JPH09206910A - Closed type molten metal supplying apparatus - Google Patents

Closed type molten metal supplying apparatus

Info

Publication number
JPH09206910A
JPH09206910A JP1404196A JP1404196A JPH09206910A JP H09206910 A JPH09206910 A JP H09206910A JP 1404196 A JP1404196 A JP 1404196A JP 1404196 A JP1404196 A JP 1404196A JP H09206910 A JPH09206910 A JP H09206910A
Authority
JP
Japan
Prior art keywords
ladle
molten metal
injection sleeve
hot water
valve rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1404196A
Other languages
Japanese (ja)
Inventor
Hiroaki Mitsuyoshi
博晃 三吉
Yasuo Mizunaga
康雄 水永
Sadayuki Dannoura
貞行 壇浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP1404196A priority Critical patent/JPH09206910A/en
Publication of JPH09206910A publication Critical patent/JPH09206910A/en
Pending legal-status Critical Current

Links

Landscapes

  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)

Abstract

PROBLEM TO BE SOLVED: To continuously and stably obtain a high quality cast product without cast defect by providing an introducing tube incorporated into a ladle at the one end and inserted into an injection sleeve while projecting from the ladle at the other end to pour molten metal into the injection sleeve. SOLUTION: A valve rod 22 is risen by operating a valve rod cylinder 24 and a suction hole 20c is made to opening state, and while exhausting gas in the ladle 20, the molten metal M in a melting and holding furnace 10 is naturally sucked into the ladle 20. Successively, the suction hole 20c is closed by lowering the valve rod 22, and after completing the suction of the regulated quantity of the molten metal into the ladle 20, the tip part 28a of spouting part of the introducing tube 28 is lowered and adjusted to approach the upper surface of the plunger chip 200a and inert gas pressed to the low pressure is poured into the ladle 20. The molten metal surface in the ladle 20 is pressed and the molten metal is flowed into the introducing tube 28 and dropped from the tip part 28a of spouting part on the introducing tube 28 and started to pour into the injection sleeve 200.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、アルミニウム合金
またはマグネシウム合金などの溶湯をダイカストマシン
などの成形装置の射出スリーブへ給湯する密閉式給湯装
置に係り、特に給湯精度の向上とラドル移送中の溶湯滴
下対策に配慮した密閉式給湯装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a closed type hot water supply device for supplying a molten metal such as an aluminum alloy or a magnesium alloy to an injection sleeve of a molding machine such as a die casting machine, and more particularly, to improve the precision of hot water supply and the molten metal during ladle transfer. The present invention relates to a sealed hot water supply device that takes measures against dripping.

【0002】[0002]

【従来の技術】従来、ダイカストマシンの射出スリーブ
へアルミニウム合金やマグネシウム合金などの溶湯を給
湯するには、従来、図6に示すように、溶解保持炉10
内の溶湯を酌み取ったラドル20を機械的機構を使用し
て上昇、または円弧状軌跡を描きながら横移動して傾斜
した射出スリーブ200の位置まで移動し、しかる後、
ラドル20内の溶湯を射出スリーブ内へ注湯するラドル
反転方式が採用されていた。また、図7に示すような上
部に蓋20aを有し底部に開口部(吸入口20c)を備
え、蓋20aに空気抜き20dを有する密閉式でないラ
ドル20を溶解保持炉10内へ浸漬し、底部の開口部2
0cよりラドル20内へ溶湯を侵入させた後に開口部2
0cを閉塞した後、傾斜した射出スリーブ200の位置
までラドル20を移動し、射出スリーブ200の軸線に
合わせてラドル20を傾斜しつつラドル底部を射出スリ
ーブ200内へ装入してから、底部の開口部20cを閉
塞状態から開放状態にしてラドル内部の溶湯を自然落下
させて射出スリーブ200内へ供給する(給湯する)方
法も採用されていた。この方式は底抜きラドル方式と呼
ばれている。
2. Description of the Related Art Conventionally, in order to supply a molten metal such as an aluminum alloy or a magnesium alloy to an injection sleeve of a die casting machine, conventionally, as shown in FIG.
Using a mechanical mechanism, the ladle 20 that has taken out the molten metal inside rises or moves laterally while drawing an arcuate locus to move to the position of the inclined injection sleeve 200, and then,
The ladle inversion method of pouring the molten metal in the ladle 20 into the injection sleeve has been adopted. Further, as shown in FIG. 7, a lid 20a is provided on the top and an opening (suction port 20c) is provided on the bottom, and an unsealed ladle 20 having an air vent 20d on the lid 20a is dipped into the melting and holding furnace 10 to form the bottom. Opening 2
After the molten metal has penetrated into the ladle 20 from 0c, the opening 2
After closing 0c, the ladle 20 is moved to the position of the inclined injection sleeve 200, and while the ladle 20 is inclined along the axis of the injection sleeve 200 while the bottom of the ladle is inserted into the injection sleeve 200, A method has also been employed in which the opening 20c is changed from the closed state to the open state, and the molten metal inside the ladle is naturally dropped and supplied (supplied with hot water) into the injection sleeve 200. This method is called the bottomed ladle method.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上述の
ラドル反転方式や底抜きラドル方式のいずれにおいて
も、射出スリーブへの注湯口(ラドルの吐出口)は、溶
湯をラドル内へ入れる場合にラドル本体を溶解保持炉内
へ浸漬するため、ラドル内部に溶湯が入るだけでなくラ
ドルの外周に溶湯が付着し、ラドルを射出スリーブの位
置まで移動し、その後の注湯動作中にラドル外周に付着
した溶湯と空気中の酸素とが反応して酸化物を生成し、
かつ、これが注湯中に滴下してラドル内部の溶湯ととも
に射出スリーブ内へ落下することとなる。したがって、
ダイカスト成形後の鋳造品にこの酸化物が混入して、品
質の低下を招くという問題があった。また、上述の底抜
きラドル方式では、開口部(吸入口20c)が底部中央
に下側に向かって開口しており、ラドル内への溶湯の取
り込み後の開閉装置のシールが不完全であるとき、射出
スリーブまでのラドルの移送時に溶湯の滴下が起こり、
危険であるばかりでなく作業環境を著しく汚染するとい
う問題があった。また溶解保持炉の溶湯液面が毎回の給
湯時に異なるとラドル20内へ取り込まれる溶湯量が微
妙に異なり、毎回の注湯量にばらつきが生じることとな
り、その結果、射出スリーブへの給湯量にもばらつきが
生じるので給湯精度が低く、鋳造品品質を均一に保つこ
とができないという難点があった。さらに、上述のラド
ル(図6のラドル20や図7のラドル20)では、給湯
の初期に射出スリーブ内に落下する溶湯の落下高さが大
きく、大きな落下高さの際に周囲の空気の巻き込みを誘
発して鋳造品にブローホールなどの鋳造欠陥を生じる惧
れがあった。
However, in any of the above-mentioned ladle inversion method and bottomed-out ladle method, the pouring port (ladle discharge port) to the injection sleeve is the ladle body when pouring the molten metal into the ladle. Since the molten metal is immersed in the melting and holding furnace, the molten metal not only enters the inside of the ladle but also adheres to the outer periphery of the ladle, moves the ladle to the position of the injection sleeve, and adheres to the outer periphery of the ladle during the subsequent pouring operation. The molten metal reacts with oxygen in the air to produce oxides,
In addition, this drops during pouring and drops into the injection sleeve together with the molten metal inside the ladle. Therefore,
There is a problem that this oxide is mixed in a cast product after die casting, which causes deterioration of quality. Further, in the above-mentioned bottomed ladle system, when the opening (suction port 20c) is opened downward in the center of the bottom and the seal of the switchgear after the molten metal is taken into the ladle is incomplete. , Dripping of molten metal occurs when transferring the ladle to the injection sleeve,
There is a problem that not only it is dangerous but also the work environment is significantly polluted. Further, if the molten metal surface of the melting and holding furnace is different each time the molten metal is supplied, the amount of molten metal taken into the ladle 20 will be slightly different, resulting in variations in the amount of molten metal poured each time, and as a result, the amount of molten metal supplied to the injection sleeve. Since there are variations, the hot water supply accuracy is low and the quality of the cast product cannot be kept uniform. Further, in the above-mentioned ladle (the ladle 20 in FIG. 6 and the ladle 20 in FIG. 7), the height of the molten metal that falls into the injection sleeve at the beginning of hot water supply is large, and the surrounding air is engulfed at the time of a large drop height. There is a risk of causing casting defects such as blowholes in the cast product by inducing the above.

