JPH09205737A - Charging equipment - Google Patents

Charging equipment

Info

Publication number
JPH09205737A
JPH09205737A JP8277512A JP27751296A JPH09205737A JP H09205737 A JPH09205737 A JP H09205737A JP 8277512 A JP8277512 A JP 8277512A JP 27751296 A JP27751296 A JP 27751296A JP H09205737 A JPH09205737 A JP H09205737A
Authority
JP
Japan
Prior art keywords
voltage
charging
converter
battery
charging device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8277512A
Other languages
Japanese (ja)
Other versions
JP3612152B2 (en
Inventor
Masaki Oshima
正樹 大島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shindengen Electric Manufacturing Co Ltd
Original Assignee
Shindengen Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shindengen Electric Manufacturing Co Ltd filed Critical Shindengen Electric Manufacturing Co Ltd
Priority to JP27751296A priority Critical patent/JP3612152B2/en
Publication of JPH09205737A publication Critical patent/JPH09205737A/en
Application granted granted Critical
Publication of JP3612152B2 publication Critical patent/JP3612152B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Measurement Of Current Or Voltage (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an inexpensive charger which charges a secondary battery quickly. SOLUTION: This charging equipment is composed of a charger 1 which charges a battery, with an single-phase AC 2 as an input source, and a secondary battery 5. The charger 1 is composed of a diode bridge for full wave rectification, a DC/DC converter 4, and a circuit which performs the charge control, using the voltage at the time when a charging current is not flowing to the secondary battery 5. When the single-phase AC input voltage is 0V or thereabouts, the DC/DC converter 4 stops the conversion motion, and at this time it becomes a period when the charging current does not flow. Accordingly, the charging control of the secondary battery 5 is performed by the zero cross signal and the information on the battery voltage at the time when the charge charging current is not flowing in its vicinity.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】 (2)(2)

【発明の属する技術分野】2次電池を急速充電する充電
装置の充電制御方式に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a charging control system for a charging device for rapidly charging a secondary battery.

【0002】[0002]

【従来の技術】従来の急速充電器には、直流電源からド
ロッパを使って電池を充電するものがある。
2. Description of the Related Art Some conventional quick chargers charge a battery from a DC power source using a dropper.

【0003】これは、充電々流を検出しながら、例えば
DC/DCコンバ−タによりON/OFF制御して、方
形波パルスを作っていた。図1は直流を入力とした場合
の、パルス充電法(R・F・V法=Resistance Free
Voltage法)による、充電装置の充電々流波形(a)及
び電池電圧波形(b)である。
In this method, a square wave pulse is produced by controlling the ON / OFF state by, for example, a DC / DC converter while detecting the charge flow. Figure 1 shows the pulse charging method (R · F · V method = Resistance Free) when DC is input.
2 is a charge flow waveform (a) and a battery voltage waveform (b) of the charging device according to the Voltage method).

【0004】この方式は、充電々流(a)のOFF期間
の電池電圧(b)RFVを検出して充電制御を行うもの
である。この為、充電々流が流れていない期間の電池電
圧を検出しているので、高い検出精度を得る事が出来
る。
In this system, the charging voltage is controlled by detecting the battery voltage (b) RFV during the off period of the charging flow (a). For this reason, since the battery voltage is detected during the period when the charging flow is not flowing, high detection accuracy can be obtained.

【0005】但し、方形波パルス制御である為、充電効
率が例えば30%程度であり非常に悪く、又高価なもの
となっていた。
However, since the square wave pulse control is used, the charging efficiency is, for example, about 30%, which is very bad and expensive.

【0006】又、単相交流入力を用いて、DC/DCコ
ンバ−タ制御によって2次電池を充電するリップル充電
法がある。この方式は、充電器として全波整流ダイオ−
ドと、小さめの入出力コンデンサを用い、広い入力電圧
変動範囲で制御出来るDC/DCコンバ−タ等で構成さ
れている。この場合、充電制御を行う為の検出電圧は、
平均電池電圧VAVEを用いていた。従って、充電効率は
良くなるが、検出精度や応答性の面でやや劣っていた。
There is also a ripple charging method in which a single-phase AC input is used to charge a secondary battery by DC / DC converter control. This method uses a full-wave rectification diode as a charger.
And a DC / DC converter which can be controlled in a wide input voltage fluctuation range by using a small input / output capacitor and a small input / output capacitor. In this case, the detection voltage for charging control is
The average battery voltage VAVE was used. Therefore, although the charging efficiency is improved, it is slightly inferior in terms of detection accuracy and responsiveness.

【0007】 (3) 図2は、従来のリップル充電法による各部波形である。
単相交流電圧のゼロクロス付近は、充電器出力電流(充
電々流)(d)が流れない期間があり、従って電池電圧
は(e)の波形となり、この電圧波形の平均値VAVEを
検出電圧として用いていた。
(3) FIG. 2 is a waveform of each part by the conventional ripple charging method.
Around the zero crossing of the single-phase AC voltage, there is a period in which the charger output current (charging current) (d) does not flow, so the battery voltage becomes the waveform (e), and the average value VAVE of this voltage waveform is used as the detection voltage. Was used.

【0008】[0008]

【発明が解決しようとする課題】従来技術のパルス充電
法(R・F・V法)では、電池電圧の検出精度は高い
が、充電器が低効率かつ高価なものになるという欠点が
ある。又従来技術のリップル充電法に於いては、充電効
率は良くなるが、充電終了を電池の平均電圧を用いて検
出しているので検出精度が悪くなるという欠点がある。
従って本発明は、上記両者の長所を生かし、高効率かつ
検出精度の高い充電器を提供する事を目的とするもので
ある。
The pulse charging method (R / F / V method) of the prior art has a high battery voltage detection accuracy, but has a drawback that the charger becomes low in efficiency and expensive. Further, in the conventional ripple charging method, the charging efficiency is improved, but since the end of charging is detected by using the average voltage of the battery, there is a drawback that the detection accuracy is deteriorated.
Therefore, an object of the present invention is to provide a charger having high efficiency and high detection accuracy by making use of the advantages of both of the above.

【0009】[0009]

【課題を解決する為の手段】本発明は、前記リップル充
電法に於いて、交流入力電圧のゼロクロス信号をタイミ
ングパルスとして用い、DC/DCコンバ−タの変換動
作停止期間の電池電圧をサンプリングして、これを記憶
して検出情報として充電制御を行うものである。
According to the present invention, in the above-described ripple charging method, a zero cross signal of an AC input voltage is used as a timing pulse to sample a battery voltage during a conversion operation stop period of a DC / DC converter. Then, this is stored and charging control is performed as detection information.

【0010】充電制御は、全波整流電圧を高周波でON
/OFFするDC/DCコンバ−タのDUTYを制御す
る方法(連続パルス充電法)か又は、これに併用して全
波整流波形の偶数倍毎にDC/DCコンバ−タの動作、
停止を繰返す方法(不連続パルス充電法)が行われる
が、いずれの場合もDC/DCコンバ−タの休止期間の
電池電圧をサンプリングする事には変わらない。
Charging control turns on full-wave rectified voltage at high frequency
ON / OFF the method of controlling the DUTY of the DC / DC converter (continuous pulse charging method), or in combination with this, the operation of the DC / DC converter for every even multiple of the full-wave rectified waveform,
A method of repeating the stop (discontinuous pulse charging method) is performed, but in either case, it is the same as sampling the battery voltage during the idle period of the DC / DC converter.

【0011】[0011]

【実施の形態】図3は、本発明の連続パルス充電法によ
る各部波形である。図3の波形(a)〜(d)は、図2
の従来技術の場合と全く同じであるので説明 (4) は省略する。尚、DC/DCコンバ−タは数10KHZ
でチョッピング動作を行っているので、図2、図3の充
電器出力電流(d)は高周波のON/OFF波形である
が、その包絡線がえがいてある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 3 shows waveforms at various points according to the continuous pulse charging method of the present invention. Waveforms (a) to (d) of FIG.
Since it is exactly the same as the case of the related art of (1), description (4) will be omitted. The DC / DC converter is several tens of KHZ.
Since the chopping operation is performed at 1, the charger output current (d) in FIGS. 2 and 3 has a high-frequency ON / OFF waveform, but the envelope is sharp.

【0012】電池電圧波形は図3(e)の様になってお
り、単相交流の毎サイクルのゼロクロス付近でDC/D
Cコンバ−タが停止している為、この期間電池電圧は一
定となっている。
The battery voltage waveform is as shown in FIG. 3 (e), and DC / D is obtained near the zero cross of each cycle of the single-phase alternating current.
Since the C converter is stopped, the battery voltage is constant during this period.

【0013】DC/DCコンバ−タが停止している期間
の電池電圧(図3(e)のRFV1、RFV2・・・RF
V4等)を検出し、図3(f)の様に、ゼロクロス時の
電池電圧サンプリング信号を取り出す。
Battery voltage (RFV1, RFV2 ... RF in FIG. 3 (e) during the period when the DC / DC converter is stopped.
(V4 etc.) is detected, and the battery voltage sampling signal at the time of zero cross is taken out as shown in FIG.

【0014】そして、入力電圧が低下してDC/DCコ
ンバ−タが変換動作を停止している時の適当な時期に、
このゼロクロス時の電池電圧(f)をサンプリングし、
電池の充電状態を推定する。
Then, at an appropriate time when the input voltage drops and the DC / DC converter stops the conversion operation,
The battery voltage (f) at this zero cross is sampled,
Estimate the state of charge of the battery.

【0015】これによって、電池が充電状態でない時の
電池電圧を検出する事が出来るので、検出精度の高い充
電制御を行う事が出来る。尚、サンプリング信号は必ず
しもこの様な形状でなくても良い事は言うまでもない。
特に、急速充電とトリクル充電を併用した方式に於いて
は、とくにこの様な方法で充電停止期間の電池電圧をサ
ンプリングして、電池の充電状態を推定する事は好まし
い方法である。
As a result, the battery voltage can be detected when the battery is not in the charged state, so that charge control with high detection accuracy can be performed. Needless to say, the sampling signal does not necessarily have to have such a shape.
In particular, in a system in which both rapid charging and trickle charging are used, it is a preferable method to sample the battery voltage during the charging stop period and estimate the battery charge state by such a method.

【0016】尚この方式の場合の充電制御は、DC/D
Cコンバ−タのDUTY比を変える事によって行われ
る。
The charge control in this system is DC / D
This is done by changing the DUTY ratio of the C converter.

【0017】 (5) 又、例えば0.7AHのNiCd電池(1.2V)を10
C(7A)で充電を行う場合、充電停止期間の分極作用
による電圧降下は、45msで100mVぐらいドロッ
プする。Liイオン電池(3.6V)の場合は45ms
で300mVぐらい分極作用によるドロップがある。
(5) Also, for example, a NiCd battery (1.2 V) of 0.7 AH
When charging is performed at C (7A), the voltage drop due to the polarization effect during the charge stop period drops about 100 mV in 45 ms. 45 ms for Li-ion battery (3.6 V)
There is a drop of about 300 mV due to the polarization effect.

【0018】この為、DC/DCコンバ−タの休止期間
を、ゼロクロス期間より長く取って、電池電圧を測定し
た方が、より電池電圧精度の高いサンプリング検出を行
うことが出来る。
Therefore, it is possible to perform sampling detection with higher battery voltage accuracy by measuring the battery voltage with the DC / DC converter idle period longer than the zero-cross period.

【0019】そこで本発明の第2の実施の形態は、図4
に示す不連続パルスによるパルス充電法である。
Therefore, the second embodiment of the present invention will be described with reference to FIG.
It is a pulse charging method by the discontinuous pulse shown in.

【0020】これは、図4の単相交流電圧(a)の全波
整流波形の1サイクル分の整数倍毎の単位で、DC/D
Cコンバ−タを動作、不動作を繰り返すものである。も
ちろん充電制御はコンバ−タ動作期間中のON/OFF
DUTY比によって行う事を主とし、可能ならコンバ
−タの動作、不動作の期間の比を制御することを併用し
てもよい。
This is a unit of an integral multiple of one cycle of the full-wave rectified waveform of the single-phase AC voltage (a) in FIG.
The C converter is repeatedly operated and not operated. Of course, the charging control is ON / OFF during the converter operation period.
The duty ratio is mainly used, and if possible, the ratio of the operation period and the non-operation period of the converter may be controlled together.

【0021】尚、上記1サイクルの整数倍毎のコンバ−
タのON/OFFは偶数回数毎のON/OFF繰り返し
でないと、高調波分が入力側へ帰還して入力力率を悪く
してしまう。
The converter for each integer multiple of the above-mentioned one cycle.
If ON / OFF of the power is not repeated every even number of times, the harmonic components will return to the input side and the input power factor will be deteriorated.

【0022】従って、1サイクルの偶数倍回充電を行
い、偶数倍回充電を連続休とすることが望ましい。
Therefore, it is desirable to carry out even-numbered times of charging for one cycle and to suspend even-numbered times of charging continuously.

【0023】よって、図4(b)の様な充電器入力電流
となり、DC/DCコンバ−タ入力電圧は(c)、充電
器出力電流は(d)の様な波形になる。 (6)
Therefore, the charger input current is as shown in FIG. 4B, the DC / DC converter input voltage is as shown in FIG. 4C, and the charger output current is as shown in FIG. 4D. (6)

【0024】これによって電池電圧(e)は、図の様に
ゼロクロス期間より長い休止期間を設けて、休止期間中
の電池電圧RFV3、RFV4の内、分極ドロップを見込
んだ休止時間後(例えば45ms後)の電池電圧RFV
4をサンプリングする。
As a result, the battery voltage (e) is provided with a rest period longer than the zero-cross period as shown in the figure. ) Battery voltage RFV
Sample 4

【0025】この様に、休止期間中の電池電圧の応答の
様子を見て、電池の充電状態を推定する事によってより
精度の高い充電制御を行う事が出来る。
In this way, by looking at the state of the battery voltage response during the rest period and estimating the state of charge of the battery, more accurate charge control can be performed.

【0026】図5は、本発明の充電装置の一実施例ブロ
ック図である。図に於いて、充電器1は単相交流2を入
力として、DC/DCコンバ−タ4で制御して2次電池
5を充電する。全波整流器3で整流された入力電圧で動
作するDC/DCコンバ−タ4と、これを制御するマイ
コン6、電池電圧を測定するA/D変換部7、入力電圧
監視回路8から成る。
FIG. 5 is a block diagram of an embodiment of the charging device of the present invention. In the figure, a charger 1 receives a single-phase AC 2 as an input and controls a DC / DC converter 4 to charge a secondary battery 5. It comprises a DC / DC converter 4 which operates with an input voltage rectified by the full-wave rectifier 3, a microcomputer 6 for controlling the same, an A / D converter 7 for measuring a battery voltage, and an input voltage monitoring circuit 8.

【0027】DC/DCコンバ−タ4は広い入力電圧範
囲で動作するが、入力電圧がある値以下では変換動作を
停止する様に構成されている。DC/DCコンバ−タ4
が停止している適当な時期に、入力電圧監視回路8の情
報と合わせてサンプリング信号をマイコン6が出力し、
一方A/D変換部7で2次電池5の電池電圧を測定し、
この情報を記憶部9で記憶し、この情報によってマイコ
ン6がDC/DCコンバ−タ4の制御を行う。
Although the DC / DC converter 4 operates in a wide input voltage range, the conversion operation is stopped when the input voltage is below a certain value. DC / DC converter 4
The microcomputer 6 outputs a sampling signal together with the information of the input voltage monitoring circuit 8 at an appropriate time when the
Meanwhile, the A / D converter 7 measures the battery voltage of the secondary battery 5,
This information is stored in the storage unit 9, and the microcomputer 6 controls the DC / DC converter 4 based on this information.

【0028】制御は電流制御中心で、DC/DCコンバ
−タ4のDUTY比によって電流値と電流休止期間を主
に変える。
The control is centered on the current control, and the current value and the current rest period are mainly changed by the DUTY ratio of the DC / DC converter 4.

【0029】充電方法は、本発明の連続パルス充電法
(図3)、不連続パルス充電法(図4)のどちらも同じ
である。連続パルス充電法は急速充電、不連続パルス充
電法はトリクル充電に使うとより有効である。 (7)
The charging method is the same for both the continuous pulse charging method (FIG. 3) and the discontinuous pulse charging method (FIG. 4) of the present invention. The continuous pulse charging method is more effective when used for rapid charging, and the discontinuous pulse charging method is more effective when used for trickle charging. (7)

【0030】尚、本実施例の様に必ずしもマイコンやA
/D変換回路を用いる必要はない。基準電池電圧(満充
電電圧を含む)を複数個用意して、サンプリング信号が
入る時期ごとにコンパレ−タで電池電圧と比較し、電池
の充電状態をその都度判定し、その結果を状態記憶して
充電制御しても良い。
Incidentally, as in this embodiment, the microcomputer and the A
It is not necessary to use the / D conversion circuit. Prepare multiple reference battery voltages (including full charge voltage), compare with the battery voltage with a comparator at each sampling signal input time, judge the battery charge status each time, and store the result in the status storage. Charge control may be performed.

【0031】又電池温度の情報をA/Dコンバ−タで取
り込んだりタイマ−等の制御を合わせて行えばより充電
終止検出を高精度化する事は明らかである。
Further, it is apparent that the detection of the end of charge can be made more accurate if the information on the battery temperature is taken in by the A / D converter and the control of the timer is also performed.

【0032】又、図5に於いて、全波整流器3の入出力
側に設けた抵抗R1、R2、R3は、本発明の請求項4を
構成する具体的実施例である。全波整流器3の入力側の
分圧抵抗R2の電圧と、出力側の抵抗R3の電圧を、入力
電圧監視回路8で監視する事によって、ゼロクロス信号
を検出する事が出来る。
Further, in FIG. 5, the resistors R1, R2 and R3 provided on the input and output sides of the full-wave rectifier 3 are specific examples constituting claim 4 of the present invention. By monitoring the voltage of the voltage dividing resistor R2 on the input side of the full-wave rectifier 3 and the voltage of the resistor R3 on the output side with the input voltage monitoring circuit 8, a zero-cross signal can be detected.

【0033】図6は、2次電池をスマ−トバッテリ化し
た場合の本発明の一実施例である。スマ−トバッテリ−
は、バッテリ−にインテリジェント機能(例えば残量、
劣化、判定、保護機能など)を持たせたものであり、そ
れだけ充電器の制御機能が簡素化される。
FIG. 6 shows an embodiment of the present invention when the secondary battery is a smart battery. Smart battery-
Is a battery with intelligent features (eg
(Deterioration, judgment, protection function, etc.) is added, and the control function of the charger is simplified accordingly.

【0034】すなわち、図5の実施例の方式では、検出
精度を上げる為には、OFF期間の電池情報をより多く
採らなければならず、それだけマイコンの負担がかかっ
た。
That is, in the method of the embodiment shown in FIG. 5, in order to improve the detection accuracy, more battery information in the OFF period has to be obtained, and the load on the microcomputer is increased accordingly.

【0035】図6のスマ−トバッテリの場合は、スマ−
トバッテリ−に内蔵されたデジタル制御部分に電池情報
を送る事によって充電器側のマイコンの演算が簡素化さ
れ、デジタル制御部の負担を軽くする事が出来る。
In the case of the smart battery shown in FIG.
By sending the battery information to the digital control unit built in the battery, the calculation of the microcomputer on the charger side can be simplified and the load on the digital control unit can be reduced.

【0036】図6に於いて、スマ−トバッテリ−11
は、2次電池5にバッテリ−マネ−ジメント部10を内
蔵したものであり、入力電圧監視回路8よりのサンプリ
ング信 (8) 号をバッテリ−マネ−ジメント部10が受けて、これを
使い電池情報として記憶部9に送り、DC/DCコンバ
−タ4を制御するものである。
In FIG. 6, a smart battery-11
Is a rechargeable battery 5 having a built-in battery management unit 10. The battery management unit 10 receives a sampling signal (8) from the input voltage monitoring circuit 8 and uses it. Information is sent to the storage unit 9 to control the DC / DC converter 4.

【0037】尚、図6のスマ−トバッテリ−の実施例に
於いても、ゼロクロス信号と検出電圧のタイミングは、
充電器毎によって決められるものであり、図5と図6に
よる差異はない。又、本実施例では、マイコンをDC/
DCコンバ−タの入力側に持って来たが、DC/DCコ
ンバ−タの出力側に持ってきて制御しても良いことは言
うまでもない。
Even in the embodiment of the smart battery shown in FIG. 6, the timing of the zero cross signal and the detection voltage is
It is determined for each charger, and there is no difference between FIG. 5 and FIG. Further, in this embodiment, the microcomputer is set to DC /
Although it is brought to the input side of the DC converter, it goes without saying that it may be brought to the output side of the DC / DC converter and controlled.

【0038】図7は、本発明の請求項5の実施の形態を
示す一実施例回路図である。すなわち、ゼロクロス信号
の取り方として、第2の整流回路12を設け、この出力
側に出来るだけ高インピ−ダンスの(充電器の効率低下
にほとんど影響しない程度の)抵抗負荷を設ける。
FIG. 7 is a circuit diagram of an embodiment showing the embodiment of claim 5 of the present invention. That is, as a method of taking a zero-cross signal, the second rectifying circuit 12 is provided, and a resistive load having a high impedance (to the extent that the efficiency of the charger is hardly affected) is provided on the output side.

【0039】抵抗負荷は、R4、R5に抵抗分割し、検出
抵抗R5は、非検出側抵抗R4に比べて充分小さな値とす
る。図6の側ではR4=1MΩ、R5=10KΩである。
The resistance load is resistance-divided into R4 and R5, and the detection resistance R5 has a value sufficiently smaller than that of the non-detection side resistance R4. On the side of FIG. 6, R4 = 1 MΩ and R5 = 10 KΩ.

【0040】抵抗R5の分圧電圧を、入力電圧監視回路
8の、例えば差動回路に入力する事により、ゼロクロス
電圧のパルスを作る事が出来る。以下、サンプリング処
理の方法は、前述の方法と全く同じである。
By inputting the divided voltage of the resistor R5 to, for example, the differential circuit of the input voltage monitoring circuit 8, it is possible to generate a pulse of zero cross voltage. Hereinafter, the sampling method is exactly the same as the above method.

【0041】尚、DC/DCコンバ−タの変換動作を、
交流入力電圧のゼロクロス毎に強制的に停止させると、
DC/DCコンバ−タから不快な低周波音を発生させる
場合がある。これを避ける方法として、RFV測定周期
T2を長くとる方法がある。
The conversion operation of the DC / DC converter is
Forcibly stopping at every zero cross of the AC input voltage,
An unpleasant low frequency sound may be generated from the DC / DC converter. As a method of avoiding this, there is a method of lengthening the RFV measurement cycle T2.

【0042】例えば、電池の充電時間は急速充電時で
も、10分〜1時間程度であるので、 (9) 充電時の電池情報を検知するのに、例えば、1秒程度の
遅れ時間は十分無視できる値である。
For example, since the battery charging time is about 10 minutes to 1 hour even during rapid charging, (9) a delay time of, for example, about 1 second is sufficiently ignored to detect battery information during charging. It is a possible value.

【0043】図8は、本発明の連続パルス充電法に於け
る、測定周期のインタ−バルを長く取った場合の電池電
圧、波形である。図は、測定周期T2を、入力周期T1
の整数倍の任意のインタ−バルで表したものである。
FIG. 8 shows the battery voltage and the waveform when the interval of the measurement period is long in the continuous pulse charging method of the present invention. The figure shows the measurement period T2 as the input period T1.
It is represented by an arbitrary interval that is an integral multiple of.

【0044】インタ−バルT2に周期させて、期間τだ
けDC/DCコンバ−タを停止させている。例えば、5
0HZの商用入力でもT1=20msであるので、T2
=1secと取れば、充電器を定期的に止めても、不快
音の発生は無視できる程度に小さい。
The DC / DC converter is stopped for a period τ by making the interval T2 cycle. For example, 5
Even with commercial input of 0Hz, T1 = 20ms, so T2
If = 1 sec, the generation of unpleasant noise is so small that it can be ignored even if the charger is periodically stopped.

【0045】尚、1秒周期の停止なら、DC/DCコン
バ−タの停止期間は、必ずしも図3(C)の谷の部分だ
けでなくても良い。例えば、図3(C)の波形に於い
て、ゼロクロス休止期間が広がっても、例えば、停止期
間が5msとなっても、大きな音の発生はない。
In the case of the one-second cycle stop, the DC / DC converter stop period is not necessarily limited to the valley portion in FIG. 3 (C). For example, in the waveform of FIG. 3C, no loud sound is generated even if the zero-cross pause period is widened, for example, if the stop period is 5 ms.

【0046】測定周期T2は、例えば充電時間が8時間
程度の普通充電では、100秒程度の充電時間の誤差で
も、充電容量の誤差は、100/(3600×8)=0.
3%程度であり、無視できる。よって、普通充電では、
T2=100秒は十分使える周期である。
In the measurement cycle T2, for example, in the case of normal charging in which the charging time is about 8 hours, the error in the charging capacity is 100 / (3600 × 8) = 0.
It is about 3% and can be ignored. Therefore, in normal charging,
T2 = 100 seconds is a sufficiently usable cycle.

【0047】図9は、図7の第2の全波整流器12の代
わりに半波整流用ダイオ−ド13を使った例である。こ
れにより、T2の周期を、T1の整数倍にとる事が簡単
に実行できる。
FIG. 9 shows an example in which a diode 13 for half-wave rectification is used instead of the second full-wave rectifier 12 of FIG. This makes it easy to set the cycle of T2 to be an integral multiple of T1.

【0048】[0048]

【発明の効果】【The invention's effect】

(10) 本発明のパルス充電法はリップル充電であるので、入出
力コンデンサを比較的小さくする事が出来る。又、DC
/DCコンバ−タを電流制御で動かすので、例えば60
%以上の高効率となる。さらに、充電電流の流れていな
い時の電池電圧を電池情報として制御するので、高精度
に充電終了を監視する事が出来る。従って、本発明によ
り電池に最適な急速充電が可能な、急速充電器を定価に
提供できる。
(10) Since the pulse charging method of the present invention is ripple charging, the input / output capacitor can be made relatively small. Also DC
Since the / DC converter is operated by current control, for example, 60
% Or higher efficiency. Further, since the battery voltage when the charging current is not flowing is controlled as the battery information, it is possible to monitor the charging end with high accuracy. Therefore, according to the present invention, it is possible to provide a quick charger, which can be optimally charged to a battery, at a fixed price.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来方式の、直流入力パルス充電法による充電
装置の各部波形。
FIG. 1 is a waveform of each part of a conventional charging device using a DC input pulse charging method.

【図2】従来方式の、リップル充電法による充電装置の
各部波形。
FIG. 2 is a waveform of each part of a conventional charging device using a ripple charging method.

【図3】本発明の、連続パルス充電法による充電装置の
各部波形。
FIG. 3 is a waveform of each part of a charging device according to the present invention, which uses a continuous pulse charging method.

【図4】本発明の、不連続パルス充電法による充電装置
の各部波形。
FIG. 4 is a waveform of each part of a charging device according to the present invention, which uses a discontinuous pulse charging method.

【図5】本発明の、充電装置の一実施例ブロック図。FIG. 5 is a block diagram of an embodiment of a charging device of the present invention.

【図6】2次電池をスマ−トバッテリ化した場合の、本
発明の充電装置の一実施例ブロック図。
FIG. 6 is a block diagram of an embodiment of the charging device of the present invention when the secondary battery is a smart battery.

【図7】本発明の、充電装置の他の実施例ブロック図。FIG. 7 is a block diagram of another embodiment of the charging device of the present invention.

【図8】本発明の連続パルス充電法において、測定周期
のインタ−バルを長く取った場合の電池電圧波形。
FIG. 8 is a battery voltage waveform when a long measurement interval is used in the continuous pulse charging method of the present invention.

【図9】図7において、半波整流回路を用いた実施例ブ
ロック図。
9 is a block diagram of an embodiment using a half-wave rectifier circuit in FIG. 7.

【符号の説明】[Explanation of symbols]

(11) 1 充電装置 2 単相交流 3 全波整流器 4 DC/DCコンバ−タ 5 2次電池 6 マイコン 7 A/D変換部 8 入力電圧監視回路 9 記憶部 10 バッテリ−マネ−ジメント部 11 スマ−トバッテリ− 12 第2の全波整流器 R1〜R5 抵抗 13 半波整流用ダイオ−ド (11) 1 Charger 2 Single-phase AC 3 Full-wave rectifier 4 DC / DC converter 5 Secondary battery 6 Microcomputer 7 A / D converter 8 Input voltage monitoring circuit 9 Memory 10 Battery-management 11 Suma -T-battery-12 Second full-wave rectifier R1-R5 resistor 13 Half-wave rectifier diode

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H02J 7/10 H02J 7/10 P Continuation of front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location H02J 7/10 H02J 7/10 P

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 単相交流を入力とし、全波整流回路とD
C/DCコンバ−タにより2次電池を充電し、2次電池
よりの電池情報を用いて充電制御を行う充電装置におい
て、前記単相交流電圧のゼロクロス信号と、前記DC/
DCコンバ−タ変換動作の停止期間中の2次電池電圧情
報を用いて、充電制御を行う事を特徴とする充電装置。
1. A full-wave rectifier circuit and a D input with a single-phase alternating current.
In a charging device for charging a secondary battery with a C / DC converter and controlling charging using battery information from the secondary battery, a zero-cross signal of the single-phase AC voltage and the DC / DC
A charging device characterized in that charging control is performed using secondary battery voltage information during a period in which a DC converter conversion operation is stopped.
【請求項2】 請求項1記載の充電装置に於いて、DC
/DCコンバ−タ変換動作の停止期間は、単相交流電圧
のゼロクロス近傍に設けられた事を特徴とする充電装
置。
2. The charging device according to claim 1, wherein DC
The charging device is characterized in that it is provided in the vicinity of the zero-cross of the single-phase AC voltage during the suspension period of the / DC converter conversion operation.
【請求項3】 請求項1記載の充電装置に於いて、DC
/DCコンバ−タの変換動作期間は、単相交流全波整流
波形の偶数倍であり、かつ変換動作の停止期間も単相交
流全波整流波形の偶数倍である事を特徴とする充電装
置。
3. The charging device according to claim 1, wherein DC
Charging device characterized in that the conversion operation period of the / DC converter is an even multiple of the single-phase AC full-wave rectified waveform, and the conversion operation stop period is an even multiple of the single-phase AC full-wave rectified waveform. .
【請求項4】 請求項1又は2又は3記載の充電装置に
於いて、単相交流電圧のゼロクロス信号は、全波整流回
路の入出力信号を監視する事によって得る事を特徴とす
る充電装置。
4. The charging device according to claim 1, 2 or 3, wherein the zero-cross signal of the single-phase AC voltage is obtained by monitoring an input / output signal of a full-wave rectifier circuit. .
【請求項5】 請求項1又は2又は3記載の充電装置に
於いて、単相交流電圧のゼロクロス信号は、第2の全波
整流回路の出力側に設けた分圧抵抗を監視する事によっ
て得られ、かつ前記分圧抵抗の値は、非監視側の分圧抵
抗の値に比べて、充分に小さい事を特徴とする充電装
置。
5. The charging device according to claim 1, 2, or 3, wherein the zero-cross signal of the single-phase AC voltage is monitored by monitoring a voltage dividing resistor provided on the output side of the second full-wave rectifier circuit. A charging device characterized in that the value of the voltage dividing resistor obtained is sufficiently smaller than the value of the voltage dividing resistor on the non-monitoring side.
【請求項6】 請求項1記載の充電装置に於いて、前記
ゼロクロス信号のインタ−バルが、前記単相交流電圧の
3サイクル以上である事を特徴とする充電装置。
6. The charging device according to claim 1, wherein the interval of the zero-cross signal is 3 cycles or more of the single-phase AC voltage.
【請求項7】 請求項6記載の充電装置に於いて、前記
インタ−バルが、0.1秒以上、100秒以下の値であ
る事を特徴とする充電装置。
7. The charging device according to claim 6, wherein the interval has a value of 0.1 second or more and 100 seconds or less.
JP27751296A 1995-11-21 1996-09-27 Charger Expired - Fee Related JP3612152B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27751296A JP3612152B2 (en) 1995-11-21 1996-09-27 Charger

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP32655195 1995-11-21
JP7-326551 1995-11-21
JP27751296A JP3612152B2 (en) 1995-11-21 1996-09-27 Charger

Publications (2)

Publication Number Publication Date
JPH09205737A true JPH09205737A (en) 1997-08-05
JP3612152B2 JP3612152B2 (en) 2005-01-19

Family

ID=26552428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27751296A Expired - Fee Related JP3612152B2 (en) 1995-11-21 1996-09-27 Charger

Country Status (1)

Country Link
JP (1) JP3612152B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005530476A (en) * 2002-06-20 2005-10-06 ミクロ+・ポロ・ディー・オー・オー Method for fast charging a battery and apparatus for carrying out said method
JP2013162703A (en) * 2012-02-08 2013-08-19 Nichicon Corp Power storage device
JP2016063622A (en) * 2014-09-18 2016-04-25 Ntn株式会社 Charging device
CN107171603A (en) * 2017-05-18 2017-09-15 郑州云海信息技术有限公司 A kind of small DC electric motor stream detecting system
JP2018128271A (en) * 2017-02-06 2018-08-16 富士通株式会社 Circuit for measuring residual battery capacity, electronic apparatus and method for measuring residual battery capacity

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005530476A (en) * 2002-06-20 2005-10-06 ミクロ+・ポロ・ディー・オー・オー Method for fast charging a battery and apparatus for carrying out said method
JP2013162703A (en) * 2012-02-08 2013-08-19 Nichicon Corp Power storage device
JP2016063622A (en) * 2014-09-18 2016-04-25 Ntn株式会社 Charging device
JP2018128271A (en) * 2017-02-06 2018-08-16 富士通株式会社 Circuit for measuring residual battery capacity, electronic apparatus and method for measuring residual battery capacity
CN107171603A (en) * 2017-05-18 2017-09-15 郑州云海信息技术有限公司 A kind of small DC electric motor stream detecting system
CN107171603B (en) * 2017-05-18 2020-01-10 苏州浪潮智能科技有限公司 Small-size direct current motor current detection system

Also Published As

Publication number Publication date
JP3612152B2 (en) 2005-01-19

Similar Documents

Publication Publication Date Title
JP3564885B2 (en) Power supply with sealed lead-acid battery
US5572416A (en) Isolated input current sense means for high power factor rectifier
US5500584A (en) Battery charging method and apparatus using initial charging step with gradually increasing charging current, quick charging step with large charging current and final charging step with decreasing charging current
CN100578886C (en) Battery charging apparatus
JP5990158B2 (en) System for efficiently transferring collected vibrational energy to a battery and electronic device using the same
US6127810A (en) Charge control method and charger for a rechargeable battery
JPH07288936A (en) Charging of storage battery
CN103618450A (en) System for double-mode DC-DC power conversion
US20160336857A1 (en) Switching-mode power supplies
JPH07231572A (en) Battery charger
JP2007020299A (en) Charger
CN114731053A (en) Battery management system with plate carrying limited energy excitation and real-time alternating current impedance detection
JP3612152B2 (en) Charger
JPH09232005A (en) Judging method and device for deterioration of sealed lead-acid battery
JP2002159147A (en) Battery charger
US5617005A (en) Method and apparatus for charging lead acid batteries
KR20010079839A (en) Apparatus And Method For Detecting Memory Effect In Nickel-Cadmium Batteries
JP2004069466A (en) Electric current measuring device
JPS61185070A (en) Power converter having series resonance circuit
Wang et al. An SMPS-based lithium-ion battery test system for internal resistance measurement
CN203562956U (en) Dual-mode direct current-direct current power conversion system
CN114019418A (en) Power failure detection circuit for Internet of things electric energy meter and Internet of things electric energy meter
JPH0332327A (en) Charge control circuit
JP4029591B2 (en) Charging method
JP3656379B2 (en) Battery charger

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041012

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041022

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071029

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081029

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091029

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091029

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101029

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101029

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111029

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees