JPH09208305A - Thin film of dielectric and ceramic condenser - Google Patents

Thin film of dielectric and ceramic condenser

Info

Publication number
JPH09208305A
JPH09208305A JP8318069A JP31806996A JPH09208305A JP H09208305 A JPH09208305 A JP H09208305A JP 8318069 A JP8318069 A JP 8318069A JP 31806996 A JP31806996 A JP 31806996A JP H09208305 A JPH09208305 A JP H09208305A
Authority
JP
Japan
Prior art keywords
thin film
dielectric
dielectric thin
dielectric constant
relative permittivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8318069A
Other languages
Japanese (ja)
Other versions
JP3681844B2 (en
Inventor
Yasuyo Kamigaki
耕世 神垣
Shinji Nanbu
信次 南部
Shiyouken Nagakari
尚謙 永仮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP31806996A priority Critical patent/JP3681844B2/en
Publication of JPH09208305A publication Critical patent/JPH09208305A/en
Application granted granted Critical
Publication of JP3681844B2 publication Critical patent/JP3681844B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a thin film of a dielectric high in relative permittivity not only at 1kHz but also at high frequency like 100MHz and excellent in characteristics to a DC bias, by using an oxide containing a specific metal. SOLUTION: This thin film of a dielectric comprises a perovskite type compound oxide containing Ba, Ti and Sn as metal elements in which these components are shown as BaTi1-x Snx O3 , (x) and an average crystal particle diameter (d) (μm) exist in a range enclosed by lines A ((x) 0.02, (d) 0.90)-B ((x) 0.02, (d) 0.185)-C ((x) 0.04, (d) 0.185)-D ((x) 0.10, (d) 0.160)-E ((x) 0.16, (d) 0.100)-F ((x) 0.20, (d) 0.080)-G ((x) 0.10, (d) 0.045)-H ((x) 0.07, (d) 0.045)-A in the figure 1. The thin film has >=1,000 relative permittivity at 100MHz measuring wavelength (at room temperature). This thin film is provided with electrodes at both sides to form a ceramic condenser and used.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、誘電体薄膜および
セラミックコンデンサに関するものであり、例えば、1
層当りの膜厚が5μm以下の高周波用積層セラミックコ
ンデンサ等に用いられるペロブスカイト型複合酸化物か
らなる誘電体薄膜およびセラミックコンデンサに関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dielectric thin film and a ceramic capacitor, for example, 1
The present invention relates to a dielectric thin film made of a perovskite type complex oxide and a ceramic capacitor used for a high frequency multilayer ceramic capacitor having a film thickness of 5 μm or less per layer.

【0002】[0002]

【従来技術】近年、電子機器の小型、薄形化に伴い、電
子部品の小型化,薄膜化が要求されている。特に受動部
品であるコンデンサの小型、薄形化は必須となってい
る。また、コンピュータ等の高速デジタル回路を用いた
電子機器は高周波化の流れにあり、数10MHzから数
100MHzの動作周波数帯域が重要になっている。こ
れにともない、コンデンサ等の受動部品も高周波もしく
は高速パルスに対して優れた特性を示すことが必須にな
ってきている。
2. Description of the Related Art In recent years, as electronic devices have become smaller and thinner, there has been a demand for smaller and thinner electronic components. In particular, miniaturization and thinning of capacitors, which are passive components, are essential. In addition, electronic devices such as computers using high-speed digital circuits are in the trend of higher frequencies, and the operating frequency band of several tens of MHz to several hundreds of MHz is important. Along with this, it has become essential that passive components such as capacitors also exhibit excellent characteristics with respect to high frequency or high speed pulses.

【0003】コンデンサを小型高容量にするためには一
対の電極に挟持された誘電体を薄くし、薄膜化すること
が最も有効である。また、近年電子機器の集積化すなわ
ち電子部品の内蔵化が進んでおり薄膜化が最も有力であ
る。
In order to make a capacitor small and have a high capacity, it is most effective to thin the dielectric material sandwiched between a pair of electrodes to make it thinner. Further, in recent years, integration of electronic devices, that is, incorporation of electronic components has progressed, and thinning is the most effective.

【0004】一方で、薄膜化によりDCバイアス電圧印
加下での特性が問題になってくる。
On the other hand, due to the thinning, the characteristics under the application of DC bias voltage become a problem.

【0005】即ち、コンデンサは数ボルト以下のDC電
圧が印加された状態で使用される為、DCバイアス電圧
印加下での誘電特性が重要であるが、特に薄膜では、バ
ルクと同様にDC電圧の印加に対して電界強度は誘電体
の厚さに逆比例して大きくなる為、DCバイアス電界に
対して比誘電率の減少の小さい材料が必要である。
That is, since the capacitor is used in the state where a DC voltage of several volts or less is applied, the dielectric property under the application of a DC bias voltage is important. Since the electric field strength increases in inverse proportion to the thickness of the dielectric with respect to the applied voltage, a material having a small decrease in the relative dielectric constant with respect to the DC bias electric field is required.

