JPH09209118A - Heat resistant coated stainless steel - Google Patents

Heat resistant coated stainless steel

Info

Publication number
JPH09209118A
JPH09209118A JP3438796A JP3438796A JPH09209118A JP H09209118 A JPH09209118 A JP H09209118A JP 3438796 A JP3438796 A JP 3438796A JP 3438796 A JP3438796 A JP 3438796A JP H09209118 A JPH09209118 A JP H09209118A
Authority
JP
Japan
Prior art keywords
stainless steel
layer
aluminum
resistant coated
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3438796A
Other languages
Japanese (ja)
Inventor
Kazuo Osumi
和生 大角
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Ceramics Research Institute Co Ltd
Original Assignee
Isuzu Ceramics Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Ceramics Research Institute Co Ltd filed Critical Isuzu Ceramics Research Institute Co Ltd
Priority to JP3438796A priority Critical patent/JPH09209118A/en
Priority to US08/742,925 priority patent/US5976708A/en
Priority to DE69601612T priority patent/DE69601612T2/en
Priority to EP98201850A priority patent/EP0874062A3/en
Priority to EP96307965A priority patent/EP0771882B1/en
Publication of JPH09209118A publication Critical patent/JPH09209118A/en
Pending legal-status Critical Current

Links

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a heat resistant coated stainless steel increased in heat resistance and durability by forming a firm intermediate layer on the space between an aluminum coating layer on the surface and a base material. SOLUTION: A primary layer 3a composed of an aluminum alloy of aluminum and iron is formed on the topmost surface layer of a base material 8 composed of a stainless steel as a heat resistant coated stainless steel, a secondary layer 3b in which aluminum-iron compounds and aluminum-nickel compounds are dispersed into a ferritic stainless essentially consisting of iron and chromium is formed on the intermediate part, and the center part 8 is composed of an austenitic stainless.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は耐熱被覆を有するス
テンレス鋼、詳しくはデイーゼル機関用予熱栓の発熱線
などに用いる耐熱被覆ステンレス鋼に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a stainless steel having a heat resistant coating, and more particularly to a heat resistant coated stainless steel used for a heating wire of a preheating plug for a diesel engine.

【0002】[0002]

【従来の技術】従来、耐熱被覆ステンレス鋼として、溶
融メッキによりアルミニウムを被覆したものが実用化さ
れていた。しかしながら、溶融メッキによりアルミニウ
ムを被覆したステンレス鋼細線やステンレス鋼薄板は、
溶融メッキにより得られたアルミニウム合金層が脆く、
高温では基材であるステンレス鋼も脆化してしまう。同
様に、拡散処理により得られたアルミニウム合金層も脆
く、高温で合金層が基材であるステンレス鋼から剥離
し、基材も脆化してしまう。
2. Description of the Related Art Conventionally, heat-resistant coated stainless steel coated with aluminum by hot dip plating has been put into practical use. However, stainless steel thin wires and stainless steel thin plates coated with aluminum by hot dipping are
The aluminum alloy layer obtained by hot dip plating is brittle,
At high temperatures, the base material, stainless steel, also becomes brittle. Similarly, the aluminum alloy layer obtained by the diffusion treatment is also brittle, and the alloy layer peels off from the stainless steel that is the base material at high temperature, and the base material also becomes brittle.

【0003】[0003]

【発明が解決しようとする課題】本発明の課題は上述の
問題に鑑み、アルミニウム被覆層と基材との間に強固な
中間層を形成することにより耐熱性と耐久性を高めた耐
熱被覆ステンレス鋼を提供することにある。
SUMMARY OF THE INVENTION In view of the above problems, the object of the present invention is to provide a heat-resistant coated stainless steel having improved heat resistance and durability by forming a strong intermediate layer between the aluminum coating layer and the base material. To provide steel.

【0004】[0004]

【課題を解決するための手段】前記課題を解決するため
に、本発明の構成は最表面にアルミニウムおよび鉄・ア
ルミニウム合金からなる第1層が形成され、中間層に鉄
・クロムを主成分とするフェライト系ステンレス中にア
ルミニウム・鉄化合物とアルミニウム・ニッケル化合物
が分散する第2層が形成され、かつ中心部にオーステナ
イト系ステンレスが存在することを特徴とする。
In order to solve the above-mentioned problems, the structure of the present invention is such that a first layer made of aluminum and iron / aluminum alloy is formed on the outermost surface, and iron / chromium is the main component in the intermediate layer. The second layer in which the aluminum / iron compound and the aluminum / nickel compound are dispersed is formed in the ferritic stainless steel, and the austenitic stainless steel is present in the central portion.

