終了したと判定した時点でステップ104の始動後モー
ドに移行しフィードバック制御によるアイドル回転数制
御を行う。なお、吸入負圧PMが空気流量制御弁の作動
開始可能圧力であるPokに達したか否かを判定し条件
成立後、所定時間の経過を更に判定する場合には、ステ
ップ105を追加しPokに達した後の経過時間Tが所
定の時間TIMPOKを経過したか否かを判定する。
FIG. 1 shows an electronically controlled fuel injection type internal combustion engine equipped with an idle speed control device according to the present invention, which includes an air cleaner 1, a throttle chamber 2 and an intake manifold 3.
The air flow rate control valve 5 is attached to a passage that bypasses the throttle valve 4 in the throttle chamber 2 by sucking air through the air. The air flow rate control valve 5 is controlled by a duty signal from the control unit 6. The control unit 6 inputs the outputs of a water temperature sensor 7 for detecting the cooling water temperature of the engine, a pressure sensor 8 for detecting the intake pipe pressure and calculating the intake air amount, etc., and a ROM (not shown) in the control unit 6 Various actuators such as the injector 9 and the air flow rate control valve 5 are controlled according to a control program stored in advance. Next, the structure of the air flow control valve 5 is shown in FIG. The air flow control valve 5 is composed of an electromagnetic valve 10 driven by a duty signal and a body 13 forming a valve 11 for measuring the amount of air held in the diaphragm 12. The passage 19 of the body 13 communicates with the upstream side of the throttle valve 4 in the intake passage and is on the atmospheric pressure side. The passage 20 communicates with the intake manifold 3 downstream of the throttle valve 4 and is on the negative pressure side. Further, the plunger 15 via the spring 14 of the solenoid valve 10 is controlled in the left-right direction in the figure by the electromagnetic force generated by the duty signal of the control unit 6 of the coil 16. On the other hand, the valve 11 for measuring the amount of air retained in the diaphragm 12 is the spring 1
7, the force of the solenoid valve 10 in the direction of the plunger 15 is received. Due to the above-mentioned force relationship, the position of the valve 11 when the air amount control valve 5 is not energized is held at the position where the spring 17 and the spring 14 are in balance with each other, and the valve 11 does not come into contact with the seat 18 of the body 13 and sticks to the valve. In contrast, it is in an advantageous state. The operation of the air amount control valve 5 is performed by the valve 11
Is operated in combination with the operation of the plunger 15 by the electromagnetic force of the solenoid valve 10. First, the suction negative pressure generated by the engine reaches the pressure chamber 22 formed by the diaphragm 12 from the passage 20 through the hollow passage in the valve 11. The diaphragm 12 is provided with a leak orifice 23 that communicates with the atmosphere, and the suction negative pressure is reduced. A force generated by the diaphragm 12 in the left direction in the figure is applied to the valve 11 by the suction negative pressure. On the other hand, the plunger 15 of the solenoid valve 10 is controlled to a position corresponding to the duty signal. Considering the constant duty state, the position of the plunger 15 is constant, and the operation of the valve 11 is such that the suction negative pressure of the pressure chamber 22 closes the hollow passage in the valve 11 by the plunger 15. Therefore, it is held at a fixed position. However, when a certain pressure is obtained due to the pressure reduction from the leak orifice 23 over time,
The valve 11 moves to the right in the figure because the force generated by the suction negative pressure on the surface of the valve 11 exceeds the force generated by the diaphragm 12. However, at this moment, a gap is formed between the hollow passage outlet in the valve 11 of the pressure chamber 22 which has been closed so far and the plunger 15, and the suction negative pressure is applied to the diaphragm 12 again.
Will follow the original plunger 15 position. By repeating the above operation, as a result, the valve 11
Is controlled to the plunger position set by the duty signal. This means that the position of the plunger 15 is the pressure chamber 2
This means that only the pressure of 2 is controlled, and the driving force of the electromagnetic force of the electromagnetic valve 10 does not contribute to the driving force of the valve 11. Therefore, the valve 11 is the diaphragm 1
2 is driven by the difference between the force generated by the valve 11 and the force generated by the suction negative pressure on the surface of the valve 11, and the force generated by the diaphragm 12 is much larger than the force generated by the solenoid valve, so the separation force for valve sticking is set to a large value. can do. It can be seen that the air amount control valve does not operate unless the suction negative pressure applied to the diaphragm 12 reaches a certain value. This has the greatest effect at the time of starting when suction negative pressure starts to be generated. Next, a control method at the time of starting will be described. FIG. 3 shows the relationship between the engine speed and the suction negative pressure at the time of starting. The engine speed increases from the cranking state after the start of the engine, to the initial explosion, and then to the target rotation after the complete explosion. Here, N1 in the figure is the complete explosion determination rotation speed described in the prior art, which is a determination condition from the time of starting to the time of starting. When this condition is satisfied, the control of the fuel, ignition, and air flow control valve shifts from the start mode to the post-start mode, and the air flow control valve shifts from the fixed output at the start to the feedback correction control. To do. N1 is usually set to a value around 400 rpm. The reason for setting a low value around 400 rpm is to end a long fuel injection pulse time for achieving a small air-fuel ratio (mixing ratio is rich) at the start as early as possible. That is, even if one engine start fails, the engine speed is set to a low value so that the engine will rotate stably in order to prevent the air-fuel mixture from becoming rich. Next, paying attention to the movement of the suction negative pressure at the time of starting, like the engine speed, it gradually reaches a high suction negative pressure from the initial explosion to the complete explosion. In the figure, P1 indicates the pressure at which the diaphragm of the air flow control valve operates. However, P1