【0004】[0004]

【課題を解決するための手段】以上の課題を解決するた
めに、本発明(第1の発明)においては、アルミニウム
合金またはマグネシウム合金の溶湯をダイカストマシン
などの射出スリーブ内へ給湯する密閉式給湯装置であっ
て、溶湯の溶解保持炉内に浸漬されて懸架され底部側方
に突出して設けた連通遮断自在な溶湯の吸入口を備える
とともに該吸入口を連通遮断する弁棒と弁棒昇降用の弁
棒シリンダとからなる開閉装置をラドル本体の外部に備
えたラドルと、該ラドル懸垂支持昇降手段と、一端が該
ラドル内に収納され他端が該ラドルより突出して前記射
出スリーブ内へ挿入され該ラドル内の溶湯を前記射出ス
リーブへ注湯する導管と、該ラドル内の溶湯液面を加圧
する加圧ガスの注入手段とを備えるとともに、前記導管
の溶湯吐出側は、下方に向かって傾斜させるとともに、
前記ラドル懸垂支持昇降手段の昇降方向を傾斜した前記
射出スリーブと平行に傾斜させた構成とした。また、第
2の発明では、第1の発明の密閉式給湯装置において、
ラドルの溶湯の吸入口が上方に開口した構成とした。
In order to solve the above problems, in the present invention (first invention), a closed type hot water supply for supplying molten metal of aluminum alloy or magnesium alloy into an injection sleeve of a die casting machine or the like. A device for raising and lowering a valve rod and a valve rod, which is provided with a molten metal suction port which is immersed in a melting and holding furnace for molten metal and is suspended Equipped with an opening / closing device including a valve rod cylinder of the outside of the ladle body, the ladle suspension supporting elevating means, one end housed in the ladle and the other end protruding from the ladle and inserted into the injection sleeve. And a conduit for pouring the molten metal in the ladle to the injection sleeve, and means for injecting a pressurized gas for pressurizing the liquid surface of the molten metal in the ladle, and the molten metal discharge side of the conduit is With tilting towards,
The raising and lowering direction of the ladle suspension support elevating means is inclined parallel to the inclined injection sleeve. Also, in the second invention, in the hermetically sealed water heater of the first invention,
The suction port for the molten metal of the ladle was opened upward.