【0006】また、典型的なコンデンサ材料であるBT
や、PMNのようなリラクサ材料は1KHz程度の低周
波領域においては大きな比誘電率を示し、コンデンサ材
料として優れた材料であるが、周波数分散が大きいた
め、高周波領域における比誘電率の減少が大きいと考え
られ、高周波領域では高誘電率材料として使えないと考
えられてきた(特開平6−77083号公報参照)。
BT which is a typical capacitor material
Also, a relaxor material such as PMN exhibits a large relative permittivity in a low frequency region of about 1 KHz and is an excellent material as a capacitor material, but since the frequency dispersion is large, the relative permittivity greatly decreases in the high frequency region. Therefore, it has been considered that it cannot be used as a high dielectric constant material in a high frequency region (see Japanese Patent Laid-Open No. 6-77083).

【0007】この為、従来薄膜コンデンサ材料として、
比誘電率は小さいが、比誘電率の温度変化率が小さく、
自発分極がないために自発分極に起因するDCバイアス
依存性や、高周波領域での比誘電率の減少が小さい常誘
電体であるTa2 5 やSrTiO3 が主に研究されて
きた。
Therefore, as a conventional thin film capacitor material,
Although the relative permittivity is small, the rate of temperature change of the relative permittivity is small,
Paraelectric materials such as Ta 2 O 5 and SrTiO 3 which have a small DC bias dependency due to spontaneous polarization and a small decrease in relative permittivity in a high frequency region have been mainly studied.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、これら
のTa2 5 やSrTiO3 薄膜材料は1KHz程度の
低周波数においても比誘電率が最大でも数百程度であ
り、薄膜コンデンサをさらに小型、高容量化するのは困
難であった。
However, these Ta 2 O 5 and SrTiO 3 thin film materials have a relative dielectric constant of several hundreds at the maximum even at a low frequency of about 1 KHz. It was difficult to convert.

【0009】[0009]

【課題を解決するための手段】本発明者等は、上記の問
題点に対して検討を重ねた結果、Bサイト元素であるT
i原子をSn原子で2mol%から20mol%置換
し、ペロブスカイト結晶の平均結晶粒径を0.045〜
0.185μmに制御した、即ち、BaTi1-xSnx
3 と表した時のxおよびペロブスカイト結晶の平均結
晶粒径d(μm)を、図1における線分A−B−C−D
−E−F−G−H−Aで囲まれる範囲内とすることによ
り、粒径の細かい誘電体薄膜においても、1kHzのみ
ならず100MHzの様な高周波においても比誘電率が
大きくなり、かつDCバイアスに対する特性も良好とな
ることを見出し、本発明に至った。
Means for Solving the Problems As a result of repeated studies on the above-mentioned problems, the present inventors have found that the B-site element T
Substituting 2 to 20 mol% of i atom with Sn atom, the average crystal grain size of the perovskite crystal is 0.045 to
Controlled to 0.185 μm, that is, BaTi 1-x Sn x
The average crystal grain size d (μm) of x and the perovskite crystal when expressed as O 3 is represented by the line segment ABCD in FIG.
By setting it within the range surrounded by -E-F-G-H-A, the relative dielectric constant becomes large not only at 1 kHz but also at a high frequency such as 100 MHz even in a dielectric thin film having a small grain size, and DC The inventors have found that the characteristics with respect to bias are also good and have reached the present invention.

【0010】即ち、本発明の誘電体薄膜は、金属元素と
してBa、TiおよびSnを含有するペロブスカイト型
複合酸化物からなる誘電体薄膜であって、これらの成分
をBaTi1-x Snx 3 と表した時のxおよびペロブ
スカイト結晶の平均結晶粒径d(μm)が、図1におけ
る線分A−B−C−D−E−F−G−H−Aで囲まれる
範囲内のものである。本発明の誘電体薄膜は、測定周波
数100MHz(室温)における比誘電率が1000以
上である。
That is, the dielectric thin film of the present invention is a dielectric thin film composed of a perovskite type complex oxide containing Ba, Ti and Sn as metal elements, and these components are BaTi 1-x Sn x O 3 X and the average crystal grain size d (μm) of the perovskite crystal are within the range surrounded by the line segment A-B-C-D-E-F-G-H-A in FIG. is there. The dielectric thin film of the present invention has a relative dielectric constant of 1000 or more at a measurement frequency of 100 MHz (room temperature).

