JPH0920927A - Method for partioning atmosphere in continuous annealing furnace - Google Patents

Method for partioning atmosphere in continuous annealing furnace

Info

Publication number
JPH0920927A
JPH0920927A JP16755795A JP16755795A JPH0920927A JP H0920927 A JPH0920927 A JP H0920927A JP 16755795 A JP16755795 A JP 16755795A JP 16755795 A JP16755795 A JP 16755795A JP H0920927 A JPH0920927 A JP H0920927A
Authority
JP
Japan
Prior art keywords
zone
gas
atmosphere
buffer zone
throttle portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP16755795A
Other languages
Japanese (ja)
Inventor
Takeshi Kimura
武 木村
Kenichi Yatsugayo
健一 八ケ代
Masayoshi Mizuguchi
政義 水口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP16755795A priority Critical patent/JPH0920927A/en
Publication of JPH0920927A publication Critical patent/JPH0920927A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To keep gas quantity in each zone always to constant and to obtain a product having the stable quality by arranging plural contracted parts without contacting with a steel sheet at a boundary of the zones, forming an atmospheric buffering area having a gas exhaust hole between the contracted parts and specifying the gas exhaust quantity from this gas exhaust hole. SOLUTION: For example, in a continuous annealing furnace 1, a heating zone 2, soaking zone 3 and cooling zone 4 are arranged, and the buffering area 7 formed with the contracted parts 5, 6 is arranged between the soaking zone 3 and the cooling zone 4 and atmospheric gases of 65-70 deg.C and -20--30 deg.C are supplied from supplying devices 8, 9, respectively. The atmospheric gases in the heating zone 2 and the soaking zone 3 are exhausted from the gas exhaust hole 10 and the gas exhaust hole 11 having a flow rate adjusting device 13 to out of the furnace. Since the contracted parts do not develop the deterioration because of non-contact with the steel sheet, the gas flow in the furnace does not vary by keeping the gas flow rate of the gas exhaust hole 11 always to the constant. Further, the atmospheric gas from each zone adjoined to the buffering area 7 is passed through the contracted parts by a prescribed quantity and exhausted from the gas exhaust hole 11.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は連続焼鈍炉における
雰囲気仕切り方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for partitioning an atmosphere in a continuous annealing furnace.

【0002】[0002]

【従来の技術】例えば、ストリップの連続焼鈍炉は、加
熱帯、均熱帯、冷却帯を連設されたものや、加熱帯、脱
炭帯、還元帯および冷却帯を連設されたものなどがあ
る。それぞれの帯域では所望の雰囲気ガスとし、連続焼
鈍あるいは連続脱炭焼鈍が行われる。
2. Description of the Related Art For example, continuous strip annealing furnaces include those in which a heating zone, a soaking zone, and a cooling zone are continuously provided, and those in which a heating zone, a decarburizing zone, a reduction zone and a cooling zone are consecutively provided. is there. Continuous annealing or continuous decarburizing annealing is performed with a desired atmosphere gas in each zone.

【0003】表面性状を特に厳しく管理する必要がある
ストリップや、脱炭を必要とするものや、更には鋼板表
面の酸化層を管理する必要があるストリップを連続焼鈍
する場合には、例えば加熱帯、脱炭帯、還元帯各帯を所
定雰囲気例えば、露点を特定範囲に維持し、また雰囲気
ガス組成中の特定成分を常に一定濃度に保持する等、前
記各帯域の処理目的に応じたものにする必要がある。
In the case of continuously annealing strips whose surface properties need to be controlled strictly, those which need to be decarburized, and strips whose oxide layer on the surface of the steel sheet needs to be controlled, for example, a heating zone. , Decarburization zone, reduction zone each atmosphere in a predetermined atmosphere, for example, dew point is maintained in a specific range, and a specific component in the atmosphere gas composition is always kept at a constant concentration. There is a need to.

【0004】かかることから、連続焼鈍炉における各帯
の境界には雰囲気仕切りが設けられ、炉内の雰囲気ガス
の混合を防ぐような提案がなされている。例えば特開平
4−304322号公報では、複数の仕切りを緩衝帯を
挟んで設け、各隔離室への流入ガスを、緩衝帯に設けた
排気孔より炉外へ排出することで各帯域間の雰囲気を完
全分離可能であることが開示されている。
[0004] Therefore, it has been proposed to provide an atmosphere partition at the boundary of each zone in the continuous annealing furnace to prevent mixing of the atmosphere gas in the furnace. For example, in Japanese Unexamined Patent Application Publication No. 4-304322, a plurality of partitions are provided with a buffer zone sandwiched therebetween, and the gas flowing into each isolation chamber is discharged from the furnace through an exhaust hole provided in the buffer zone to create an atmosphere between the zones. Is disclosed to be completely separable.