【0005】[0005]

【発明の実施の態様】本発明の密閉式給湯装置において
は、アルミニウム合金またはマグネシウム合金の溶湯を
ダイカストマシンなどの射出スリーブ内へ給湯する密閉
式給湯装置であって、溶湯の溶解保持炉内に浸漬されて
懸架され底部側方に突出して設けた連通遮断自在な溶湯
の吸入口を備えるとともに該吸入口を連通遮断する弁棒
と弁棒昇降用の弁棒シリンダとからなる開閉装置をラド
ル本体の外部に備えたラドルと、該ラドル懸垂支持昇降
手段と、一端が該ラドル内に収納され他端が該ラドルよ
り突出して前記射出スリーブ内へ挿入され該ラドル内の
溶湯を前記射出スリーブへ注湯する導管と、該ラドル内
の溶湯液面を加圧する加圧ガスの注入手段とを備えると
ともに、前記導管の溶湯吐出側は、下方に向かって傾斜
させるとともに、前記ラドル懸垂支持昇降手段の昇降方
向を傾斜した前記射出スリーブと平行に傾斜させた構成
としてある。したがって、ラドルを溶湯の入った溶解保
持炉内に浸漬して、ラドル底部側方に突出して設けた溶
湯吸入口より溶湯をラドル内に吸入して取り込んだあと
ラドル本体を通過することなく、ラドル本体の側方を上
下方向に昇降自在な弁棒と弁棒昇降用の弁棒シリンダと
からなる開閉装置で吸入口を閉塞するので、従来の底抜
きラドル方式であってラドル内を密閉する密閉蓋を備え
た底抜きラドル方式では密閉蓋と弁棒とのガスシールが
必要であるが、本発明においては弁棒が密閉蓋を貫通す
る構造になっていないので、弁棒とラドル密閉蓋とのガ
スシールを考慮する必要がない。ラドル内への溶湯の取
り込みが完了した後、ラドル懸垂支持昇降手段を操作し
てラドルを移送しラドルに連結された導管吐出側先端を
射出スリーブ底部のプランジャチップ上面近くまで挿入
し、たとえば不活性ガスのような加圧ガスをラドル内に
吹き込んでこの押圧力によりラドル内の溶湯を導管を経
由して射出スリーブ内へ給湯する。このとき、ラドル内
の溶湯液面が、該ラドルの天蓋下面に接するようにラド
ル懸垂支持昇降手段を操作して、該ラドル内に注入する
加圧ガスのラドル内残存量が皆無か、または、殆ど無い
状態に保持して給湯することにより、加圧ガスのラドル
内の温度変化を極力少なくして、加圧ガスの押圧力を毎
回ほぼ一定の値に保持し、給湯量のばらつきを出来るだ
け少なくして給湯精度を高めることが望ましい。さら
に、第2の発明では、ラドルの溶湯吸入口を上方に開口
した構成としたので、たとえ経年変化による開閉装置の
閉塞時のシールが少々不完全であっても、開口部が上向
きであるから溶湯が漏れにくくラドルの射出スリーブへ
の移動中におけるラドル内溶湯の滴下を最小限に食い止
めることが出来る。また、ラドルから射出スリーブへの
溶湯の給湯に際しては、導管の吐出側先端を射出スリー
ブ内底面まで挿入して静止した後、給湯を開始し、給湯
の進行に伴なう該射出スリーブ内の溶湯液面上昇により
該導管吐出側先端部の溶湯浸漬深さが所定の値に達した
とき該所定の溶湯浸漬深さを一定に維持するように溶湯
液面の上昇と同一速度で該導管と一体的にラドルを上昇
させつつ給湯するようにすれば、溶湯の落下に伴なう飛
び撥ねや飛沫の発生が防止できるので空気の溶湯内巻き
込みを防止し、かつ、射出スリーブ内の導管溶湯浸漬深
さが浅い一定の状態で給湯が進行するため、導管外側に
付着する溶湯量が毎回一定した微小な量となっており、
かつ毎回その外側を清掃して酸化物を除去することも可
能である。したがって、本発明の密閉式給湯装置では、
従来技術に比べて、毎回の給湯条件が均一化されるので
給湯精度が高く、ラドル移送中の溶湯の滴下が少なく、
かつ溶湯酸化物の混入も少ないので鋳造品品質が良好に
維持できる。
BEST MODE FOR CARRYING OUT THE INVENTION The closed hot water supply apparatus of the present invention is a closed hot water supply apparatus for supplying molten metal of aluminum alloy or magnesium alloy into an injection sleeve of a die casting machine or the like, which is provided in a melting and holding furnace for molten metal. A ladle body is provided with an opening / closing device that is provided with a molten metal suction port that is immersed and suspended and that projects to the side of the bottom and that is capable of blocking communication, and that includes a valve rod that shuts off the suction port and a valve rod cylinder for lifting the valve rod. A ladle provided on the outside of the ladle, the ladle suspension supporting elevating means, one end housed in the ladle and the other end protruding from the ladle and inserted into the injection sleeve, and pouring the molten metal in the ladle to the injection sleeve. A conduit for hot water and a means for injecting a pressurized gas for pressurizing the melt surface in the ladle are provided, and the melt discharge side of the conduit is inclined downward. Serial ladle is as was inclined parallel to said injection sleeve inclined constituting the lifting direction of the suspension supporting the lifting means. Therefore, the ladle is immersed in the melting and holding furnace containing the molten metal, and the molten metal is sucked into the ladle from the molten metal suction port provided to project to the side of the bottom of the ladle and taken in. The intake port is closed by an opening / closing device consisting of a valve rod that can move up and down on the side of the main body and a valve rod cylinder for raising and lowering the valve rod. In the bottomed ladle system provided with a lid, gas sealing between the sealing lid and the valve rod is necessary, but in the present invention, since the valve rod does not have a structure that penetrates the sealing lid, the valve rod and the ladle sealing lid are There is no need to consider the gas seal of. After the molten metal has been taken up into the ladle, operate the ladle suspension support elevating means to transfer the ladle and insert the tip of the discharge side of the conduit connected to the ladle to near the top of the plunger tip at the bottom of the injection sleeve. Pressurized gas such as gas is blown into the ladle, and the pressing force supplies the molten metal in the ladle into the injection sleeve through the conduit. At this time, the molten metal surface in the ladle is operated by operating the ladle suspension supporting elevating means so as to contact the lower surface of the canopy of the ladle, and there is no residual amount in the ladle of the pressurized gas injected into the ladle, or By supplying hot water while keeping it almost non-existent, the temperature change in the ladle of the pressurized gas is minimized and the pressing force of the pressurized gas is maintained at a nearly constant value every time, so that variations in the amount of hot water can be achieved. It is desirable to reduce the amount to improve hot water supply accuracy. Further, in the second invention, since the molten metal suction port of the ladle is opened upward, the opening is upward even if the seal when the switchgear is closed due to aging is slightly incomplete. The molten metal is unlikely to leak and the dripping of the molten metal in the ladle during movement of the ladle to the injection sleeve can be minimized. When supplying molten metal from the ladle to the injection sleeve, the tip of the discharge side of the conduit is inserted into the bottom surface of the injection sleeve and stopped, and then hot water supply is started and the molten metal in the injection sleeve progresses with the progress of the hot water supply. When the molten metal immersion depth at the tip of the discharge side of the conduit reaches a predetermined value due to the rise of the liquid level, it is integrated with the conduit at the same speed as the rise of the molten metal liquid level so as to keep the predetermined molten metal immersion depth constant. If the hot water is supplied while raising the ladle, it is possible to prevent splashing and splashing that occur when the molten metal falls, so that air entrapment in the molten metal is prevented, and the depth of immersion of the molten conduit in the injection sleeve is prevented. Since the hot water supply progresses in a shallow and constant state, the amount of molten metal adhering to the outside of the conduit is a constant minute amount,
It is also possible to clean the outside each time to remove oxides. Therefore, in the closed type water heater of the present invention,
Compared to the conventional technology, the hot water supply conditions are made uniform every time, so the hot water supply accuracy is high, and there is less molten metal dripping during ladle transfer.
In addition, the quality of the cast product can be maintained in good condition, since there is little mixing of molten oxide.