【0011】また、本発明のセラミックコンデンサは、
上記した誘電体薄膜の両面に電極を形成してなるもので
ある。
Further, the ceramic capacitor of the present invention comprises:
Electrodes are formed on both surfaces of the above-mentioned dielectric thin film.

【0012】[0012]

【作用】BaTiO3 系の誘電体材料においては、12
0℃、10℃、−70℃に相転移点が存在し、その近傍
で比誘電率が高くなっている。つまり室温付近はこの相
転移点の中間に存在し、温度特性は良好であるが比誘電
率はあまり大きくない。
[Function] In the BaTiO 3 system dielectric material, 12
Phase transition points exist at 0 ° C., 10 ° C., and −70 ° C., and the relative dielectric constant is high in the vicinity thereof. That is, around room temperature exists in the middle of this phase transition point, and the temperature characteristics are good, but the relative dielectric constant is not so large.

【0013】本発明の誘電体薄膜では、BaTiO3
Ti原子をSn原子にて置換することにより、3点の相
転移点を室温付近にシフトし、室温で3種類の強誘電体
相を存在させることにより、高い比誘電率を実現してい
る。
In the dielectric thin film of the present invention, by substituting Sn atoms for Ti atoms of BaTiO 3 , the three phase transition points are shifted to near room temperature, and three kinds of ferroelectric phases exist at room temperature. By doing so, a high relative dielectric constant is realized.

【0014】また薄膜中の平均結晶粒径を細かくしてい
った場合、強誘電体的性質に常誘電体的性質が現れるた
めに、比誘電率は多少低下するが直流電圧がかかった状
態の比誘電率の低下が抑制され、DCバイアス特性は良
好となる。
When the average crystal grain size in the thin film is made finer, the dielectric constant is somewhat lowered because the paraelectric property appears in the ferroelectric property, but the DC voltage is applied. The decrease in relative permittivity is suppressed, and the DC bias characteristic becomes good.

【0015】さらに、100MHzの様な高周波領域に
おいても強誘電性の起源である自発分極が消失するた
め、自発分極に起因する誘電率の周波数分散が小さくな
り、高周波領域においても大きな比誘電率を示す。
Further, even in a high frequency region such as 100 MHz, the spontaneous polarization which is the origin of the ferroelectric property disappears, so that the frequency dispersion of the dielectric constant due to the spontaneous polarization becomes small, and a large relative dielectric constant is obtained even in the high frequency region. Show.

【0016】[0016]

【発明の実施の形態】本発明においては、BaTi1-x
Snx 3 と表した時のxが0.02〜0.20であ
り、平均結晶粒径dが0.045〜0.185を満足す
るものである。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, BaTi 1-x is used.
When expressed as Sn x O 3 , x satisfies 0.02 to 0.20 and the average crystal grain size d satisfies 0.045 to 0.185.

【0017】xの値を0.02〜0.20としたのは、
xが0.02よりも小さい場合にはBaTiO3 のサイ
ズ効果により比誘電率が小さくなり、xが0.20より
も大きい場合には比誘電率が最大となる温度が室温以下
となり、室温近傍の比誘電率が小さくなるからである。
BaTi1-x Snx 3 と表した時のxは0.04〜
0.13であることが、室温で比誘電率が大きくなる点
から望ましい。
The value of x is set to 0.02 to 0.20 because
When x is smaller than 0.02, the relative permittivity becomes small due to the size effect of BaTiO 3 , and when x is larger than 0.20, the temperature at which the relative permittivity becomes maximum is room temperature or lower, and near room temperature. This is because the relative dielectric constant of is small.
When expressed as BaTi 1-x Sn x O 3 , x is 0.04 to
0.13 is desirable from the viewpoint that the relative dielectric constant becomes large at room temperature.

【0018】また、平均結晶粒径dを0.045〜0.
185としたのは、平均結晶粒径dが0.045よりも
小さい場合には比誘電率が小さくなるからであり、dが
0.185よりも大きい場合には、DCバイアスに対す
る比誘電率の変化率が大きくなるからである。
The average crystal grain size d is 0.045 to 0.
The reason why 185 is set is that when the average crystal grain size d is smaller than 0.045, the relative dielectric constant becomes small, and when d is larger than 0.185, the relative dielectric constant with respect to the DC bias is changed. This is because the rate of change becomes large.

【0019】そして、BaTi1-x Snx 3 と表した
時のxの範囲および平均結晶粒径dは、図1における点
A,B,C,D,E,F,G,Hで囲む線分の範囲内に
ある必要がある。
The range of x and the average grain size d when expressed as BaTi 1-x Sn x O 3 are surrounded by points A, B, C, D, E, F, G and H in FIG. It must be within the line segment.