【0005】このように連続焼鈍炉において現在用いら
れている雰囲気仕切りは、ストリップ板面に接触させる
形式のものが多く用いられていることから、接触面の摩
耗による仕切り性の経時変化が生じ、緩衝帯へ流入する
雰囲気ガス量の変動等が生じているのが実情である。一
方、各帯域の雰囲気を所望の組成に保つためには、隣接
帯からの一定量以上のガス侵入を防ぐことは勿論、ガス
中成分例えば脱炭焼鈍の場合の如く、水分とストリップ
の反応が生じ、水分が消費されているような場合、帯域
中のガス量の変化は即、雰囲気(露点)の変化に繋が
り、炉内反応安定化の大きな阻害要因となっている。
As described above, since most of the atmosphere partitions currently used in the continuous annealing furnace are of the type in which they come into contact with the strip plate surface, the partitioning property changes with time due to wear of the contact surface. The reality is that the amount of atmospheric gas flowing into the buffer zone fluctuates. On the other hand, in order to keep the atmosphere in each zone at a desired composition, it is of course necessary to prevent a certain amount or more of gas from invading the adjacent zones, and to prevent the reaction between moisture and strip as in the case of decarburization annealing. When water is generated and consumed, a change in the gas amount in the zone immediately leads to a change in the atmosphere (dew point), which is a major impediment to the stabilization of the reaction in the furnace.

【0006】[0006]

【発明が解決しようとする課題】本発明は、各帯域間の
ガス混合を一定量以下に安定的に防止するとともに、各
帯域から仕切り性確保のために引き落とされるガス量を
常に一定に保つことを可能とし、各帯域内のガス量の時
間的,空間的変動を抑えることを可能とする仕切り方法
にある。
DISCLOSURE OF THE INVENTION The present invention stably prevents the gas mixture between the zones below a certain amount, and always keeps the amount of gas withdrawn from each zone in order to secure partitioning at a constant level. And a partitioning method that can suppress the temporal and spatial fluctuations of the gas amount in each zone.

【0007】[0007]

【課題を解決するための手段】本発明の要旨は、雰囲気
ガス組成または雰囲気ガスの露点が異なる複数の帯域が
設けられた連続焼鈍炉において、帯域境界に鋼板への接
触物を有さない絞り部を間隔をおいて複数設け、該絞り
部間で排気口を有する雰囲気緩衝帯を形成し、該緩衝帯
に隣接する各帯域から雰囲気ガスを次式を満たすガス量
Qで該絞り部を通過せしめ該排気口から排気することを
特徴とする連続焼鈍炉における雰囲気仕切り方法にあ
る。 雰囲気緩衝帯の鋼板入側隣接帯から緩衝帯に流すガス量
1 (m3 /sec) Q1 ≧150DK (WS H/L) (1) DK :緩衝帯雰囲気ガスの拡散係数(cm2 /sec),
S :絞り部幅(m) H:絞り部空間高さ(m),L:絞り部長さ(m) 雰囲気緩衝帯の鋼板出側隣接帯から緩衝帯に流すガス量
2 (m3 /sec) QR ≧C(A−1)/(A・B−1) (2) A=W/WS ・Q2 /C B= exp[0.17・W・L{1/C−1/(Q2 ・W
/WS )}] C=W・V2 {−V/6H2 ・D)+1}/(D・H) D=6Q2 /(WS ・H3 )+3V/H2R :雰囲気緩衝帯から出側隣接帯域への許容侵入ガス
量(m3 /sec) WS :絞り部幅(m),H:絞り部高さ(m),L:絞
り部長さ(m) W:板幅(m),V:ラインスピード(m/sec)
The gist of the present invention is to provide a continuous annealing furnace in which a plurality of zones having different atmospheric gas compositions or dew points of the atmospheric gas are provided, and a diaphragm having no contact with the steel sheet at the zone boundary. A plurality of portions are provided at intervals, an atmosphere buffer zone having an exhaust port is formed between the throttle zones, and the atmosphere gas from each zone adjacent to the buffer zone passes through the throttle zone with a gas amount Q satisfying the following equation. A method for partitioning an atmosphere in a continuous annealing furnace, characterized by exhausting from the exhaust port. Gas amount Q 1 to flow from the steel plate entry side adjacent zone atmosphere buffer zone to the buffer zone (m 3 / sec) Q 1 ≧ 150D K (W S H / L) (1) D K: diffusion coefficient of the buffer zone ambient gas ( cm 2 / sec),
W S : Width of throttle portion (m) H: Space height of throttle portion (m), L: Length of throttle portion (m) Amount of gas flowing from the zone adjacent to the steel plate outlet side of the atmosphere buffer zone to the buffer zone Q 2 (m 3 / sec) Q R ≧ C (A -1) / (A · B-1) (2) A = W / W S · Q 2 / C B = exp [0.17 · W · L {1 / C-1 / (Q 2 · W
/ W S)}] C = W · V 2 {-V / 6H 2 · D) +1} / (D · H) D = 6Q 2 / (W S · H 3) + 3V / H 2 Q R: Atmosphere buffer Allowable amount of invading gas from the strip to the adjacent zone on the output side (m 3 / sec) W S : Width of throttle portion (m), H: Height of throttle portion (m), L: Length of throttle portion (m) W: Sheet width (M), V: Line speed (m / sec)

【0008】以下、本発明を一実施例に基づき、図面を
参照して詳細に説明する。図1において、1は連続焼鈍
炉で該炉は、この実施例では加熱帯2、均熱帯3、冷却
帯4が設けられている。均熱帯3と冷却帯4の間に絞り
部5、6により形成された緩衝帯7が設けられている。
8は65〜70℃の高露点の雰囲気ガス供給装置であ
り、加熱帯2、均熱帯3の炉内に分割して供給されてい
る。9は−20〜−30℃の低露点の雰囲気ガス供給装
置であり、冷却帯4の炉内に供給されている。加熱帯2
および均熱帯3の雰囲気ガスは、排気口10および排気
口11から炉外に排出され、冷却帯4の雰囲気ガスは排
気口11および12から炉外に排出される。13は排気
口11の流量調整装置である。
The present invention will be described below in detail based on an embodiment with reference to the drawings. In FIG. 1, reference numeral 1 denotes a continuous annealing furnace, which is provided with a heating zone 2, a soaking zone 3, and a cooling zone 4 in this embodiment. Between the soaking zone 3 and the cooling zone 4, a buffer zone 7 formed by the narrowed portions 5 and 6 is provided.
Reference numeral 8 denotes an atmospheric gas supply device having a high dew point of 65 to 70 ° C., which is divided and supplied into the furnace of the heating zone 2 and the soaking zone 3. Reference numeral 9 denotes an atmospheric gas supply device having a low dew point of −20 to −30 ° C., which is supplied into the furnace in the cooling zone 4. Heating zone 2
The atmospheric gas in the soaking zone 3 is discharged from the exhaust port 10 and the exhaust port 11 to the outside of the furnace, and the atmospheric gas in the cooling zone 4 is discharged from the exhaust ports 11 and 12 to the outside of the furnace. Reference numeral 13 is a flow rate adjusting device for the exhaust port 11.

【0009】絞り部は鋼板と接触しないため劣化が無い
ことから、排気口11の流量を常に一定に保持すること
で炉内のガス流れは変動しない。一方、緩衝帯7の雰囲
気ガスは加熱帯、均熱帯の雰囲気ガスと冷却帯の雰囲気
ガスが混合したものであり、該混合ガスが隣接帯(均熱
帯、冷却帯)に一定以上の量が侵入すると、各隣接帯の
所望の雰囲気ガス組成(露点)が得られず、鋼板の反応
に異常が生じる。各隣接帯から緩衝帯に雰囲気ガスが流
入しているにもかかわらず、該混合ガスが絞り部を乗り
越え隣接帯へ侵入するのは、該混合ガスの分子の拡散運
動によるものと鋼板の随伴によるものがある。本発明者
は、該混合ガスの各隣接帯に侵入するガス量は、該混合
ガスの拡散係数と鋼板の通板速度を考慮し、絞り部5、
6の形状(長さ、幅、空間高さ)または各隣接帯から緩
衝帯に流入するガス量を調整することで一定量に抑制で
きることを知見した。
Since the throttle portion does not come into contact with the steel plate and is not deteriorated, the gas flow in the furnace does not fluctuate by always keeping the flow rate of the exhaust port 11 constant. On the other hand, the atmospheric gas in the buffer zone 7 is a mixture of the atmospheric gas in the heating zone, the soaking zone and the atmospheric gas in the cooling zone, and the mixed gas enters the adjacent zone (the soaking zone, cooling zone) in a certain amount or more. Then, the desired atmospheric gas composition (dew point) of each adjacent zone cannot be obtained, and the reaction of the steel sheet becomes abnormal. Despite the atmospheric gas flowing from each adjacent zone to the buffer zone, the mixed gas passes over the constricted portion and enters the adjacent zone due to the diffusion motion of the molecules of the mixed gas and the accompanying steel sheet. There is something. The present inventor considers the diffusion coefficient of the mixed gas and the passing speed of the steel sheet to determine the amount of gas that enters the adjacent zones of the mixed gas,
It was found that the amount of gas flowing into the buffer zone from each adjacent zone or the shape (length, width, space height) of 6 can be suppressed to a constant amount.

【0010】まず、絞り部5においては、緩衝帯から均
熱帯へのガスの侵入はガスの拡散運動によることから、
ガス種類,温度,絞り部形状により決まる理論拡散侵入
ガス量に比例したガス量を均熱帯から緩衝帯へ流入せし
めることで該侵入ガスを防止できると考え、絞り部の形
状と均熱帯から緩衝帯へ流入せしめるガス量およびガス
温度の条件を変えて実験を行った。その結果、図2に示
したごとく次式(3)を満たすガス量Q5 以上のガス量
を均熱帯から緩衝帯に流入せしめることにより緩衝帯か
ら均熱帯3の侵入を防止できるという知見を得た。 Q5 ≧150DK (WS H/L) (3) DK :緩衝帯雰囲気ガスの拡散係数(cm2 /sec),
S :絞り部幅(m) H:絞り部空間高さ(m),L:絞り部長さ(m)
First, in the narrowed portion 5, the invasion of the gas from the buffer zone to the soaking zone is due to the diffusion motion of the gas.
Theoretical diffusion determined by the type of gas, temperature, and throttle shape The amount of gas that is proportional to the amount of invading gas can be prevented from flowing into the buffer zone from the soaking zone. Experiments were conducted by changing the conditions of the amount of gas and the gas temperature that flowed into the. As a result, as shown in FIG. 2, it has been found that it is possible to prevent the infiltration of the soaking zone 3 from the buffer zone by causing a gas quantity of 5 or more satisfying the following equation (3) to flow from the soaking zone to the buffer zone. It was Q 5 ≧ 150D K (W S H / L) (3) D K: diffusion coefficient of the buffer zone ambient gas (cm 2 / sec),
W S : Width of throttle portion (m) H: Space height of throttle portion (m), L: Length of throttle portion (m)

【0011】一方、絞り部6においては、緩衝帯ガスの
冷却帯への侵入は拡散運動により鋼板による随伴が支配
的になることから、随伴流を形成する因子である絞り部
6の形状と鋼板の幅、通板速度および冷却帯から緩衝帯
に流入せしめるガス量により表すことができるという知
見を得た。以下、図3に示すような鋼板による随伴に伴
う緩衝帯7から冷却帯4への侵入ガス量の定式化の方法
を説明する。
On the other hand, in the throttle portion 6, the diffusion of the buffer gas into the cooling zone is predominantly accompanied by the steel sheet due to the diffusion motion. Therefore, the shape of the throttle portion 6 and the steel sheet, which are factors that form the associated flow. It has been found that it can be represented by the width of the plate, the strip passing speed, and the amount of gas flowing into the buffer zone from the cooling zone. Hereinafter, a method for formulating the amount of gas invading from the buffer zone 7 to the cooling zone 4 accompanying the accompanying steel sheet as shown in FIG. 3 will be described.

【0012】まず、絞り部6内のガス流れは運動方程式
(4)で表すことができる。 −(dτ/dy)=ΔPgc /L (4) y :板からの高さ ,τ :水平通板方向の剪断力 ΔP:絞り部前後の差圧,gc :重力換算係数 式(4)を積分することにより式(5)のように表すこ
とができる。 τ=−ΔPgc y/L+C1 =−μ(du/dy) (5) u:yにおける水平通板方向流速,μ:粘性係数,
1 :定数
First, the gas flow in the throttle portion 6 can be expressed by the equation of motion (4). -(Dτ / dy) = ΔPg c / L (4) y: Height from plate, τ: Shearing force in the horizontal plate passing direction ΔP: Differential pressure before and after the throttle, g c : Gravity conversion coefficient formula (4) Can be expressed as in equation (5). τ = -ΔPg c y / L + C 1 = -μ (du / dy) (5) u: horizontal passage plate direction velocity in y, mu: viscosity coefficient,
C 1 : constant

【0013】式(5)を境界条件 y=0でu=V,y
=H/2でu=0 および絞り部内のガス流量マスバラ
ンス式(6)を考慮することにより、鋼板に随伴するガ
ス流量を式(7)のごとく表すことができる。
Boundary condition y = 0, u = V, y
= H / 2 and u = 0 and the gas flow rate mass balance equation (6) in the throttle portion are taken into consideration, the gas flow rate associated with the steel sheet can be expressed as in equation (7).

【数1】 C=W・V2 {−V/(6H2 ・D)+1}/(D・H) (7) ただし、D=6Q6 /(WS ・H3 )+3V/H26 :各帯から絞り部を通過せしめる雰囲気ガス量(m
3 /sec) QR :雰囲気緩衝帯から出側隣接帯域への許容侵入ガス
量(m3 /sec) WS :絞り部幅(m),H:絞り部空間高さ(m),
L:絞り部長さ(m) W:板幅(m),V:ラインスピード(m/sec)
[Equation 1] C = W · V 2 {−V / (6H 2 · D) +1} / (D · H) (7) where D = 6Q 6 / (W S · H 3 ) + 3V / H 2 Q 6 : each band Amount of atmospheric gas (m
3 / sec) Q R: allowable penetration gas amount to the delivery side adjacent bands from atmosphere buffer zone (m 3 / sec) W S : throttle section width (m), H: diaphragm portion space height (m),
L: Drawing length (m) W: Plate width (m), V: Line speed (m / sec)

【0014】随伴流中のガス組成は、緩衝帯7の直後は
緩衝帯ガスの組成であるが、絞り部6を通過する間に徐
々に冷却帯4のガスに希釈される。この希釈現象の駆動
力を随伴ガス中と冷却帯4から緩衝帯へ通過せしめるガ
ス中に含まれる緩衝帯ガス濃度差と考えると、絞り部の
微小区間dLにおける単位時間当たりの希釈量は式
(8)で表すことができる。 k・X・WdL=2{1/C−1/(Q6 ・W/WS )}dX (8) X:微小区間dLにおける緩衝帯ガス濃度差(随伴流−
冷却帯→緩衝帯流) k:係数 式(8)を絞り部6の区間で積分すると式(9)のよう
に表すことができる。 X7/X4= exp[2k・W・L{1/C−1/(Q6 ・W/WS )}] (9) X4:冷却帯4と絞り部6の境界における濃度差 X7:緩衝帯7と絞り部6の境界における濃度差
The gas composition in the accompanying flow is the composition of the buffer zone gas immediately after the buffer zone 7, but is gradually diluted with the gas in the cooling zone 4 while passing through the throttle section 6. Considering the driving force of this dilution phenomenon as the buffer zone gas concentration difference contained in the associated gas and the gas that passes from the cooling zone 4 to the buffer zone, the dilution amount per unit time in the minute section dL of the throttle portion is calculated by the formula ( It can be represented by 8). k · X · WdL = 2 { 1 / C-1 / (Q 6 · W / W S)} dX (8) X: buffer zone gas concentration difference in the minute section dL (accompanying flow -
Cooling zone → Buffer zone flow) k: Coefficient Equation (8) can be expressed as Equation (9) by integrating in the section of the throttle unit 6. X7 / X4 = exp [2k · W · L {1 / C-1 / (Q 6 · W / W S)}] (9) X4: density difference at the boundary of the cooling zone 4 and the throttle portion 6 X7: buffer strips 7 and the density difference at the boundary between the diaphragm 6

【0015】ここで、緩衝帯7と絞り部6の境界におけ
る随伴流中の緩衝帯ガス濃度は、ほぼ1に近く、また、
冷却帯4と絞り部6の境界における随伴流中の緩衝帯ガ
ス濃度はX4に近いことから、絞り部6内の緩衝帯ガス
のマスバランスを考慮して、式(9)より、冷却帯4に
侵入する直前の随伴流中の緩衝帯ガス濃度R(ほぼX4
に等しい)は式(10)で表すことができる。 R=(A−1)/(A・B−1) (10) A=W/WS ・Q6 /C B= exp[2k・W・L{1/C−1/(Q・W/
S )}] 従って、式(7),(10)より緩衝帯7から冷却帯4
に侵入するガス量Q74は式(11)で表せる。 Q74=R・C (11)
Here, the buffer zone gas concentration in the accompanying flow at the boundary between the buffer zone 7 and the throttle section 6 is close to 1, and
Since the buffer zone gas concentration in the accompanying flow at the boundary between the cooling zone 4 and the throttle section 6 is close to X4, considering the mass balance of the buffer zone gas in the throttle section 6, the cooling zone 4 is calculated from the equation (9). Gas concentration R (approximately X4
Equal to) can be represented by equation (10). R = (A-1) / (A · B-1) (10) A = W / W S · Q 6 / C B = exp [2k · W · L {1 / C-1 / (Q · W /
W S )}] Therefore, from the equations (7) and (10), the buffer zone 7 to the cooling zone 4
The amount Q 74 of gas that enters the space can be expressed by equation (11). Q 74 = R ・ C (11)

【0016】式(11)中の未知数である係数kを本発
明者は、鋼板の通板速度,幅,絞り部の形状および冷却
帯から緩衝帯に流入せしめるガス量の条件を変えた実験
を行うことで求めた。式(11)による計算値と実績値
の関係を図4に示した。従って、式(12)を満たすガ
ス量Q6 を冷却帯から緩衝帯に流入せしめることによ
り、緩衝帯から冷却帯への侵入を品質に影響しない許容
侵入量QR 以下に抑制できる。 QR ≧C(A−1)/(A・B−1) (12) A=W/WS ・Q6 /C B= exp[0.17・W・L{1/C−1/(Q6 ・W
/WS )}] C=W・V2 {−V/6H2 ・D)+1}/(D・H) D=6Q6 /(WS ・H3 )+3V/H26 :各帯から絞り部を通過せしめる雰囲気ガス量(m
3 /sec) QR :雰囲気緩衝帯から出側隣接帯域への許容侵入ガス
量(m3 /sec) WS :絞り部幅(m),H:絞り部空間高さ(m),
L:絞り部長さ(m) W:板幅(m),V:ラインスピード(m/sec)
The inventor of the present invention used the coefficient k, which is an unknown number in the equation (11), by changing the conditions such as the sheet passing speed, the width, the shape of the narrowed portion, and the amount of gas flowing from the cooling zone to the buffer zone. Asked by doing. The relationship between the calculated value and the actual value by the equation (11) is shown in FIG. Therefore, the amount of gas Q 6 satisfying the equation (12) by allowed to flow from the cooling zone to the buffer zone can be suppressed from entering the cooling zone below the allowable entry amount Q R does not affect the quality of the buffer zone. Q R ≧ C (A-1 ) / (A · B-1) (12) A = W / W S · Q 6 / C B = exp [0.17 · W · L {1 / C-1 / ( Q 6 · W
/ W S )}] C = W · V 2 {−V / 6H 2 · D) +1} / (D · H) D = 6Q 6 / (W S · H 3 ) + 3V / H 2 Q 6 : each band Amount of atmospheric gas (m
3 / sec) Q R: allowable penetration gas amount to the delivery side adjacent bands from atmosphere buffer zone (m 3 / sec) W S : throttle section width (m), H: diaphragm portion space height (m),
L: Drawing length (m) W: Plate width (m), V: Line speed (m / sec)

【0017】[0017]

【実施例】本発明法と従来法で脱炭焼鈍を実施した際の
均熱帯露点および還元帯露点の経時変化を表1に示す。
表から本発明の実施例1〜3においては、いずれも炉内
露点は処理開始後10ケ月経過しても安定しており、こ
れに対し従来法では5ケ月更には10ケ月経過した時点
で露点が変動していることがわかる。
[Examples] Table 1 shows changes with time in the soaking zone dew point and the reduction zone dew point when decarburization annealing was carried out by the method of the present invention and the conventional method.
From the table, in each of Examples 1 to 3 of the present invention, the dew point in the furnace is stable even after 10 months have passed from the start of the treatment, whereas in the conventional method, the dew point is 5 months or even 10 months later. It can be seen that fluctuates.

【0018】[0018]

【表1】 [Table 1]

【0019】[0019]

【発明の効果】以上の様に、本発明によると連続焼鈍炉
における炉内雰囲気流れが一定となるために、反応装置
としての加熱帯、均熱帯の炉内の露点が安定し、常に一
定量の脱炭及び酸化量をもつ鋼板が製造できる。これに
より最終製品の品質不良による歩留まり落ちが少くなっ
た。
As described above, according to the present invention, since the atmosphere flow in the furnace in the continuous annealing furnace is constant, the heating zone as a reactor and the dew point in the soaking zone are stable, and the temperature is always constant. It is possible to manufacture steel sheets with the decarburization and oxidation amounts of. This reduced yield loss due to poor quality of the final product.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例における、炉装置構成を示す
図。
FIG. 1 is a diagram showing a furnace apparatus configuration in an embodiment of the present invention.

【図2】緩衝帯から均熱帯へ拡散により侵入する場合の
速度とその侵入を防止するために必要な均熱帯から緩衝
帯への流入ガス量の関係を示した図。
FIG. 2 is a diagram showing the relationship between the speed of invasion from the buffer zone to the soaking zone by diffusion and the amount of inflow gas from the soaking zone to the buffer zone, which is necessary to prevent the intrusion.

【図3】絞り部6内のガス流れとガス成分を示す概略
図。
FIG. 3 is a schematic diagram showing a gas flow and gas components in the throttle unit 6.

【図4】緩衝帯から冷却帯へ侵入するガス量に対する冷
却帯から緩衝帯に流入させるガス量、通板速度、板幅、
絞り部形状の関係を示した図。
FIG. 4 shows the amount of gas flowing into the buffer zone from the cooling zone with respect to the amount of gas entering the cooling zone from the buffer zone, the strip passing speed, the strip width,
The figure which showed the relationship of a diaphragm part shape.

【符号の説明】[Explanation of symbols]

1 連続焼鈍炉 2 加熱帯 3 均熱帯 4 冷却帯 5 入側絞り部 6 出側絞り部 7 緩衝帯 8 雰囲気ガス供給装置 9 雰囲気ガス供給装置 10 雰囲気ガス排気口 11 雰囲気ガス排気口 12 雰囲気ガス排気口 13 流量調整装置 14 鋼板 1 continuous annealing furnace 2 heating zone 3 soaking zone 4 cooling zone 5 inlet side throttle section 6 outlet side throttle section 7 buffer zone 8 atmosphere gas supply device 9 atmosphere gas supply device 10 atmosphere gas exhaust port 11 atmosphere gas exhaust port 12 atmosphere gas exhaust Mouth 13 Flow rate controller 14 Steel plate

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 雰囲気ガス組成または雰囲気ガスの露点
が異なる複数の帯域が設けられた連続焼鈍炉における雰
囲気仕切り方法において、帯域境界に鋼板への接触物を
有さない絞り部を間隔をおいて複数設け、該絞り部間で
排気口を有する雰囲気緩衝帯を形成し、該緩衝帯に隣接
する各帯域から雰囲気ガスを次式を満たすガス量Q1
2 で該絞り部を通過せしめ該排気口から排気すること
を特徴とする連続焼鈍炉における雰囲気仕切り方法。 雰囲気緩衝帯の鋼板入側隣接帯から緩衝帯に流すガス量
1 (m3 /sec) Q1 ≧150DK (WS H/L) (1) DK :緩衝帯雰囲気ガスの拡散係数(cm2 /sec),
S :絞り部幅(m) H:絞り部空間高さ(m),L:絞り部長さ(m) 雰囲気緩衝帯の鋼板出側隣接帯から緩衝帯に流すガス量
2 (m3 /sec) QR ≧C(A−1)/(A・B−1) (2) A=W/WS ・Q2 /C B= exp[0.17・W・L{1/C−1/(Q2 ・W
/WS )}] C=W・V2 {−V/6H2 ・D)+1}/(D・H) D=6Q2 /(WS ・H3 )+3V/H2R :雰囲気緩衝帯から出側隣接帯域への許容侵入ガス
量(m3 /sec) WS :絞り部幅(m),H:絞り部高さ(m),L:絞
り部長さ(m) W:板幅(m),V:ラインスピード(m/sec)
1. A method for partitioning an atmosphere in a continuous annealing furnace in which a plurality of zones having different atmospheric gas compositions or dew points of the atmospheric gas are provided, and a narrowed portion having no contact with a steel sheet is provided at the zone boundary. An atmosphere buffer zone having a plurality of exhaust ports is formed between the narrowed portions, and an atmospheric gas from each zone adjacent to the buffer zone is filled with a gas amount Q 1 ,
A method for partitioning an atmosphere in a continuous annealing furnace, which comprises passing the throttle portion at Q 2 and exhausting from the exhaust port. Gas amount Q 1 to flow from the steel plate entry side adjacent zone atmosphere buffer zone to the buffer zone (m 3 / sec) Q 1 ≧ 150D K (W S H / L) (1) D K: diffusion coefficient of the buffer zone ambient gas ( cm 2 / sec),
W S : Width of throttle portion (m) H: Space height of throttle portion (m), L: Length of throttle portion (m) Amount of gas flowing from the zone adjacent to the steel plate outlet side of the atmosphere buffer zone to the buffer zone Q 2 (m 3 / sec) Q R ≧ C (A -1) / (A · B-1) (2) A = W / W S · Q 2 / C B = exp [0.17 · W · L {1 / C-1 / (Q 2 · W
/ W S)}] C = W · V 2 {-V / 6H 2 · D) +1} / (D · H) D = 6Q 2 / (W S · H 3) + 3V / H 2 Q R: Atmosphere buffer Allowable amount of invading gas from the strip to the adjacent zone on the output side (m 3 / sec) W S : Width of throttle portion (m), H: Height of throttle portion (m), L: Length of throttle portion (m) W: Sheet width (M), V: Line speed (m / sec)
JP16755795A 1995-07-03 1995-07-03 Method for partioning atmosphere in continuous annealing furnace Withdrawn JPH0920927A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16755795A JPH0920927A (en) 1995-07-03 1995-07-03 Method for partioning atmosphere in continuous annealing furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16755795A JPH0920927A (en) 1995-07-03 1995-07-03 Method for partioning atmosphere in continuous annealing furnace

Publications (1)

Publication Number Publication Date
JPH0920927A true JPH0920927A (en) 1997-01-21

Family

ID=15851939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16755795A Withdrawn JPH0920927A (en) 1995-07-03 1995-07-03 Method for partioning atmosphere in continuous annealing furnace

Country Status (1)

Country Link
JP (1) JPH0920927A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014505795A (en) * 2011-02-04 2014-03-06 アンリツ テクノロジー アンド アセット マネージメント ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for controlling the protective gas atmosphere in a protective gas chamber for the treatment of metal strips

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014505795A (en) * 2011-02-04 2014-03-06 アンリツ テクノロジー アンド アセット マネージメント ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for controlling the protective gas atmosphere in a protective gas chamber for the treatment of metal strips

Similar Documents

Publication Publication Date Title
EP2960348B1 (en) Continuous annealing device and continuous hot-dip galvanising device for steel strip
KR20130094785A (en) Method and apparatus for contactlessly advancing substrates
CN1094521C (en) Continuous heat treatment furnace and atmosphere control method and cooling method in continuous heat treatment furnace
EP2960347B1 (en) Continuous annealing device and continuous hot-dip galvanising device for steel strip
ZA200502382B (en) Atmosphere control during continuous heat treatment of metal strips
EP1264915B1 (en) A carburising method and an apparatus therefor
JPH0920927A (en) Method for partioning atmosphere in continuous annealing furnace
EP0127333A1 (en) Method for reducing the volume of atmosphere needed to inhibit ingress of ambient oxygen into the furnace chamber of a continuous heat treatment furnace
EP3441481B1 (en) Cooling facility in continuous annealing furnace
KR20160045041A (en) Float glass production device and float glass production method using the same
EP3677833B1 (en) Burner and heating method using burner
JP2010147432A (en) Substrate processing apparatus, and method for manufacturing semiconductor device
EP2689871A1 (en) Method of finish heat treatment of iron powder and apparatus for finish heat treatment
JPH11158559A (en) Method for controlling atmosphere in continuous annealing furnace
JP4286544B2 (en) Method and apparatus for forced convection cooling of steel strip in continuous heat treatment equipment
JPH11124634A (en) Heat treatment apparatus of steel strip in continuous annealing process and its heat treatment method
JPH07207348A (en) Method for separating atmosphere in continuous annealing furnace
JPH08109466A (en) Nitriding of steel sheet
JP2927165B2 (en) Process gas supply and exhaust gas discharge method in continuous siliconizing line for high silicon steel strip production
EP2048250A1 (en) Sealing apparatus and strip plate continuously annealing equipment
JPS5852980A (en) Reduction incinerator
JPS5980713A (en) Heat treatment of steel product accompanied by no decarburization
JP2003247056A (en) Method and system for controlling atmosphere in heat treatment furnace
JPH0717942B2 (en) Atmosphere control method in continuous annealing furnace
JP3289632B2 (en) Manufacturing method and equipment for high silicon steel strip with excellent flatness

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020903