【0006】[0006]

【実施例】以下図面に基づいて本発明の実施例の詳細に
ついて説明する。図1〜図5はいずれも本発明の実施例
に係り、図1は密閉式給湯装置の全体構成図、図2は密
閉式給湯装置(給湯中)の要部拡大縦断面図、図3は密
閉式給湯装置(酸化物除去清掃中)の要部拡大縦断面
図、図4は図2のA−A視を示す非作業中の酸化物除去
装置の正面図、図5は図3のB−B視の作業中の酸化物
除去装置の位置状態を示す密閉式給湯装置の要部拡大縦
断面図である。
Embodiments of the present invention will be described below in detail with reference to the drawings. 1 to 5 are all related to an embodiment of the present invention, FIG. 1 is an overall configuration diagram of a closed type hot water supply device, FIG. 2 is an enlarged vertical sectional view of a main part of the closed type hot water supply device (during hot water supply), and FIG. FIG. 4 is a front view of the non-working oxide removing device showing an AA view of FIG. 2, and FIG. 5 is B of FIG. FIG. 6 is an enlarged vertical cross-sectional view of a main part of the closed-type hot water supply device showing the position state of the oxide removing device during the work viewed from the position B.

【0007】図1に示すように、第1の発明である密閉
式給湯装置1は、直立円筒状のラドル20を建屋(また
は構造物)50に傾斜して固設されたラドル懸垂支持昇
降シリンダ60のピストンロッド60aの先端に接続さ
れて懸架され、溶解保持炉10内にその大部分が浸漬さ
れるように保持したもので、ラドル20は上端部を天蓋
20aと密閉蓋20bとでそれぞれボルトナットを介し
て接合されて密閉されるとともに、底部側方に突出して
設けられ、溶解保持炉10のるつぼ10a内の溶湯Mが
ラドル20内へ吸入するための上方に開口した開口部
(吸入口20c)を備えるとともに、吸入口20cと溶
解保持炉10とを連通遮断するための弁棒22と、天蓋
20aに取り付けられたサポート24aに載置固設され
た弁棒22の昇降手段である弁棒シリンダ24とからな
る開閉装置40を備えている。
As shown in FIG. 1, a hermetically sealed hot water supply apparatus 1 according to a first aspect of the present invention is a ladle suspension-supporting lifting cylinder in which an upright cylindrical ladle 20 is inclined and fixed to a building (or structure) 50. The piston 60 is connected to the tip of a piston rod 60a and suspended, and is held so that most of it is immersed in the melting and holding furnace 10. The upper end of the ladle 20 is bolted by a canopy 20a and a sealing lid 20b, respectively. An opening (suction port) that is joined and sealed via a nut and that is provided so as to project to the side of the bottom and that allows the molten metal M in the crucible 10a of the melting and holding furnace 10 to be sucked into the ladle 20 (suction port) 20c) and for lifting and lowering the valve rod 22 for disconnecting the inlet 20c and the melting and holding furnace 10 from each other and the valve rod 22 fixedly mounted on the support 24a attached to the canopy 20a. And a switching device 40 comprising a valve stem cylinder 24. It.