It can be seen that the engine speed reaching N is N2 and N2> N1. This means that when switching from the start mode of the air amount control valve to the post-start mode, the desired air amount is not supplied as judged by the engine speed, which promotes variations in the air-fuel ratio, and as a result, It will cause deterioration and the alienation of stability immediately after starting. Further, FIG. 4 is a diagram showing the air flow rate with respect to the suction negative pressure of the air flow control valve 5.
The valve 11 of the air flow rate control valve 5 is held at the intermediate position when not energized. If the suction negative pressure is increased in this state, the air flow rate with respect to the suction negative pressure becomes as shown by the solid line a in FIG. Next, assuming that the duty given to the solenoid valve 10 is 70%, the air flow rate with respect to the suction negative pressure is shown in FIG.
Is indicated by a broken line b. Further, the suction negative pressure at which the diaphragm 12 of the air flow control valve 5 operates is described as P1.
It should be noted that the broken line b indicates the valve 1
1 is the air flow rate when it is forcibly fixed to the position of the duty of 70%, and it shows that the characteristic of the solid line a is shown in the suction negative pressure region below P1 where the diaphragm does not actually operate. That is, assuming that the feedback start duty is 70% from the time of starting to the time of starting, the air flow rate follows the locus of o-a-e in the figure with respect to the suction negative pressure increase after starting. Further, the operating suction negative pressure P1 of the diaphragm 12 varies from PL to PH in the figure because of the hardness change with temperature. For example, if feedback is started in the same manner as described above when the operating suction negative pressure is PL, the air flow rate follows the locus of o-a-ow in the figure with respect to the suction negative pressure increase after the start. Similarly, when the suction negative pressure is PH, the trajectory of the o-curve in the figure is followed. This phenomenon causes the amount of air at the start of feedback to vary between QL and QH (hatched portion), which results in difficulty in setting the air-fuel ratio immediately after the start.
Further, PF in the figure indicates the suction negative pressure at the complete explosion speed N1 in FIG. 3, which is lower than the operating pressure of the air flow control valve.
Therefore, even if feedback is started in this state, the desired air amount cannot be obtained. In the present invention, the feedback start condition is determined when the suction negative pressure reaches a predetermined value, that is, when it reaches Pok in FIG. Pok
In that case, since there is a margin for the PH pressure, which is the maximum variation in operating negative pressure, sufficient consideration is given to variations in products, and as a result, stable air-fuel ratio setting is possible. Therefore, it is possible to provide an idle speed control device for an internal combustion engine, which has excellent startability and rotational stability immediately after starting. Further, by starting the feedback after a lapse of a predetermined time after reaching Pok, a more stable transition to the feedback control can be realized.
Next, FIG. 5 is a flowchart of a control program from the start to the start of the idle speed control device according to the present invention.
Shown in First, in step 101, it is determined whether the engine is in the starting mode. The state of the starting mode is determined by detecting the on / off state of the ignition switch, the on / off state of the starter SW, etc., and further determining the rotational speed condition and the like.
Next, when it is determined that the engine is in the starting mode, step 10
Proceed to 2. In step 102, a rise in suction negative pressure, which is a feedback permission condition, is observed. Here, the suction negative pressure P of the engine
It is determined whether M has reached Pok, which is the pressure at which the air flow control valve can start operating. If the suction negative pressure PM has not reached Pok which is the operation startable pressure, step 1
At 03, the starting duty of the air flow rate control valve control at starting is set. Here, the output duty (DUT
Set STDUTY to the register of Y). After that, the program repeats the determination in step 102, and when it is determined that the start mode is finished, the program shifts to the post-start mode in step 104 and performs idle speed control by feedback control. If it is determined whether or not the suction negative pressure PM has reached Pok, which is the pressure at which the air flow control valve can be actuated, and if it is further determined that a predetermined time has elapsed after the condition is satisfied, step 105 is added to Pok. It is determined whether the elapsed time T after reaching T has exceeded a predetermined time TIMPOK.