【0020】即ち、(xの値,平均結晶粒径d)で表さ
れる点A(0.02,0.09),B(0.02,0.
185),C(0.04,0.185),D(0.1
0,0.16),E(0.16,0.10)、F(0.
20,0.08)、G(0.10,0.045)、H
(0.07,0.045)で囲む線分の範囲内である必
要がある。この範囲内としたのは、上記した理由、およ
び図1において線分AHGFよりも下方にある部分で
は、比誘電率が小さくなるからである。また線分CDE
Fよりも上方にある部分では、DCバイアスに対する比
誘電率の変化率が大きくなるからである。
That is, points A (0.02, 0.09), B (0.02, 0.0.2) represented by (value of x, average crystal grain size d).
185), C (0.04, 0.185), D (0.1
0, 0.16), E (0.16, 0.10), F (0.
20, 0.08), G (0.10, 0.045), H
It must be within the range of the line segment surrounded by (0.07, 0.045). The reason for setting this range is that the relative permittivity becomes small in the above-mentioned reason and in the portion below the line segment AHGF in FIG. Line segment CDE
This is because the rate of change of the relative permittivity with respect to the DC bias becomes large in the portion above F.

【0021】BaTi1-x Snx 3 と表した時のxの
範囲および平均結晶粒径dは、図1における点I,J,
D,Lで囲む線分の範囲内にあることが、比誘電率向上
およびDCバイアス特性の向上という観点から望まし
い。ここで、I(0.02,0.115)、J(0.0
2,0.160)、D(0.10,0.160),L
(0.10,0.115)である。
The range of x and the average grain size d when expressed as BaTi 1-x Sn x O 3 are the points I, J, and
It is desirable to be within the range of the line segment surrounded by D and L from the viewpoint of improving the relative dielectric constant and the DC bias characteristics. Here, I (0.02, 0.115), J (0.0
2,0.160), D (0.10,0.160), L
(0.10, 0.115).

【0022】本発明の誘電体薄膜は、先ず、金属元素と
してBa,Ti,Snを含有するペロブスカイト型複合
酸化物であって、これらの成分をBaTi1-x Snx
3 と表した時のxが0.02〜0.20である原料溶液
を作製し、この溶液を基板上に塗布した後、乾燥し、熱
処理を繰り返して所望厚さの膜を形成し、焼成すること
により得られる。
First, the dielectric thin film of the present invention is a perovskite type complex oxide containing Ba, Ti and Sn as metal elements, and these components are mixed with BaTi 1-x Sn x O 2.
A raw material solution in which x when expressed as 3 is 0.02 to 0.20 is prepared, and the solution is applied onto a substrate, then dried, and heat treatment is repeated to form a film having a desired thickness, followed by baking. It is obtained by doing.

【0023】即ち、本発明で用いられるペロブスカイト
型酸化物はBaTi1-x Snx 3で表され、図1に示
すようにxの範囲が0.02〜0.20であり、結晶粒
径の範囲が0.045〜0.185μmの値を満足する
誘電体薄膜は、各成分の組成の制御、膜厚、微粒領域
(0.045〜1μm)での結晶粒径の制御が比較的容
易な、以下のような方法で形成することが望ましい。
That is, the perovskite type oxide used in the present invention is represented by BaTi 1-x Sn x O 3 , and the range of x is 0.02 to 0.20 as shown in FIG. In the case of a dielectric thin film satisfying a value of 0.045 to 0.185 μm, it is relatively easy to control the composition of each component, the film thickness, and the crystal grain size in the fine grain region (0.045 to 1 μm). However, it is desirable to form by the following method.

【0024】先ず、Ba,Ti,Snの各金属イオンを
含有する有機酸塩,無機塩,あるいは金属アルコキシド
のような有機金属化合物を出発原料とし、BaTi1-x
Snx 3 におけるxの範囲が0.02〜0.20を満
足する組成となるように混合し、原料溶液を調製する。
First, an organic acid salt, an inorganic salt, or an organometallic compound containing a metal ion of Ba, Ti, or Sn, or an organometallic compound such as a metal alkoxide is used as a starting material, and BaTi 1-x is used.
A raw material solution is prepared by mixing so that the composition of x in Sn x O 3 satisfies 0.02 to 0.20.