【0005】また、本発明の構成は前記第1層の厚さが
10μm以下であり、前記第2層の平均結晶粒径が10
〜30μmであることを特徴とする。
Further, in the constitution of the present invention, the thickness of the first layer is 10 μm or less, and the average crystal grain size of the second layer is 10 μm or less.
3030 μm.

【0006】[0006]

【発明の実施の形態】ステンレス鋼の耐熱性と耐久強度
を向上させるために、基材としてのステンレス鋼の表面
に接着剤を用いてクロムとアルミニウムとの合金粉末を
結合したうえ、温度1100℃の真空中で約2時間熱処
理を施す。これにより、基材の表面にアルミニウムと鉄
・アルミニウム合金からなる厚さ10μm以下の第1層
を形成し、中間層に鉄・クロムを主成分とするフェライ
ト系ステンレス中にアルミニウム・鉄化合物とアルミニ
ウム・ニッケル化合物が分散する厚さ20μm以上の第
2層を形成し、中心部にオーステナイト系ステンレスと
する。
BEST MODE FOR CARRYING OUT THE INVENTION In order to improve heat resistance and durability of stainless steel, an alloy powder of chromium and aluminum is bonded to the surface of stainless steel as a base material using an adhesive and the temperature is set to 1100 ° C. Heat treatment is performed in a vacuum of about 2 hours. As a result, a first layer of aluminum and an iron / aluminum alloy having a thickness of 10 μm or less is formed on the surface of the base material, and an aluminum / iron compound and A second layer having a thickness of 20 μm or more in which a nickel compound is dispersed is formed, and austenitic stainless steel is formed at the center.

【0007】[0007]

【実施例】線径0.25mmのオーステナイト系ステン
レス鋼線(SUS304)8の表面に、アクリルゴム、有機溶
剤、イソヘキサンガスなどからなる合成ゴム系接着剤を
スプレーにより塗布した。合成ゴム系接着剤の表面に、
クロム50wt%とアルミニウム50wt%からなる合金の
粉末を付着させ、温度1100℃の真空中で約2時間熱
処理を施した。
EXAMPLE A synthetic rubber adhesive composed of acrylic rubber, an organic solvent, isohexane gas, etc. was applied onto the surface of an austenitic stainless steel wire (SUS304) 8 having a wire diameter of 0.25 mm by spraying. On the surface of synthetic rubber adhesive,
An alloy powder consisting of 50% by weight of chromium and 50% by weight of aluminum was adhered and heat treated in a vacuum at a temperature of 1100 ° C. for about 2 hours.

【0008】こうして得られた本発明による耐熱被覆ス
テンレス鋼線2の断面を分析した結果、図1に示すよう
に、ステンレス鋼線8の表面に、厚さ10〜50μmの
微細な分散相を有するFe-Cr-Ni-Al 合金層3が生成され
ていた。ステンレス鋼線8の表面の合金層3は単一層で
はなく、最表面にアルミニウムとアルミニウム・鉄合金
とからなる厚さ10μm以下の合金層すなわち第1層3
aが形成され、第1層3aの内側に、フェライト相4を
なす粒径10〜30μmの結晶粒4aのフェライト基地
の内部にアルミニウム・鉄化合物とアルミニウム・ニッ
ケル化合物が分散する厚さ20μm以上の合金層すなわ
ち第2層3bがあることが分つた。アルミニウム・鉄化
合物とアルミニウム・ニッケル化合物の平均結晶粒径は
1μm以下であつた。耐熱被覆ステンレス鋼線2の断面
の中心部8すなわち基材としてのステンレス鋼線には、
平均結晶粒径20〜50μmのオーステナイト組織のス
テンレスが存在する。フェライト素地の第2層3bは、
第1層3aの鉄・アルミニウム合金に比べ軟質のもので
ある。
As a result of analyzing the cross section of the heat resistant coated stainless steel wire 2 according to the present invention thus obtained, as shown in FIG. 1, the surface of the stainless steel wire 8 has a fine dispersed phase having a thickness of 10 to 50 μm. The Fe-Cr-Ni-Al alloy layer 3 was formed. The alloy layer 3 on the surface of the stainless steel wire 8 is not a single layer, but an alloy layer having a thickness of 10 μm or less made of aluminum and an aluminum-iron alloy on the outermost surface, that is, the first layer 3
a having a thickness of 20 μm or more in which the aluminum / iron compound and the aluminum / nickel compound are dispersed inside the ferrite matrix of the crystal grains 4a having the grain size of 10 to 30 μm and forming the ferrite phase 4 inside the first layer 3a. It has been found that there is an alloy layer or second layer 3b. The average crystal grain size of the aluminum / iron compound and the aluminum / nickel compound was 1 μm or less. In the central portion 8 of the cross section of the heat resistant coated stainless steel wire 2, that is, the stainless steel wire as the base material,
There is austenitic stainless steel having an average crystal grain size of 20 to 50 μm. The second layer 3b of the ferrite base is
It is softer than the iron-aluminum alloy of the first layer 3a.

【0009】本発明により得られた耐熱被覆ステンレス
鋼線2と比較品との引張強度を測定した結果、図2に示
すように、本発明による耐熱被覆ステンレス鋼線2の引
張強度は800MPaであつた。比較品として合金粉末
を被覆せずに加熱処理したステンレス鋼線(本発明にお
ける基材8に相当するもの)の強度は455MPaであ
つた。本発明による耐熱被覆ステンレス鋼線2は基材
(ステンレス鋼線)8の表面に生成したフェライト素地
の合金層からなる第2層3bと基材8のオーステナイト
系ステンレスとの熱膨張率の差により生じた熱応力、ま
たは多結晶をなす合金層間に生じた残留応力が、基材8
の表面に働き、強度を向上させたものと考えられる。
As a result of measuring the tensile strength of the heat resistant coated stainless steel wire 2 obtained according to the present invention and the comparative product, as shown in FIG. 2, the heat resistant coated stainless steel wire 2 according to the present invention has a tensile strength of 800 MPa. It was As a comparative product, the strength of the stainless steel wire (corresponding to the base material 8 in the invention) heat-treated without coating the alloy powder was 455 MPa. The heat-resistant coated stainless steel wire 2 according to the present invention is due to the difference in the coefficient of thermal expansion between the second layer 3b formed on the surface of the base material (stainless steel wire) 8 made of the alloy layer of the ferrite base and the austenitic stainless steel of the base material 8. The generated thermal stress or the residual stress generated between the polycrystalline alloy layers causes the base material 8
It is thought that it worked on the surface of the and improved the strength.

【0010】本発明による耐熱被覆ステンレス鋼線2
と、比較品としてのSUS304からなるステンレス鋼線と、
FCH2(Fe-Cr-Al合金)からなるステンレス鋼線とを、温度
1100℃の大気中で約25時間加熱する耐熱試験を行
つた結果、SUS304からなるステンレス鋼線は加熱約1時
間で測定不可能なほどに引張強度が低下し、FCH2(Fe-Cr
-Al)からなるステンレス鋼線の引張強度は417MPa
であつたのに対し、本発明による耐熱被覆ステンレス鋼
線2は加熱25時間後も670MPaの引張強度を有し
ていた。
Heat-resistant coated stainless steel wire 2 according to the present invention
And a stainless steel wire made of SUS304 as a comparison product,
As a result of a heat resistance test in which a stainless steel wire made of FCH2 (Fe-Cr-Al alloy) was heated in the atmosphere at a temperature of 1100 ° C for about 25 hours, the stainless steel wire made of SUS304 was not measured after heating for about 1 hour. FCH2 (Fe-Cr
-Al) stainless steel wire has a tensile strength of 417 MPa
On the other hand, the heat resistant coated stainless steel wire 2 according to the present invention had a tensile strength of 670 MPa even after heating for 25 hours.

【0011】図3は本発明による耐熱被覆ステンレス鋼
線2と、比較品としてのFCH2(Fe-Cr-Al)からなるステン
レス鋼線についての、暴露時間と引張強度の変化(低
下)率を示す。本発明による耐熱被覆ステンレス鋼線2
は比較品としてのFCH2(Fe-Cr-Al)からなるステンレス鋼
線よりも強度低下の度合が格段に小さいことが分る。
FIG. 3 shows changes (decrease) in exposure time and tensile strength of the heat resistant coated stainless steel wire 2 according to the present invention and a stainless steel wire made of FCH2 (Fe-Cr-Al) as a comparative product. . Heat resistant coated stainless steel wire 2 according to the present invention
Shows that the degree of strength reduction is significantly smaller than that of the comparative stainless steel wire made of FCH2 (Fe-Cr-Al).

【0012】本発明による耐熱被覆ステンレス鋼線2
と、比較品としてのFCH2(Fe-Cr-Al)からなるステンレス
鋼線とについて、基材8の線径を種々変えて前述の耐熱
試験を行つた。本発明による耐熱被覆ステンレス鋼線2
の引張強度は線径が0.5mmまでは、比較品としての
FCH2(Fe-Cr-Al)からなるステンレス鋼線のそれよりも小
さい。また、本発明による耐熱被覆ステンレス鋼板2
と、比較品としてのFCH2(Fe-Cr-Al)からなるステンレス
鋼板について、基材8の板厚を変えて前述の耐熱試験を
行つた。本発明による耐熱被覆ステンレス鋼板2の引張
強度は板厚が0.5mmまでは、比較品としてのFCH2(F
e-Cr-Al)からなるステンレス鋼板のそれよりも小さい。
比較品としてのFCH2(Fe-Cr-Al)からなるステンレス鋼線
は、線径が0.2mm以下では塑性加工(伸線、折曲げ
加工など)が非常に困難である。比較品としてのFCH2(F
e-Cr-Al)からなるステンレス鋼板も、板厚が0.2mm
以下では塑性加工(伸線、折曲げ加工など)が非常に困
難である。これに対し、本発明による耐熱被覆ステンレ
ス鋼線2も耐熱被覆ステンレス鋼板2も、比較的加工性
のよい基材8を使用することにより、線径や板厚をさら
に小さくしても、塑性加工(伸線、折曲げ加工など)に
問題がない。
Heat-resistant coated stainless steel wire 2 according to the present invention
And a stainless steel wire made of FCH2 (Fe-Cr-Al) as a comparative product were subjected to the above-mentioned heat resistance test by changing the wire diameter of the base material 8 variously. Heat resistant coated stainless steel wire 2 according to the present invention
The tensile strength of is up to 0.5 mm as a comparative product.
It is smaller than that of stainless steel wire made of FCH2 (Fe-Cr-Al). Further, the heat resistant coated stainless steel plate 2 according to the present invention
Then, with respect to a stainless steel plate made of FCH2 (Fe-Cr-Al) as a comparative product, the above-mentioned heat resistance test was conducted by changing the plate thickness of the substrate 8. The tensile strength of the heat-resistant coated stainless steel sheet 2 according to the present invention is FCH2 (F
It is smaller than that of stainless steel sheet made of e-Cr-Al).
As a comparative product, a stainless steel wire made of FCH2 (Fe-Cr-Al) is very difficult to perform plastic working (drawing, bending, etc.) when the wire diameter is 0.2 mm or less. FCH2 (F
The thickness of the stainless steel plate made of e-Cr-Al) is 0.2 mm.
Below, plastic working (drawing, bending, etc.) is very difficult. On the other hand, both the heat-resistant coated stainless steel wire 2 and the heat-resistant coated stainless steel sheet 2 according to the present invention use the base material 8 having relatively good workability so that the plastic working can be performed even if the wire diameter and the plate thickness are further reduced. There are no problems (drawing, bending, etc.).

【0013】図4は本発明による耐熱被覆ステンレス鋼
2における第2層3bにおけるフェライト相の結晶粒径
と破断伸びの関係を表す。第2層3bの結晶粒径が10
μm以上になると破断伸びが大きくなることが分る。第
2層3bのフェライト相の結晶粒径は10μm以上であ
ることが望ましい。
FIG. 4 shows the relationship between the grain size of the ferrite phase in the second layer 3b of the heat resistant coated stainless steel 2 according to the present invention and the elongation at break. The crystal grain size of the second layer 3b is 10
It can be seen that the elongation at break increases when the thickness is more than μm. The crystal grain size of the ferrite phase of the second layer 3b is preferably 10 μm or more.

【0014】図5は第2層3bに分散するアルミニウム
・鉄化合物とアルミニウム・ニッケル化合物の結晶粒径
と引張強度の関係を表す。第2層3bに分散する化合物
の結晶粒径が1μm以下になると、引張強度が著しく向
上することが分る。
FIG. 5 shows the relationship between the crystal grain size and the tensile strength of the aluminum / iron compound and the aluminum / nickel compound dispersed in the second layer 3b. It can be seen that the tensile strength is remarkably improved when the crystal grain size of the compound dispersed in the second layer 3b is 1 μm or less.

【0015】以上のことから、本発明による耐熱被覆ス
テンレス鋼2は加熱処理時間が長すぎると、中心部8の
オーステナイト相の結晶が成長し、第2層3bのフェラ
イト相が消滅するので、加熱処理時間は約2時間が適当
である。第1層3aは脆いので、薄いことが好ましい
る。第1層3aのアルミナは耐熱性が高く、第2層3b
の酸化を防止する。
From the above, in the heat-resistant coated stainless steel 2 according to the present invention, if the heat treatment time is too long, the austenite phase crystals in the central portion 8 grow and the ferrite phase of the second layer 3b disappears. A processing time of about 2 hours is suitable. Since the first layer 3a is brittle, it is preferable that it is thin. The alumina of the first layer 3a has high heat resistance, and the second layer 3b
To prevent the oxidation of.

【0016】次に、上述した本発明による耐熱被覆ステ
ンレス鋼線2を得るための加熱処理時間を種々変えて、
アルミニウムとアルミニウム・鉄合金との複合相からな
る第1層3aの厚さが異なる複数の試料を作製した。得
られた耐熱被覆ステンレス鋼線2について巻付け試験を
行つた後、各耐熱被覆ステンレス鋼線2の表面を観察し
たところ、図6に示すように、第1層3aの厚さが10
μmを超えると、第1層3aにクラックが発生すること
が分つた。この点からも本発明による耐熱被覆ステンレ
ス鋼線2を得るための加熱処理時間を長くすることは好
ましくない。
Next, the heat treatment time for obtaining the heat resistant coated stainless steel wire 2 according to the present invention described above is changed variously,
A plurality of samples having different thicknesses of the first layer 3a made of a composite phase of aluminum and an aluminum-iron alloy were prepared. After conducting a winding test on the obtained heat-resistant coated stainless steel wire 2, the surface of each heat-resistant coated stainless steel wire 2 was observed, and as shown in FIG. 6, the thickness of the first layer 3a was 10
It was found that when the thickness exceeds μm, cracks are generated in the first layer 3a. From this point as well, it is not preferable to prolong the heat treatment time for obtaining the heat resistant coated stainless steel wire 2 according to the present invention.

【0017】なお、本発明に使用する基材8としては、
熱処理中に炭化物やマルテンサイトが生成しにくいオー
ステナイト系ステンレス鋼を使用するのが望ましい。特
に、炭素0.15wt%以下、クロム15〜26wt%、ニ
ッケル3.5〜28wt%の化学組成をもつオーステナイ
ト系ステンレス鋼が適している。炭素の組成比が大きく
なると、第2層3bの炭化物が粒界に析出し、脆性を助
長する。
As the base material 8 used in the present invention,
It is desirable to use austenitic stainless steel that is less likely to form carbides and martensite during heat treatment. In particular, austenitic stainless steel having a chemical composition of 0.15 wt% carbon or less, 15 to 26 wt% chromium, and 3.5 to 28 wt% nickel is suitable. When the composition ratio of carbon is increased, carbides of the second layer 3b are precipitated at the grain boundaries, which promotes brittleness.

【0018】[0018]

【発明の効果】本発明は上述のように、最表面にアルミ
ニウムおよび鉄・アルミニウム合金からなる第1層が形
成され、中間層鉄・クロムを主成分とするフェライト系
ステンレス中にアルミニウム・鉄化合物とアルミニウム
・ニッケル化合物が分散する第2層が形成され、かつ中
心部にオーステナイト系ステンレスが存在するものであ
るから、次のような効果が得られる。
As described above, according to the present invention, the first layer made of aluminum and iron / aluminum alloy is formed on the outermost surface, and the aluminum / iron compound is contained in the intermediate layer of ferritic stainless steel containing iron / chromium as a main component. Since the second layer in which the aluminum-nickel compound is dispersed is formed and the austenitic stainless steel is present in the central portion, the following effects can be obtained.

【0019】オーステナイト系ステンレス鋼の表面にク
ロム・アルミニウム粒子を付着させ、熱処理することに
より、表面にフェライト系のFe-Cr-Ni-Al 合金層を有す
る耐熱性と引張強度に優れる耐熱被覆ステンレス鋼が得
られる。
A heat-resistant coated stainless steel having excellent heat resistance and tensile strength, which has a ferrite Fe-Cr-Ni-Al alloy layer on the surface by depositing chromium / aluminum particles on the surface of austenitic stainless steel and heat-treating it. Is obtained.

【0020】FCH2(Fe-Cr-Al)からなるステンレス鋼の場
合、線径が0.2mm以下のステンレス鋼線または板厚
が0.2mm以下のステンレス鋼板を塑性加工すること
は非常に困難であるが、本発明による耐熱被覆ステンレ
ス鋼は比較的加工性のよい基材を使用することにより、
線径または板厚がより小さくても塑性加工に問題がな
い。
In the case of stainless steel composed of FCH2 (Fe-Cr-Al), it is very difficult to plastically work a stainless steel wire having a wire diameter of 0.2 mm or less or a stainless steel plate having a plate thickness of 0.2 mm or less. However, the heat-resistant coated stainless steel according to the present invention uses a base material having relatively good workability,
There is no problem in plastic working even if the wire diameter or plate thickness is smaller.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る耐熱被覆ステンレス鋼を用いた細
線の断面図である。
FIG. 1 is a cross-sectional view of a thin wire using a heat resistant coated stainless steel according to the present invention.

【図2】本発明による耐熱被覆ステンレス鋼と従来品と
の耐熱強度を表す線図である。
FIG. 2 is a diagram showing the heat resistance strength of the heat resistant coated stainless steel according to the present invention and a conventional product.

【図3】本発明による耐熱被覆ステンレス鋼と従来品と
の耐熱強度を表す線図である。
FIG. 3 is a diagram showing the heat resistance strength of the heat resistant coated stainless steel according to the present invention and a conventional product.

【図4】本発明に係る耐熱被覆ステンレス鋼における第
2層のフェライト相の平均結晶粒径と破断伸びとの関係
を表す線図である。
FIG. 4 is a diagram showing the relationship between the average grain size of the ferrite phase of the second layer and the elongation at break in the heat resistant coated stainless steel according to the present invention.

【図5】本発明に係る耐熱被覆ステンレス鋼における第
2層の平均結晶粒径と引張強度との関係を表す線図であ
る。
FIG. 5 is a diagram showing the relationship between the average grain size of the second layer and the tensile strength of the heat resistant coated stainless steel according to the present invention.

【図6】本発明に係る耐熱被覆ステンレス鋼における第
1層の厚さとクラック発生率との関係を表す線図であ
る。
FIG. 6 is a diagram showing the relationship between the thickness of the first layer and the crack occurrence rate in the heat resistant coated stainless steel according to the present invention.

【符号の説明】[Explanation of symbols]

2:耐熱被覆ステンレス鋼線 3:合金層 3a:第1
層 3b:第2層 8:中心部(基材)
2: Heat resistant coated stainless steel wire 3: Alloy layer 3a: First
Layer 3b: Second layer 8: Center part (base material)

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】最表面にアルミニウムおよび鉄・アルミニ
ウム合金からなる第1層が形成され、中間層に鉄・クロ
ムを主成分とするフェライト系ステンレス中にアルミニ
ウム・鉄化合物とアルミニウム・ニッケル化合物が分散
する第2層が形成され、かつ中心部にオーステナイト系
ステンレスが存在することを特徴とする耐熱被覆ステン
レス鋼。
1. A first layer made of aluminum and an iron / aluminum alloy is formed on the outermost surface, and an aluminum / iron compound and an aluminum / nickel compound are dispersed in a ferritic stainless steel containing iron / chromium as a main component in an intermediate layer. A heat-resistant coated stainless steel, characterized in that a second layer is formed and austenitic stainless steel is present in the center.
【請求項2】前記第1層の厚さが10μm以下である、
請求項1に記載の耐熱被覆ステンレス鋼。
2. The thickness of the first layer is 10 μm or less,
The heat-resistant coated stainless steel according to claim 1.
【請求項3】前記第2層の平均結晶粒径が10〜30μ
mである、請求項1に記載の耐熱被覆ステンレス鋼。
3. The average crystal grain size of the second layer is 10 to 30 μm.
The heat-resistant coated stainless steel according to claim 1, which is m.
【請求項4】前記第2層に分散するアルミニウム・鉄化
合物とアルミニウム・ニッケル化合物の結晶粒径が1μ
m以下である、請求項1に記載の耐熱被覆ステンレス
鋼。
4. The crystal grain size of the aluminum / iron compound and the aluminum / nickel compound dispersed in the second layer is 1 μm.
The heat-resistant coated stainless steel according to claim 1, which is m or less.
【請求項5】前記中心部のオーステナイト系ステンレス
の組成が、炭素0.15wt%以下、クロム15〜26wt
%、ニッケル3.5〜28wt%である、請求項1に記載
の耐熱被覆ステンレス鋼。
5. The composition of austenitic stainless steel in the central portion is such that carbon is 0.15 wt% or less and chromium is 15 to 26 wt.
%, Nickel 3.5-28 wt%, heat resistant coated stainless steel according to claim 1.
【請求項6】線径が0.5mm以下である、請求項1に
記載の耐熱被覆ステンレス鋼細線。
6. The heat resistant coated stainless steel thin wire according to claim 1, wherein the wire diameter is 0.5 mm or less.
【請求項7】板厚が0.5mm以下である、請求項1に
記載の耐熱被覆ステンレス鋼薄板。
7. The heat-resistant coated stainless steel thin plate according to claim 1, which has a plate thickness of 0.5 mm or less.
JP3438796A 1995-11-06 1996-01-29 Heat resistant coated stainless steel Pending JPH09209118A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP3438796A JPH09209118A (en) 1996-01-29 1996-01-29 Heat resistant coated stainless steel
US08/742,925 US5976708A (en) 1995-11-06 1996-11-01 Heat resistant stainless steel wire
DE69601612T DE69601612T2 (en) 1995-11-06 1996-11-04 Heat-resistant wire or sheet made of stainless steel
EP98201850A EP0874062A3 (en) 1995-11-06 1996-11-04 Heat resistant stainless steel wire or strip
EP96307965A EP0771882B1 (en) 1995-11-06 1996-11-04 Heat resistance stainless steel wire or strip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3438796A JPH09209118A (en) 1996-01-29 1996-01-29 Heat resistant coated stainless steel

Publications (1)

Publication Number Publication Date
JPH09209118A true JPH09209118A (en) 1997-08-12

Family

ID=12412766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3438796A Pending JPH09209118A (en) 1995-11-06 1996-01-29 Heat resistant coated stainless steel

Country Status (1)

Country Link
JP (1) JPH09209118A (en)

Similar Documents

Publication Publication Date Title
JPS63236545A (en) Catalyst carrier and its production
JP3356889B2 (en) Hearth roll with excellent durability
JP2005504176A (en) Ferritic stainless steel for high temperature use and method for producing the foil
JP2003520906A (en) Production and use of dimensionally stable iron-chromium-aluminum-sheets
WO2017208671A1 (en) Ferritic stainless steel sheet
JP4229508B2 (en) High temperature hearth roller
US5976708A (en) Heat resistant stainless steel wire
EP0908533A3 (en) Process for the deposition of thick coatings onto products in copper and alloys thereof
JPH09209118A (en) Heat resistant coated stainless steel
JPH03272959A (en) Carrying roll excellent in build-up resistance and high temperature wear resistance
JPS63199857A (en) High temperature durable flame spray coating material
JPH05473B2 (en)
JPS6028903B2 (en) Surface treatment method for metal materials
JPH07233451A (en) Al plated stainless steel sheet excellent in high temperature oxidation resistance
JPS60141819A (en) Roll for heat treatment furnace
JPH03285057A (en) Infrared-ray emitter and its production
JPH04235271A (en) High temperature corrosion resistant member and its manufacture
JPS62161944A (en) Aluminized steel sheet
JPH06108268A (en) Ferritic stainless steel foil and its production
JPS63250448A (en) Roll for heat treatment furnace
JPS61207567A (en) Formation of thermally sprayed ceramic film
JPH01122611A (en) Carrying roll for high temperature steel material
JP2626736B2 (en) Roll for heat treatment furnace with excellent build-up resistance
JPH0452252A (en) Ferritic stainless steel excellent in activated alumina coating characteristic and its production
JPH024950A (en) Manufacture of surface treated steel sheet having excellent corrosion resistance and wear resistance