【0008】[0008]

【発明の効果】本発明によれば始動時から始動後でのフ
ィードバック補正移行が安定して行われ、空燃比を適正
値に設定でき安定した始動性と始動直後の機関回転数の
安定性が得られる。
According to the present invention, the feedback correction transition from the start to the start is stably performed, the air-fuel ratio can be set to an appropriate value, and stable startability and stability of the engine speed immediately after the start are achieved. can get.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示すシステムの系統図。FIG. 1 is a systematic diagram of a system showing an embodiment of the present invention.

【図2】本発明の空気流量制御弁の一実施例を示す断面
図。
FIG. 2 is a sectional view showing an embodiment of an air flow control valve of the present invention.

【図3】本発明の機関始動時の状況を示す特性図。FIG. 3 is a characteristic diagram showing a situation at the time of starting the engine of the present invention.

【図4】本発明の空気量制御弁の流量特性図。FIG. 4 is a flow rate characteristic diagram of the air amount control valve of the present invention.

【図5】本発明の一実施例による始動時の空気量制御弁
制御のフローチャート。
FIG. 5 is a flowchart of air amount control valve control at the time of starting according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

5…空気流量制御弁、6…コントロールユニット、8…
圧力センサ。
5 ... Air flow control valve, 6 ... Control unit, 8 ...
Pressure sensor.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】内燃機関の吸気通路に介装されたスロット
ルバルブをバイパスするバイパス通路に所定のデューテ
ィ比をもった信号で制御される空気流量制御弁と、前記
内燃機関の始動時にデューティ比を所定値に固定する始
動時固定出力手段と、前記内燃機関の冷却水温、または
運転状態に応じた目標回転数を設定する手段と、前記目
標回転数を設定する手段と実回転数の偏差を求める手段
と、前記偏差に応じて実回転数を目標回転数に収束させ
るフィードバック補正手段とを含む内燃機関のアイドル
回転数制御装置において、始動時の吸入圧力が所定の圧
力に達したことを判定する始動時吸入圧力判定手段を備
え、前記始動時吸入圧力判定手段にもとづき、前記始動
時固定出力手段から前記フィードバック補正手段に移行
することを特徴とする内燃機関のアイドル回転数制御装
置。
1. An air flow control valve controlled by a signal having a predetermined duty ratio in a bypass passage bypassing a throttle valve interposed in an intake passage of the internal combustion engine, and a duty ratio when the internal combustion engine is started. Fixed start-time output means for fixing to a predetermined value, means for setting a target speed in accordance with the cooling water temperature of the internal combustion engine or operating conditions, means for setting the target speed, and a deviation between the actual speed In an idle speed control device for an internal combustion engine, which includes a means and a feedback correction means for converging an actual speed to a target speed according to the deviation, it is determined that the suction pressure at the start has reached a predetermined pressure. A start-up suction pressure determination means, and based on the start-up suction pressure determination means, shifts from the start-time fixed output means to the feedback correction means. Idle speed control apparatus for an internal combustion engine that.
【請求項2】内燃機関の吸気通路に介装されたスロット
ルバルブをバイパスするバイパス通路に所定のデューテ
ィ比をもった信号で制御される空気流量制御弁と、前記
内燃機関の始動時にデューティ比を所定値に固定する始
動時固定出力手段と、前記内燃機関の冷却水温、または
運転状態に応じた目標回転数を設定する手段と、前記目
標回転数を設定する手段と実回転数の偏差を求める手段
と、前記偏差に応じて実回転数を目標回転数に収束させ
るフィードバック補正手段とを含む内燃機関のアイドル
回転数制御装置において、始動時の吸入圧力が所定の圧
力に達したことを判定する始動時吸入圧力判定手段と、
前記始動時吸入圧力判定手段が動作後、所定時間経過後
に、前記始動時固定出力手段から前記フィードバック補
正手段に移行することを特徴とする内燃機関のアイドル
回転数制御装置。
2. An air flow control valve controlled by a signal having a predetermined duty ratio in a bypass passage bypassing a throttle valve provided in an intake passage of the internal combustion engine, and a duty ratio when starting the internal combustion engine. Fixed start-time output means for fixing to a predetermined value, means for setting a target speed in accordance with the cooling water temperature of the internal combustion engine or operating conditions, means for setting the target speed, and a deviation between the actual speed In an idle speed control device for an internal combustion engine, which includes a means and a feedback correction means for converging an actual speed to a target speed according to the deviation, it is determined that the suction pressure at the start has reached a predetermined pressure. Starting suction pressure determination means,
The idle speed control device for an internal combustion engine, wherein the starting fixed output means shifts to the feedback correcting means after a lapse of a predetermined time after the starting suction pressure determining means operates.
【請求項3】請求項1または2において、前記空気流量
制御弁は電磁弁に入力される電気信号に応じて空気量を
制御し、ダイヤフラムに作用する駆動負圧を前記電磁弁
に入力される電気信号に応じて制御する駆動負圧制御手
段を有する内燃機関のアイドル回転数制御装置。
3. The air flow control valve according to claim 1 or 2, wherein the air flow rate control valve controls an air amount in accordance with an electric signal input to the solenoid valve, and a driving negative pressure acting on a diaphragm is input to the solenoid valve. An idle speed control device for an internal combustion engine having a drive negative pressure control means for controlling according to an electric signal.
JP1735096A 1996-02-02 1996-02-02 Idle engine speed controller for internal combustion engine Pending JPH09209806A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1735096A JPH09209806A (en) 1996-02-02 1996-02-02 Idle engine speed controller for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1735096A JPH09209806A (en) 1996-02-02 1996-02-02 Idle engine speed controller for internal combustion engine

Publications (1)

Publication Number Publication Date
JPH09209806A true JPH09209806A (en) 1997-08-12

Family

ID=11941607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1735096A Pending JPH09209806A (en) 1996-02-02 1996-02-02 Idle engine speed controller for internal combustion engine

Country Status (1)

Country Link
JP (1) JPH09209806A (en)

Similar Documents

Publication Publication Date Title
JP3060897B2 (en) Intake flow control device for internal combustion engine
JPS6250651B2 (en)
KR100317158B1 (en) Idling speed control system of internal combustion engine
JPH062582A (en) Fuel injection device for internal combustion engine
JPH09209806A (en) Idle engine speed controller for internal combustion engine
JPH0232853Y2 (en)
JPH0849587A (en) Intake air quantity control device for internal combustion engine
JPH09158756A (en) Idling engine speed control device for internal combustion engine
US4442811A (en) Method and apparatus for expediting the starting of an internal combustion engine
JP2001329878A (en) Exhaust gas recirculation control device
JPH0615829B2 (en) Electronically controlled fuel injection device for internal combustion engine
JPH04325747A (en) Air-fuel ratio control device for internal combustion engine
JP3088539B2 (en) Engine control device
KR19980078620A (en) Fuel injection method during hot restart of automobile
JPH05321737A (en) Abnormality detecting device for fuel pressure regulator control system
JPH0631160Y2 (en) Auxiliary equipment drive control device
JPH0756233B2 (en) Engine idle speed controller
JPS61116045A (en) Number of idle revolutions control device for electronic control fuel injection internal-combustion engine
JPS6146438A (en) Revolution-speed controller for engine
JPS60111037A (en) Idle controller of engine
JPS62174556A (en) Control method for air-fuel ratio of air-fuel mixture fed to engine
JPS6325338A (en) Intake air amount control device for engine
JPS6248941A (en) Suction air quantity controller
JPH09177585A (en) Treating method for pressure sensor failure
JPH039316B2 (en)