【0025】次に、この原料溶液を基板上に塗布する。
溶液の塗布はスピンコーティング,ディップコーティン
グなどの種々の方法により行うことができる。次に、こ
うして基板上に塗布された塗膜を脱脂するために大気中
で200〜600℃で1〜2分間脱脂用熱処理を行い、
この後、結晶化するために大気中で700〜900℃で
30秒〜10分間結晶化用熱処理を行う。これらの塗布
〜結晶化用熱処理の一連のプロセスを繰り返すことによ
り所望の膜厚の誘電体薄膜を得、最後に0.045〜
0.185μmの平均結晶粒径を得るために酸素含有雰
囲気中で900〜1140℃で10分間〜3時間焼成を
行い、厚みが5μm以下の本発明の誘電体薄膜を得る。
粒径は焼成温度で制御した。本発明では、誘電体薄膜の
厚みは耐絶縁性および膜の均質性という観点から、0.
3〜2μmが望ましい。
Next, this raw material solution is applied onto the substrate.
The solution can be applied by various methods such as spin coating and dip coating. Next, in order to degrease the coating film thus coated on the substrate, a heat treatment for degreasing is performed at 200 to 600 ° C. for 1 to 2 minutes in the atmosphere,
Then, for crystallization, a heat treatment for crystallization is performed at 700 to 900 ° C. for 30 seconds to 10 minutes in the atmosphere. A dielectric thin film having a desired film thickness is obtained by repeating a series of processes from coating to heat treatment for crystallization, and finally 0.045 to
To obtain an average crystal grain size of 0.185 μm, firing is performed at 900 to 1140 ° C. for 10 minutes to 3 hours in an oxygen-containing atmosphere to obtain a dielectric thin film of the present invention having a thickness of 5 μm or less.
The particle size was controlled by the firing temperature. In the present invention, the thickness of the dielectric thin film is 0.
It is preferably 3 to 2 μm.

【0026】また、本発明の誘電体薄膜では、不可避不
純物として、Sr,Ca,Na等が1重量%以下混入す
る場合があるが、特性には影響はない。
In the dielectric thin film of the present invention, Sr, Ca, Na, etc. may be mixed as unavoidable impurities in an amount of 1% by weight or less, but the characteristics are not affected.

【0027】本発明の誘電体薄膜は、該誘電体薄膜の上
下面に電極を形成して薄膜コンデンサを形成したり、ま
た、誘電体薄膜と電極層を交互に積層して積層コンデン
サを形成したりして用いられる。
In the dielectric thin film of the present invention, electrodes are formed on the upper and lower surfaces of the dielectric thin film to form a thin film capacitor, or a dielectric thin film and electrode layers are alternately laminated to form a laminated capacitor. It is also used.

【0028】誘電体薄膜を挟持する電極としては、厚さ
0.05μm以上の配向した白金(Pt)、金(A
u)、パラジウム(Pd)薄膜等があり、これらのうち
でも配向した白金(Pt)と金(Au)薄膜が最適であ
る。Pt、Auは膜との反応性が小さく、また酸化され
にくい為、膜との界面に低誘電率相が形成されにくい為
である。膜厚を0.05μm以上としたのは0.05μ
m未満であると高周波領域における等価直列抵抗が大き
くなるためである。配向した白金(Pt)薄膜とは、配
向性または単結晶的白金(Pt)薄膜であり、配向性を
有するPt薄膜とは、3つの結晶軸のうち一つの軸が膜
表面に近似的に垂直な方向に揃った膜であり、単結晶的
Pt薄膜とは3つの結晶軸が全て揃った膜である。この
ような電極は、スパッタ蒸着やレーザ蒸着法等物理的蒸
着において、電極が形成される基板温度を450℃以上
とすることにより得られるもので、これらのうちでも、
基板温度を450℃以上としたスパッタ蒸着が望まし
い。
As electrodes sandwiching the dielectric thin film, oriented platinum (Pt) and gold (A) with a thickness of 0.05 μm or more are used.
u), palladium (Pd) thin films, and the like, and of these, oriented platinum (Pt) and gold (Au) thin films are most suitable. This is because Pt and Au have low reactivity with the film and are less likely to be oxidized, so that a low dielectric constant phase is less likely to be formed at the interface with the film. The thickness is 0.05μm or more is 0.05μ
This is because if it is less than m, the equivalent series resistance in the high frequency region becomes large. An oriented platinum (Pt) thin film is an oriented or single crystal platinum (Pt) thin film, and an oriented Pt thin film has one of three crystal axes approximately perpendicular to the film surface. The single crystal Pt thin film is a film in which all three crystal axes are aligned. Such an electrode is obtained by setting the temperature of the substrate on which the electrode is formed to 450 ° C. or higher in physical vapor deposition such as sputter vapor deposition or laser vapor deposition. Among these, among these,
Sputter deposition with a substrate temperature of 450 ° C. or higher is desirable.