【0008】一方、天蓋20aと密閉蓋20bには、一
端がラドル20内へ下向きに貫通し、他端が湾曲してダ
イカストマシンの射出スリーブ200の傾斜した軸線X
−Xに沿って傾斜して下降する導管28が取り付けられ
るとともに、N2 ガスやArガス、CO2 ガスなどの不
活性ガス供給装置70から供給される不活性ガスをラド
ル20内へ注入する不活性ガス配管30が設けられる。
密閉蓋20aの上部に取り付けられたラドルサポート2
6は前記したようにラドル懸垂支持昇降シリンダ60の
ピストンロッド60aの先端に連結され、ラドル懸垂支
持昇降シリンダ60の操作によりラドル20や導管28
は一体的に傾斜した軸線X−Xに沿って昇降自在になっ
ている。
On the other hand, the canopy 20a and the sealing lid 20b have one end penetrating downward into the ladle 20 and the other end curved to incline the inclined axis X of the injection sleeve 200 of the die casting machine.
A conduit 28 that is inclined and descends along −X is attached, and an inert gas supplied from an inert gas supply device 70 such as N 2 gas, Ar gas, or CO 2 gas is injected into the ladle 20. An active gas pipe 30 is provided.
Ladle support 2 attached to the top of the sealing lid 20a
As described above, 6 is connected to the tip of the piston rod 60a of the ladle suspension support elevating / lowering cylinder 60.
Is movable up and down along an integrally inclined axis X-X.

【0009】加圧ガスとしては、不活性ガスのほか、工
場内の廃棄ガスや燃焼ガスや通常の空気を使用すること
も出来るが、溶湯の酸化を防止するためには、酸素を含
まない不活性ガス(N2 ガス、Arガス、CO2 ガスな
ど)が望ましい。不活性ガス配管30は、不活性ガス供
給装置70を出た後、温度調節装置90を通過して所望
の温度に昇温されるよう構成され、不活性ガス供給装置
70と温度調節装置90との間にある不活性ガス供給制
御装置80により昇温温度や供給時間を任意に制御でき
るよう構成される。また、3つの液圧シリンダである、
ラドル懸垂支持昇降シリンダ60と弁棒シリンダ24と
後述する酸化物除去装置100の掃除具昇降シリンダ1
10の油圧配管は、各々独立して図示しない油圧ユニッ
トに接続されるとともに、該油圧ユニットは、図示しな
いプログラマブルコントローラと接続され、動作指令を
プログラマブルコントローラから受信して作動する。
As the pressurized gas, in addition to the inert gas, waste gas in the factory, combustion gas, or normal air can be used, but in order to prevent the oxidation of the molten metal, the gas containing no oxygen is used. Active gas (N 2 gas, Ar gas, CO 2 gas, etc.) is desirable. The inert gas pipe 30 is configured to pass through the temperature control device 90 and be heated to a desired temperature after exiting the inert gas supply device 70, and the inert gas supply device 70 and the temperature control device 90 are connected to each other. The inert gas supply control device 80 between the two is configured so that the temperature rise and the supply time can be controlled arbitrarily. Also three hydraulic cylinders,
Ladle suspension support lifting cylinder 60, valve rod cylinder 24, and cleaning tool lifting cylinder 1 of the oxide removing apparatus 100 described later.
Each of the hydraulic pipes 10 is independently connected to a hydraulic unit (not shown), and the hydraulic unit is connected to a programmable controller (not shown) to receive an operation command from the programmable controller and operate.

【0010】また、図2〜図5に示すように、導管28
の吐出部先端外周に付着した溶湯や溶湯酸化物を除去清
掃する酸化物除去装置100が、サポート26の導管吐
出側に配設される。酸化物除去装置100は、図4〜図
5に示すような、導管28の外周を把持して導管軸方向
に摺動する左右一対の掃除具122を備えた掃除具開閉
シリンダ120と掃除具開閉シリンダ120を導管軸方
向に昇降させる掃除具昇降シリンダ110とより構成さ
れ、溶湯の給湯中は掃除具開閉シリンダ120は図2に
示すように上方に後退させて置き、射出スリーブへの給
湯作業の終了後に毎回、図3に示すように導管28の吐
出下端部に掃除具122を上下に摺動させて、導管外周
に付着した溶湯や溶湯酸化物を剥離除去する。なお、掃
除具昇降シリンダ110と掃除具開閉シリンダ120は
油圧シリンダでなく、エアシリンダとしてもよい。ま
た、ラドル20内には、ラドル内に取り込まれる溶湯量
を把握するため、図2に示すように湯面検知棒150a
や図3に示すようにレーザ光センサ160または超音波
センサ170などの溶湯液面レベル検出センサが配設さ
れる。
Also, as shown in FIGS.
An oxide removing device 100 that removes and cleans the molten metal and molten oxide attached to the outer periphery of the tip of the discharge portion is disposed on the conduit discharge side of the support 26. As shown in FIGS. 4 to 5, the oxide removing apparatus 100 includes a cleaning tool opening / closing cylinder 120 and a cleaning tool opening / closing cylinder 120 that includes a pair of left and right cleaning tools 122 that grip the outer periphery of the conduit 28 and slide in the conduit axial direction. The cleaning tool lifting cylinder 110 is configured to move the cylinder 120 up and down in the axial direction of the conduit, and the cleaning tool opening and closing cylinder 120 is retracted upward as shown in FIG. After completion, each time the cleaning tool 122 is slid up and down on the discharge lower end of the conduit 28 as shown in FIG. 3, the molten metal or molten oxide adhering to the outer periphery of the conduit is peeled and removed. The cleaning tool lifting cylinder 110 and the cleaning tool opening / closing cylinder 120 may be air cylinders instead of hydraulic cylinders. In addition, in order to grasp the amount of molten metal taken into the ladle 20, as shown in FIG.
As shown in FIG. 3 and FIG. 3, a molten metal level detecting sensor such as a laser light sensor 160 or an ultrasonic sensor 170 is provided.

【0011】以上のように構成された本発明の密閉式給
湯装置1の作動について説明する。まず、図2のような
状態に保持されたラドル20において、弁棒シリンダ2
4を操作して弁棒22を上昇して吸入口20cを開状態
にしてラドル20内の気体を排出しつつ溶解保持炉10
の溶湯Mをラドル20内に自然吸入させる。ラドル20
内に吸入する溶湯量は溶解保持炉10内に埋没させるラ
ドル20の高さで調節するか、または、ラドル20の外
側に配設した図示しない湯面検知棒で調整するが、この
場合、ラドル20内の溶湯液面は、図2に示すように、
密閉蓋20bの下面と接するか、もしくは、下面とすれ
すれの状態に保持し、ラドル20内に封入される不活性
ガス量を出来るだけ少なくするのが望ましい。この後、
不活性供給制御装置80を介して不活性ガス供給装置7
0により不活性ガスを不活性ガス配管30を通じてラド
ル内に供給する。また、不活性ガスは、温度調節装置9
0により溶湯温度に近接した、たとえば、250〜70
0℃の範囲の中の一定の温度状態に加熱して供給するこ
とが望ましい。
The operation of the sealed hot water supply apparatus 1 of the present invention having the above-described structure will be described. First, in the ladle 20 held in the state as shown in FIG.
4 is operated to raise the valve rod 22 and open the suction port 20c to discharge the gas in the ladle 20 while melting and holding the furnace 10.
The molten metal M is naturally sucked into the ladle 20. Ladle 20
The amount of molten metal sucked in is adjusted by the height of the ladle 20 buried in the melting and holding furnace 10 or is adjusted by a molten metal level detection rod (not shown) arranged outside the ladle 20, but in this case, As shown in FIG. 2, the molten metal liquid level in 20 is
It is desirable that the amount of the inert gas sealed in the ladle 20 is made as small as possible by contacting with the lower surface of the sealing lid 20b or keeping the sealing lid 20b in a state in which it is sliding. After this,
Inert gas supply device 7 via inert supply control device 80
When 0, the inert gas is supplied into the ladle through the inert gas pipe 30. In addition, the inert gas is used in the temperature control device 9
A value close to the molten metal temperature due to 0, for example, 250 to 70
It is desirable to heat and supply to a constant temperature state within the range of 0 ° C.

【0012】次に、弁棒22を下降して吸入口20cを
閉じてラドル20内への溶湯の規定量の吸入が終了した
後、ラドル懸垂支持昇降シリンダ60を操作して導管2
8の吐出部先端をを下降させ、射出スリーブ200内の
プランジャチップ200aの上面に導管28の吐出部先
端28aを近接するよう調節したうえ、あらかじめ、た
とえば1.2kg/cm2 程度の低圧に加圧された不活
性ガスをラドル20内へ注入すると、ラドル20内の溶
湯液面は加圧され導管28を流れ導管28の吐出部先端
28aより落下して射出スリーブ200内へ注湯され始
める。注湯作業が開始されるとともに射出スリーブ20
0内に入った溶湯液面が次第に上昇し始めるので導管2
8の吐出部先端28aがこの溶湯液面に約20mm程浸
漬された後、溶湯液面の上昇速度と同一速度で導管28
が上昇するようにラドル20を上昇させる。こうするこ
とにより、吐出部先端28aの溶湯浸漬深さを前述の約
20mmの一定値に保持しながら射出スリーブ200内
へ給湯することになる。射出スリーブ200へ供給する
給湯量は、たとえばラドル内の溶湯液面が下降してラド
ル内に一定の深さで浸漬している湯面検知棒150aの
下端以下になり、湯面検知棒150aに流れていた電流
が非通電状態になった時点で不活性ガスの供給をストッ
プし、所定の溶湯量になるようにしている。このように
して、規定時間、不活性ガスを供給することにより規定
量の溶湯をラドル20内から射出スリーブ200内へ給
湯する。以上述べた一連の作業手順(溶解保持炉へのラ
ドル20の浸漬、弁棒22の上昇による吸入作業、弁棒
下降による吸入口20c閉止、導管吐出部先端の射出ス
リーブ内挿入、不活性ガスのラドル内注入、給湯中の導
管上昇など)の順序起動停止プログラムをあらかじめプ
ログラマブルコントローラに入力して、このプログラム
に則り作業を自動的に継続させることもできる。
Next, after the valve rod 22 is lowered to close the suction port 20c and the suction of the specified amount of the molten metal into the ladle 20 is completed, the ladle suspension supporting lift cylinder 60 is operated to operate the conduit 2
The tip of the discharge part of No. 8 is lowered to adjust the discharge part tip 28a of the conduit 28 close to the upper surface of the plunger tip 200a in the injection sleeve 200, and a low pressure of about 1.2 kg / cm 2 is applied in advance. When the pressurized inert gas is injected into the ladle 20, the molten metal surface inside the ladle 20 is pressurized and flows through the conduit 28 to drop from the tip 28a of the discharge portion 28a of the conduit 28 to start pouring into the injection sleeve 200. When the pouring work is started, the injection sleeve 20
Since the liquid level of the molten metal entering 0 starts to rise gradually, conduit 2
After the tip 28a of the discharge portion 8 of No. 8 is immersed in the melt surface by about 20 mm, the conduit 28 is moved at the same speed as the rising speed of the melt surface.
Radle 20 so that By doing so, hot water is supplied into the injection sleeve 200 while maintaining the molten metal immersion depth of the discharge portion tip 28a at the above-mentioned constant value of about 20 mm. The amount of hot water supplied to the injection sleeve 200 is, for example, lower than or equal to the lower end of the molten metal level detecting rod 150a immersed in the ladle at a certain depth due to the molten metal liquid level in the ladle being lowered, The supply of the inert gas is stopped at the time when the flowing current is in the non-conducting state, so that the molten metal reaches a predetermined amount. In this way, a specified amount of molten metal is supplied from the ladle 20 into the injection sleeve 200 by supplying the inert gas for a specified time. The above-described series of work procedures (immersing the ladle 20 in the melting and holding furnace, suction work by raising the valve rod 22, closing the suction port 20c by lowering the valve rod, inserting the tip of the conduit into the injection sleeve, inserting an inert gas It is also possible to input a sequence start / stop program for pouring in the ladle, raising the conduit during hot water supply, etc. into the programmable controller in advance and automatically continue the work according to this program.

【0013】さらに、射出スリーブ200内への給湯時
に、導管28の吐出部先端28aの浸漬深さをほぼ一定
に保って注湯するので、溶湯の射出スリーブ200内へ
の落下による撥ね飛びや飛沫がなく、空気巻き込みが少
ない。また、吐出部先端28aの外側に付着する溶湯の
状況が毎回一定するとともに、給湯が終了したのち酸化
物除去装置100を使用して付着した溶湯酸化物を除去
するので、溶湯酸化物の成形品への混入がほとんど無
い。
Further, when the hot water is supplied to the injection sleeve 200, since the immersion depth of the tip 28a of the discharge portion of the conduit 28 is kept substantially constant, the molten metal is splashed and splashed by falling into the injection sleeve 200. There is little air entrapment. In addition, the state of the molten metal that adheres to the outside of the discharge portion tip 28a is constant every time, and the molten oxide that has adhered is removed using the oxide removing device 100 after the hot water supply is completed. Almost no contamination

【0014】[0014]

【発明の効果】以上述べたように、本発明の密閉式給湯
装置においては、ラドル移送中の滴下がほとんど無く、
かつ、給湯精度が向上するとともに、加圧ガスの吹き込
みによる押圧力で給湯するので酸化物の混入がほとんど
なく、かつ、注湯時の空気巻き込みも極力防止されるの
で、鋳造欠陥のない高品質の鋳造品を連続安定的に供給
できる。
As described above, in the sealed hot water supply apparatus of the present invention, there is almost no dripping during the transfer of the ladle,
In addition, the hot water supply accuracy is improved, and since the hot water is supplied with the pressing force of the pressurized gas blowing, there is almost no oxide inclusion, and air entrainment during pouring is prevented as much as possible, so there is no casting defect and high quality. Can be continuously and stably supplied.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に係る密閉式給湯装置の全体構
成図である。
FIG. 1 is an overall configuration diagram of a closed water heater according to an embodiment of the present invention.

【図2】本発明の実施例に係る密閉式給湯装置(給湯
中)の要部拡大縦断面図である。
FIG. 2 is an enlarged vertical cross-sectional view of a main part of the sealed hot water supply device (during hot water supply) according to the embodiment of the present invention.

【図3】本発明の実施例に係る密閉式給湯装置(酸化物
除去清掃中)の要部拡大縦断面図である。
FIG. 3 is an enlarged vertical cross-sectional view of a main part of the sealed hot water supply device (during oxide removal cleaning) according to the embodiment of the present invention.

【図4】図2のA−A視を示す非作業中の酸化物除去装
置の正面図である。
FIG. 4 is a front view of the oxide removing apparatus in a non-working state, which is taken along the line AA of FIG. 2.

【図5】図3のB−B視の作業中の酸化物除去装置の位
置状態を示す密閉式給湯装置の要部拡大縦断面図であ
る。
5 is an enlarged longitudinal cross-sectional view of a main part of the sealed hot water supply device showing the position state of the oxide removing device during the work as viewed from BB in FIG.

【図6】従来の給湯装置の説明図である。FIG. 6 is an explanatory diagram of a conventional hot water supply device.

【図7】従来の給湯装置の説明図である。FIG. 7 is an explanatory diagram of a conventional hot water supply device.

【符号の説明】[Explanation of symbols]

1 密閉式給湯装置 10 溶解保持炉 10a るつぼ 20 ラドル 20a 天蓋 20b 密閉蓋 20c 吸入口 22 弁棒 24 弁棒シリンダ 24a サポート 26 ラドルサポート 28 導管 28a 吐出部先端 30 不活性ガス配管 40 開閉装置 50 建屋(または構造物) 60 ラドル懸垂支持昇降シリンダ 60a ピストンロッド 70 不活性ガス供給装置 80 不活性ガス供給制御装置 90 温度調節装置 100 酸化物除去装置 102 サポート 110 掃除具昇降シリンダ 120 掃除具開閉シリンダ 122 掃除具 150a 湯面検知棒 160 レーザ光センサ 170 超音波センサ 200 射出スリーブ 200a プランジャチップ 1 Closed Hot Water Supply Device 10 Melt Holding Furnace 10a Crucible 20 Ladle 20a Canopy 20b Closed Lid 20c Suction Port 22 Valve Bar 24 Valve Bar Cylinder 24a Support 26 Laddle Support 28 Conduit 28a Discharge Tip 30 Inert Gas Piping 40 Switchgear 50 Building ( Or structure) 60 Laddle suspension support lifting cylinder 60a Piston rod 70 Inert gas supply device 80 Inert gas supply control device 90 Temperature control device 100 Oxide removal device 102 Support 110 Cleaning tool lifting cylinder 120 Cleaning tool opening / closing cylinder 122 Cleaning tool 150a Liquid level detection rod 160 Laser light sensor 170 Ultrasonic sensor 200 Injection sleeve 200a Plunger tip

───────────────────────────────────────────────────── フロントページの続き (72)発明者 壇浦 貞行 山口県宇部市大字小串字沖の山1980番地 宇部興産株式会社機械・エンジニアリング 事業本部 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Sadayuki Danura 1980, Okiyama, Ogushi, Oji, Ube, Yamaguchi Prefecture Ube Industries, Ltd. Machinery & Engineering Business Headquarters

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 アルミニウム合金またはマグネシウム合
金の溶湯をダイカストマシンなどの射出スリーブ内へ給
湯する密閉式給湯装置であって、 溶湯の溶解保持炉内に浸漬されて懸架され底部側方に突
出して設けた連通遮断自在な溶湯の吸入口を備えるとと
もに該吸入口を連通遮断する弁棒と弁棒昇降用の弁棒シ
リンダとからなる開閉装置をラドル本体の外部に備えた
ラドルと、該ラドル懸垂支持昇降手段と、一端が該ラド
ル内に収納され他端が該ラドルより突出して前記射出ス
リーブ内へ挿入され該ラドル内の溶湯を前記射出スリー
ブへ注湯する導管と、該ラドル内の溶湯液面を加圧する
加圧ガスの注入手段とを備えるとともに、前記導管の溶
湯吐出側は、下方に向かって傾斜させるとともに、前記
ラドル懸垂支持昇降手段の昇降方向を傾斜した前記射出
スリーブと平行に傾斜させたことを特徴とする密閉式給
湯装置。
1. A closed type hot water supply device for supplying a molten metal of an aluminum alloy or a magnesium alloy into an injection sleeve of a die casting machine or the like, which is soaked and suspended in a melting and holding furnace for molten metal so as to project to the side of the bottom. A ladle provided with an opening / closing device, which is provided with a suction port for molten metal capable of interrupting communication, and which has a valve rod for interrupting the communication of the suction port and a valve rod cylinder for lifting the valve rod outside the ladle body, and the ladle suspension support An elevating means, a conduit having one end housed in the ladle and the other end protruding from the ladle and inserted into the injection sleeve for pouring the molten metal in the ladle to the injection sleeve; and a molten metal surface in the ladle. And a means for injecting a pressurized gas for pressurizing the molten metal. Closed type hot water supply device comprising the said was inclined parallel to the injection sleeve.
【請求項2】 ラドルの溶湯の吸入口が上方に開口した
ことを特徴とする請求項1記載の密閉式給湯装置。
2. The closed type hot water supply apparatus according to claim 1, wherein a suction port for the molten metal of the ladle is opened upward.
JP1404196A 1996-01-30 1996-01-30 Closed type molten metal supplying apparatus Pending JPH09206910A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1404196A JPH09206910A (en) 1996-01-30 1996-01-30 Closed type molten metal supplying apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1404196A JPH09206910A (en) 1996-01-30 1996-01-30 Closed type molten metal supplying apparatus

Publications (1)

Publication Number Publication Date
JPH09206910A true JPH09206910A (en) 1997-08-12

Family

ID=11850039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1404196A Pending JPH09206910A (en) 1996-01-30 1996-01-30 Closed type molten metal supplying apparatus

Country Status (1)

Country Link
JP (1) JPH09206910A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103302276A (en) * 2013-06-18 2013-09-18 邵宏 Suction and injection machine for liquid aluminum alloy

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103302276A (en) * 2013-06-18 2013-09-18 邵宏 Suction and injection machine for liquid aluminum alloy
CN103302276B (en) * 2013-06-18 2015-04-22 无锡夕阳康科技有限公司 Suction and injection machine for liquid aluminum alloy

Similar Documents

Publication Publication Date Title
JPH07294150A (en) Vacuum melting and pressurized melted metal pouring induction furnace
US4881670A (en) Automatic melt supplying method and holding furnace having automatic melt supplying system
KR101795470B1 (en) Casting apparatus and method thereof
JPH09206910A (en) Closed type molten metal supplying apparatus
JPH09206911A (en) Closed type molten metal supplying apparatus and method for supplying molten metal
WO2021044111A1 (en) Casting apparatus
US7628952B2 (en) Method and apparatus for testing the integrity of a shroud seal on a ladle for a continuous casting installation
JPH09206913A (en) Closed type molten metal supplying apparatus and method for supplying molten metal
JPH11188475A (en) Molten metal ladle device and metal supply method
JPH09216044A (en) Closed type molten metal supplying apparatus
JPH09216043A (en) Closed type molten metal supplying apparatus
KR20020076729A (en) crane having cover and agitator
JPH09206912A (en) Closed type molten metal supplying apparatus and method for supplying molten metal
JPH0810937A (en) Device for pouring molten non-ferrous metal of constant amount
JPH09216042A (en) Method for supplying molten metal in closed type molten metal supplying apparatus
JP3085493B2 (en) Gutter type hot water supply method and apparatus
US4784207A (en) Apparatus for vacuum melting and casting
CA2770823A1 (en) Pour ladle for molten metal
JPH08215827A (en) Close type molten metal supplying device and molten metal supplying method
JPH02241650A (en) Apparatus for pouring molten metal
JP3500699B2 (en) Heating method of vacuum degassing tank
JPH08206810A (en) Closed type molten metal supplying device and molten metal supplying method
EP0104392B1 (en) Method of producing nodular iron and a machine for the implementation thereof
JP2001138033A (en) Apparatus for pouring molten metal
JPH0679431A (en) Method and device for trough type molten metal supply