【0029】また、金属薄膜を蒸着する基板としては、
アルミナ、サファイア、MgO単結晶、SrTiO3
結晶、チタン被覆シリコン、または銅(Cu)、ニッケ
ル(Ni)、チタン(Ti)、スズ(Sn)、ステンレ
ススティール(Fe)薄膜もしくは薄板が望ましい。特
に、薄膜との反応性が小さく、安価で、硬度が大きく、
かつ金属薄膜の結晶性という点からアルミナ、サファイ
アが望ましく、高周波における低抵抗化の点で銅(C
u)薄板もしくは銅(Cu)薄膜が望ましい。
Further, as the substrate on which the metal thin film is deposited,
Alumina, sapphire, MgO single crystal, SrTiO 3 single crystal, titanium-coated silicon, or copper (Cu), nickel (Ni), titanium (Ti), tin (Sn), stainless steel (Fe) thin films or thin plates are desirable. In particular, it has low reactivity with thin films, is inexpensive, has high hardness,
Alumina and sapphire are preferable from the viewpoint of the crystallinity of the metal thin film, and copper (C
u) A thin plate or a copper (Cu) thin film is desirable.

【0030】[0030]

【実施例】出発原料としてテトラ−イソ−プロポキシチ
タン、テトラ−n−プロポキシスズを、溶媒である2−
メトキシエタノールに溶かし、それぞれチタン溶液とス
ズ溶液を作製した。また金属バリウムを、溶媒である2
−メトキシエタノールに溶解させ、バリウム溶液を作製
した。これらの3種の溶液を、BaTi1-x Snx3
と表した時のxが表1の値となるように混合して原料溶
液を調製した。
EXAMPLE Tetra-iso-propoxytitanium and tetra-n-propoxytin were used as starting materials, and the solvent was 2-
It was dissolved in methoxyethanol to prepare a titanium solution and a tin solution, respectively. In addition, metal barium is used as a solvent 2
-Dissolved in methoxyethanol to make a barium solution. These three solutions were mixed with BaTi 1-x Sn x O 3
A raw material solution was prepared by mixing so that x when represented by the above was the value of Table 1.

【0031】ついで、これら各原料溶液を白金(Pt)
基板上にそれぞれスピンコートし、得られた塗膜に対し
て大気中300℃で1分間脱脂用熱処理を行い、この
後、大気中750℃で5分間結晶化用熱処理を行った。
このようなスピンコートによる溶液の塗布から結晶化用
熱処理までの一連のプロセスを30回繰り返し行い、膜
厚が0.8μmの薄膜を形成し、酸素雰囲気中900〜
1140℃で1時間焼成を行い、表1の平均結晶粒径d
の誘電体薄膜を得た。
Next, each of these raw material solutions was treated with platinum (Pt).
Each of the substrates was spin-coated, and the obtained coating film was subjected to a degreasing heat treatment at 300 ° C. for 1 minute in the air, and then a crystallization heat treatment at 750 ° C. for 5 minutes in the air.
A series of processes from the application of the solution by spin coating to the heat treatment for crystallization are repeated 30 times to form a thin film having a thickness of 0.8 μm, and the thin film having a thickness of 900 to 900
The average crystal grain size d shown in Table 1 was obtained by firing at 1140 ° C. for 1 hour.
A dielectric thin film of

【0032】得られた誘電体薄膜をX線回折測定(XR
D)により分析を行ったところ、いずれもペロブスカイ
ト型酸化物のピークが確認された。また誘電体薄膜を走
査電子顕微鏡(SEM)により観察し、平均結晶粒径を
測定した。さらに、誘電特性の評価は、誘電体薄膜上に
Auを蒸着して上部電極とし、下部電極であるPt層と
平板コンデンサを形成することにより行った。測定はL
CRメ−タ−(ヒュウレットパッカ−ド製4284A)
を用いて行い、測定周波数f=1kHz、印加電圧Vrm
s =100mVとした。室温での比誘電率(K)、誘電
損失(DF)を測定した。DCバイアス特性を、電圧を
印加しない場合の比誘電率K0 、5MV/mの電圧を印
加したときの比誘電率K1 とした時に、(K0 −K1
/K0 ×100で表される比誘電率の変化率で求めた。
The obtained dielectric thin film was measured by X-ray diffraction (XR
As a result of the analysis according to D), a peak of a perovskite oxide was confirmed in each case. The dielectric thin film was observed with a scanning electron microscope (SEM), and the average crystal grain size was measured. Further, the evaluation of the dielectric properties was performed by depositing Au on the dielectric thin film to form an upper electrode, and forming a Pt layer as a lower electrode and a plate capacitor. Measurement is L
CR Meter (Huret Packer 4284A)
Measurement frequency f = 1 kHz, applied voltage Vrm
s = 100 mV. The relative permittivity (K) and the dielectric loss (DF) at room temperature were measured. Assuming that the DC bias characteristic is the relative permittivity K 0 when no voltage is applied and the relative permittivity K 1 when a voltage of 5 MV / m is applied, (K 0 −K 1 )
It was determined by the rate of change of the relative dielectric constant represented by / K 0 × 100.

【0033】また、インピーダンスアナライザ(ヒュウ
レットパッカード社製HP4291A,フィクスチャー
HP16092A)を用いて1MHz〜1.8GHzに
おける特性評価をおこなった。インピーダンスー周波数
特性の測定により、100MHz(室温)における等価
直列容量を評価し、比誘電率を求めた。
Further, characteristic evaluation at 1 MHz to 1.8 GHz was performed using an impedance analyzer (HP4291A, fixture HP16092A manufactured by Hulett Packard). By measuring the impedance-frequency characteristics, the equivalent series capacitance at 100 MHz (room temperature) was evaluated, and the relative permittivity was determined.

【0034】[0034]

【表1】 [Table 1]

【0035】表1から判るように、図1の点A,B,
C,D,E,F,G,Hの線分で囲まれる本発明の誘電
体薄膜は、測定周波数1kHz(室温)および100M
Hzにおいて1000以上の高誘電率を有し、また1k
Hzでの誘電損失も1.38〜2.70%と小さいこと
が判る。また、本発明では、DCバイアスに対する比誘
電率の変化率は、5MV/m印加時においても40%未
満の低下である。特に、点I,J,D,Kを結ぶ線分で
囲まれる範囲内では、測定周波数1kHzおよび100
MHzで比誘電率が1350以上となっていることが判
る。
As can be seen from Table 1, points A, B, and B in FIG.
The dielectric thin film of the present invention surrounded by the line segments C, D, E, F, G and H has a measurement frequency of 1 kHz (room temperature) and 100 M.
Has a high dielectric constant of 1000 or more at 1 Hz and is 1k
It can be seen that the dielectric loss at Hz is as small as 1.38 to 2.70%. Further, in the present invention, the rate of change of the relative dielectric constant with respect to the DC bias is a decrease of less than 40% even when 5 MV / m is applied. Particularly, in the range surrounded by the line segment connecting the points I, J, D, and K, the measurement frequencies of 1 kHz and 100
It can be seen that the relative permittivity is 1350 or more at MHz.

【0036】これに対して、比較例ではいずれも1kH
z及び100MHzにおける比誘電率がそれぞれ100
0よりも低いか、または、DCバイアスに対する比誘電
率の変化率が40%よりも大きい場合があることが判
る。
On the other hand, in the comparative examples, each is 1 kHz.
The relative permittivity at z and 100 MHz is 100, respectively.
It can be seen that it may be lower than 0 or the change rate of the relative dielectric constant with respect to the DC bias may be higher than 40%.

【0037】さらに、粉体を原料として作製した粒径が
10μm以上の従来のBaTiO3系材料では、高誘電
率を有するもののDCバイアスに対する比誘電率の変化
率は5MV/m印加時に70%の低下であり、本願発明
では優れた誘電特性を有することが判る。
Further, in the case of a conventional BaTiO 3 system material having a particle size of 10 μm or more prepared from powder as a raw material, the rate of change of the relative dielectric constant with respect to the DC bias is 70% when a 5 MV / m voltage is applied. This is a decrease, and it can be seen that the present invention has excellent dielectric properties.

【0038】[0038]

【発明の効果】以上詳述したように、本発明の誘電体薄
膜は、DCバイアス特性、温度特性が優れているうえ
に、100MHzの様な高周波においても比誘電率が大
きい為、素子の小型化を図ることができるとともに、I
Cまわりのデカップリングコンデンサ等の高周波で用い
られるコンデンサとして広く適用できる。
As described above in detail, the dielectric thin film of the present invention has excellent DC bias characteristics and temperature characteristics, and has a large relative dielectric constant even at a high frequency such as 100 MHz. Can be achieved and I
It can be widely applied as a capacitor used at high frequency such as a decoupling capacitor around C.

【図面の簡単な説明】[Brief description of drawings]

【図1】縦軸に本発明の誘電体薄膜の平均結晶粒径d、
横軸に本発明の誘電体薄膜の組成式におけるxを記載し
た図である。
FIG. 1 shows the average crystal grain size d of the dielectric thin film of the present invention on the vertical axis,
It is the figure which described x in the composition formula of the dielectric thin film of this invention on the horizontal axis.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】金属元素としてBa、TiおよびSnを含
有するペロブスカイト型複合酸化物からなる誘電体薄膜
であって、これらの成分をBaTi1-x Snx3 と表
した時のxおよびペロブスカイト結晶の平均結晶粒径d
(μm)が、図1における線分A−B−C−D−E−F
−G−H−Aで囲まれる範囲内にあることを特徴とする
誘電体薄膜。
1. A dielectric thin film comprising a perovskite type complex oxide containing Ba, Ti and Sn as metal elements, wherein x and perovskite are expressed when these components are expressed as BaTi 1-x Sn x O 3. Average crystal grain size d
(Μm) is the line segment A-B-C-D-E-F in FIG.
-A dielectric thin film characterized by being in a range surrounded by -GHA.
【請求項2】測定周波数100MHz(室温)における
比誘電率が1000以上であることを特徴とする請求項
1記載の誘電体薄膜。
2. The dielectric thin film according to claim 1, which has a relative dielectric constant of 1000 or more at a measurement frequency of 100 MHz (room temperature).
【請求項3】請求項1記載の誘電体薄膜の両面に電極を
形成してなることを特徴とするセラミックコンデンサ。
3. A ceramic capacitor comprising electrodes formed on both surfaces of the dielectric thin film according to claim 1.
JP31806996A 1995-11-30 1996-11-28 Dielectric thin film and ceramic capacitor Expired - Fee Related JP3681844B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31806996A JP3681844B2 (en) 1995-11-30 1996-11-28 Dielectric thin film and ceramic capacitor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7-312541 1995-11-30
JP31254195 1995-11-30
JP31806996A JP3681844B2 (en) 1995-11-30 1996-11-28 Dielectric thin film and ceramic capacitor

Publications (2)

Publication Number Publication Date
JPH09208305A true JPH09208305A (en) 1997-08-12
JP3681844B2 JP3681844B2 (en) 2005-08-10

Family

ID=26567214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31806996A Expired - Fee Related JP3681844B2 (en) 1995-11-30 1996-11-28 Dielectric thin film and ceramic capacitor

Country Status (1)

Country Link
JP (1) JP3681844B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002032809A1 (en) * 2000-10-17 2002-04-25 Sharp Kabushiki Kaisha Oxide material, method for preparing oxide thin film and element using said material
CN104532186A (en) * 2014-12-25 2015-04-22 庞凤梅 Method for preparing BTS film by virtue of radio frequency magnetron sputtering
CN112180174A (en) * 2020-09-11 2021-01-05 西安交通大学 Voltage-sensitive ceramic interface state response measuring method based on frequency domain dielectric response

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002032809A1 (en) * 2000-10-17 2002-04-25 Sharp Kabushiki Kaisha Oxide material, method for preparing oxide thin film and element using said material
US7205256B2 (en) 2000-10-17 2007-04-17 Sharp Kabushiki Kaisha Oxide material, method for preparing oxide thin film and element using said material
CN104532186A (en) * 2014-12-25 2015-04-22 庞凤梅 Method for preparing BTS film by virtue of radio frequency magnetron sputtering
CN112180174A (en) * 2020-09-11 2021-01-05 西安交通大学 Voltage-sensitive ceramic interface state response measuring method based on frequency domain dielectric response

Also Published As

Publication number Publication date
JP3681844B2 (en) 2005-08-10

Similar Documents

Publication Publication Date Title
Dawley et al. Dielectric properties of random and< 100> oriented SrTiO 3 and (Ba, Sr) TiO 3 thin films fabricated on< 100> nickel tapes
US7580241B2 (en) Thin film capacitor element composition, high permittivity insulation film, thin film capacitor element, thin film multilayer capacitor, and method of production of thin film capacitor element
Desu et al. Thin films of layered-structure (1− x) SrBi 2 Ta 2 O 9− x Bi 3 Ti (Ta 1− y Nb y) O 9 solid solution for ferroelectric random access memory devices
JP3457892B2 (en) Dielectric thin film and ceramic capacitor
JP3681844B2 (en) Dielectric thin film and ceramic capacitor
JP3481807B2 (en) Dielectric thin film and ceramic capacitor
JP3389370B2 (en) Ceramic capacitors
JP3652129B2 (en) Dielectric thin film and ceramic capacitor
JPH11273989A (en) Dielectric thin film and ceramic capacitor
JP3631570B2 (en) Dielectric thin film and ceramic capacitor
JP6801517B2 (en) Dielectric composition and electronic components
JP3512601B2 (en) Dielectric thin film and ceramic capacitor
JP3561123B2 (en) Dielectric thin film and manufacturing method thereof
JP3652073B2 (en) Dielectric thin film and ceramic capacitor
JP2004253294A (en) Dielectric thin film, thin film capacitor, and electronic circuitry component using it
JP3652074B2 (en) Dielectric thin film and ceramic capacitor
JPH1045469A (en) Dielectric thin film and ceramic capacitor
JP3215030B2 (en) Dielectric thin film
JP3398297B2 (en) Dielectric thin film and thin film capacitor
JP3411201B2 (en) Dielectric thin film and ceramic capacitor
JPH1143371A (en) Dielectric substance thin film and ceramic capacitor
JPH10335178A (en) Thin-film capacitor and capacitor-integrated substrate
JP3383534B2 (en) Thin film capacitors
JPH04302117A (en) Thin film capacitor and manufacture thereof
JP3116428B2 (en) Thin film dielectric and manufacturing method thereof

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040824

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050519

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090527

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090527

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100527

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees