JPH09204699A - Multilayer magnetooptic recording medium capable of multilevel recording - Google Patents

Multilayer magnetooptic recording medium capable of multilevel recording

Info

Publication number
JPH09204699A
JPH09204699A JP1240996A JP1240996A JPH09204699A JP H09204699 A JPH09204699 A JP H09204699A JP 1240996 A JP1240996 A JP 1240996A JP 1240996 A JP1240996 A JP 1240996A JP H09204699 A JPH09204699 A JP H09204699A
Authority
JP
Japan
Prior art keywords
magnetic layer
magnetic
recording
layer
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1240996A
Other languages
Japanese (ja)
Inventor
Takashi Tokunaga
隆志 徳永
Yoshio Fujii
善夫 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1240996A priority Critical patent/JPH09204699A/en
Publication of JPH09204699A publication Critical patent/JPH09204699A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To eliminate a step for recording an intermediate level state conventionally required in field modulation recording system or magnetic transfer system in order to initially bring about a magnetization state of an intermediate level recording layer, i.e., a third magnetization layer, having recording density smaller than the diameter of light spot. SOLUTION: A multilayer magnetooptic recording medium 18 comprises first to third magnetic layers 11, 12, 13 having perpendicular magnetic anisotropy laminated on a substrate 10. Adjacent layers are mutually exchange coupled wherein the intermediate level recording layer, i.e., the third magnetization layer 13, employs a material having such composition as (a) the Curie points Tc1, Tc2 and Tc3 of respective magnetic layers satisfy the following relations Tc1<Tc2, Tc3<Tc2, and (b) the ratio of remanent magnetization and saturation magnetization, i.e., the squareness ratio θ, satisfies a relation 0<θ<1 and a plurality of domains are present within the diameter of spot light employed for recording/reproduction.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、3値以上の多値記
録が可能な多層膜光磁気記録媒体に関する。さらに詳し
くは、本発明は中間値記録層が角形比θが0<θ<1と
なる磁気特性を示す多層膜光磁気記録媒体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multi-layered magneto-optical recording medium capable of multilevel recording of three or more levels. More specifically, the present invention relates to a multi-layered magneto-optical recording medium in which the median value recording layer exhibits magnetic characteristics such that the squareness ratio θ is 0 <θ <1.

【0002】[0002]

【従来の技術】図7は、たとえば特開平6−22343
1号公報に示された従来の多値記録が可能な多層膜光磁
気記録媒体の構成を示す断面説明図である。同図におい
て、20は基板、21〜24はそれぞれ前記基板上に形
成された垂直磁気異方性を有する第1磁性層(メモリ
層)21、第2磁性層(記録層)22、第3磁性層(ス
イッチ層)23および第4磁性層(中間値記録層)24
であり、これらの層は隣接する層と交換力により結合さ
れており、これら基板20および磁性層21〜24によ
って従来例の多層膜光磁気記録媒体27を構成してい
る。ここで、交換力は隣接するそれぞれの磁性層の副格
子磁化が平行となるように相互に作用する。26は外部
磁界を発生させる磁界変調ヘッドである。各磁性層21
〜24のキュリー温度の関係は、それぞれのキュリー温
度をTc1、Tc2、Tc3、Tc4とあらわすとき、
次式であらわされる。
2. Description of the Related Art FIG. 7 shows, for example, JP-A-6-22343.
FIG. 3 is a cross-sectional explanatory view showing a configuration of a conventional multi-layered magneto-optical recording medium capable of multi-valued recording shown in Japanese Patent Publication No. In the figure, reference numeral 20 is a substrate, and 21 to 24 are first magnetic layers (memory layers) 21, second magnetic layers (recording layers) 22, and third magnetic layers formed on the substrates and having perpendicular magnetic anisotropy. Layer (switch layer) 23 and fourth magnetic layer (intermediate value recording layer) 24
These layers are bonded to the adjacent layers by the exchange force, and the substrate 20 and the magnetic layers 21 to 24 constitute the conventional multilayer magneto-optical recording medium 27. Here, the exchange forces act so that the sublattice magnetizations of the adjacent magnetic layers are parallel to each other. A magnetic field modulation head 26 generates an external magnetic field. Each magnetic layer 21
The relationship between the Curie temperatures of ~ 24 is that when the respective Curie temperatures are expressed as Tc1, Tc2, Tc3, and Tc4,
It is expressed by the following equation.

【0003】 Tc4>Tc2>Tc1>Tc3 式(1) つぎに、前述のように構成される従来の光磁気記録媒体
の記録動作について説明する。図8は前述の従来の多層
膜光磁気記録媒体の動作を温度範囲ごとに模式的に示し
た説明図である。基板20は前記動作には直接関係しな
いので図8では基板20を省略した。かかる従来の光磁
気記録媒体は、成膜されたのち、まず、従来例の多層膜
光磁気記録媒体27は、最初に光スポット径の大きさよ
り小さい部分だけ記録する記録密度に磁界変調記録方式
もしくは磁気転写方式によって第4磁性層24の磁化状
態に、記録され、中間値記録層を形成する。図8におい
て、白矢印は遷移金属副格子磁気モーメントを、斜線部
は光スポット径より小さい記録密度の磁化(中間値記
録)状態を、白色部はキュリー温度以上に昇温し強磁性
が失われている状態を、そして横縞矢印は外部磁界をそ
れぞれ示している。図8において、かかる中間値記録層
を形成した状態(zとして図示)として、第1磁性層2
1、第2磁性層22および第3磁性層23にはいずれも
斜線部、第4磁性層24には上向き白点部、斜線部およ
び下向き斜線部がともに示されている。
Tc4>Tc2>Tc1> Tc3 Formula (1) Next, the recording operation of the conventional magneto-optical recording medium configured as described above will be described. FIG. 8 is an explanatory view schematically showing the operation of the above-mentioned conventional multilayered magneto-optical recording medium for each temperature range. Since the substrate 20 is not directly related to the above operation, the substrate 20 is omitted in FIG. After such a conventional magneto-optical recording medium is formed into a film, first, in the conventional multi-layered magneto-optical recording medium 27, a magnetic field modulation recording method or It is recorded in the magnetization state of the fourth magnetic layer 24 by a magnetic transfer method to form an intermediate value recording layer. In FIG. 8, the white arrow indicates the transition metal sublattice magnetic moment, the shaded portion indicates the magnetization (intermediate value recording) state with a recording density smaller than the light spot diameter, and the white portion rises above the Curie temperature to lose ferromagnetism. , And the horizontal stripe arrow indicates the external magnetic field. In FIG. 8, the first magnetic layer 2 is shown with the intermediate value recording layer formed (illustrated as z).
The first, second magnetic layer 22 and the third magnetic layer 23 are shown as shaded portions, and the fourth magnetic layer 24 is shown as an upward white dot portion, a shaded portion and a downward shaded portion.

【0004】かかる光磁気記録媒体に利用される光磁気
記録材料として用いられている希土類−遷移金属合金膜
はフェリ磁性体であるため、希土類金属の磁気モーメン
トと遷移金属の磁気モーメントとが互いに反平行状態を
なしており、見かけ上の磁化はそれぞれの磁気モーメン
トの差として観測される。このような希土類金属の磁気
モーメントが前記希土副格子磁気モーメントである。
Since the rare earth-transition metal alloy film used as the magneto-optical recording material used in such a magneto-optical recording medium is a ferrimagnetic material, the magnetic moment of the rare earth metal and the magnetic moment of the transition metal are opposite to each other. They are in a parallel state, and the apparent magnetization is observed as the difference between their magnetic moments. The magnetic moment of the rare earth metal is the rare earth sublattice magnetic moment.

【0005】図8において、光強度PLのレーザ光照射
(PLとして図示)により各磁性層を第1磁性層21の
キュリー温度Tc1近傍まで昇温させると、中間値記録
状態である第2磁性層22の副格子磁化の状態が第1磁
性層21に転写され、第1磁性層21は中間値記録状態
になる。ここで、Tc1近傍という意味は、Tc1より
高く、かつ、第2磁性層の磁化反転温度以下(Tc2よ
りは低く、Tc1よりは高い温度)から、第1磁性層の
受ける交換力が第1磁性層の保磁力以上となる温度(T
c1よりは低い温度)までの範囲をいう。以下の説明に
おけるTcX近傍という表現は同じ趣旨で記載される。
このとき、第3磁性層23および第4磁性層24は動作
に対してとくに寄与することはなく、第3磁性層23の
磁化が消失(b−2)しても第4磁性層24との交換力
で再び元の状態に戻るように磁化され、中間値記録状態
「0」、すなわち低パワープロセス(b−2およびb−
3)が行われる。
In FIG. 8, when each magnetic layer is heated to near the Curie temperature Tc1 of the first magnetic layer 21 by irradiation with laser light having a light intensity PL (shown as PL), the second magnetic layer in an intermediate value recording state. The sublattice magnetization state of 22 is transferred to the first magnetic layer 21, and the first magnetic layer 21 enters the intermediate value recording state. Here, the vicinity of Tc1 means that the exchange force received by the first magnetic layer is higher than Tc1 and not higher than the magnetization reversal temperature of the second magnetic layer (lower than Tc2 and higher than Tc1). Temperature above the coercive force of the layer (T
temperature lower than c1). In the following description, the expression TcX neighborhood is described with the same meaning.
At this time, the third magnetic layer 23 and the fourth magnetic layer 24 do not particularly contribute to the operation, and even if the magnetization of the third magnetic layer 23 disappears (b-2), the fourth magnetic layer 24 and It is magnetized so as to return to the original state by the exchange force, and the intermediate value recording state "0", that is, the low power process (b-2 and b-
3) is performed.

【0006】また、図8において、光強度PHのレーザ
光照射(外部磁界の向きを含めてPH+またはPH-とし
て図示)により各磁性層を、第2磁性層22のキュリー
温度Tc2近傍(Tc4よりは低く、かつ、Tc2より
は高い温度から第2磁性層の受ける交換力が第2磁性層
の保磁力以上となる温度)まで昇温させると、第1磁性
層21および第3磁性層23の磁化は消失するが、第4
磁性層24の磁化方向は変化しない。そして、第2磁性
層22の副格子磁化は、第1磁性層21および第3磁性
層23からの交換力を受けることなく外部記録磁界が上
向き(PH+として図示)のばあいにはその磁界方向で
ある上向きになる(a−1)。つぎに、各磁性層を、第
1磁性層21のキュリー温度Tc1よりも低い温度にま
で降温させると、第2磁性層22の副格子磁化が第1磁
性層21に転写され、第1磁性層21の副格子磁化は上
向きになる(a−2)。また、各磁性層を、第3磁性層
23のキュリー温度Tc3よりも低い温度に降温させる
と、第3磁性層23は第4磁性層24と揃って中間値記
録状態になる。さらに温度が下がると第2磁性層22は
第3磁性層23を介して第4磁性層24と揃って中間値
記録状態(a−3)となって、上向き磁化状態「+1」
の高パワープロセス(a−1、a−2およびa−3)が
行われる。同様に光強度PHのレーザ光照射時に外部記録
磁界が下向きのばあい(PH-として図示)には下向き
磁化状態「−1」の高パワープロセス(c−1、c−2
およびc−3)が行われる。以上のようにして、外部記
録磁界の方向と記録レーザ強度を少なくとも2値に変調
することで状態「−1」、状態「0」および状態「+
1」の3値記録が可能になる。
Further, in FIG. 8, by irradiating a laser beam having a light intensity PH (shown as PH + or PH including the direction of the external magnetic field), each magnetic layer is moved to near the Curie temperature Tc2 of the second magnetic layer 22 (Tc4 The temperature lower than Tc2 and higher than Tc2 to a temperature at which the exchange force received by the second magnetic layer is equal to or higher than the coercive force of the second magnetic layer), the first magnetic layer 21 and the third magnetic layer 23. Magnetization disappears, but the fourth
The magnetization direction of the magnetic layer 24 does not change. The sub-lattice magnetization of the second magnetic layer 22 does not receive the exchange force from the first magnetic layer 21 and the third magnetic layer 23, and when the external recording magnetic field is upward (shown as PH + ), the magnetic field is increased. The direction is upward (a-1). Next, when each magnetic layer is cooled to a temperature lower than the Curie temperature Tc1 of the first magnetic layer 21, the sub-lattice magnetization of the second magnetic layer 22 is transferred to the first magnetic layer 21, and the first magnetic layer 21 is transferred. The sublattice magnetization of 21 is upward (a-2). Further, when the temperature of each magnetic layer is lowered to a temperature lower than the Curie temperature Tc3 of the third magnetic layer 23, the third magnetic layer 23 and the fourth magnetic layer 24 are in the intermediate value recording state. When the temperature further lowers, the second magnetic layer 22 is aligned with the fourth magnetic layer 24 through the third magnetic layer 23 to be in the intermediate value recording state (a-3), and the upward magnetization state is "+1".
The high power processes (a-1, a-2 and a-3) are performed. Similarly, when the external recording magnetic field is downward (shown as PH ) when the laser beam having the light intensity PH is irradiated, the high power process (c-1, c-2) of the downward magnetization state “−1” is performed.
And c-3) are performed. As described above, the state “−1”, the state “0”, and the state “+” are obtained by modulating the direction of the external recording magnetic field and the recording laser intensity into at least two values.
It becomes possible to record three values of "1".

【0007】[0007]

【発明が解決しようとする課題】従来の多値記録可能な
多層膜光磁気記録媒体においては、中間値記録層となる
第4磁性層の磁化状態を、最初に光スポット径の大きさ
より小さい部分だけ磁化する記録密度にするために磁界
変調記録方式または磁気転写方式によって記録し形成し
ている。磁界変調記録方式によると光スポット径の大き
さより小さい部分だけ磁化する記録密度に記録するため
の外部記録磁界の変調速度をあまり高速化できないた
め、ディスク回転数を低速にしなければならず、ディス
ク全面に中間値記録状態を形成するためには長時間を要
し、このため生産性が低いという問題がある。
In the conventional multi-level recordable multi-layered magneto-optical recording medium, the magnetization state of the fourth magnetic layer, which is the intermediate value recording layer, is first set to a portion smaller than the size of the light spot diameter. In order to obtain a recording density that magnetizes only, recording is performed by a magnetic field modulation recording method or a magnetic transfer method. According to the magnetic field modulation recording method, it is not possible to increase the modulation speed of the external recording magnetic field for recording at a recording density that magnetizes only a portion smaller than the size of the optical spot diameter. In addition, it takes a long time to form the intermediate value recording state, so that there is a problem that productivity is low.

【0008】前記磁界変調記録方式または磁気転写方式
においては300℃以上と推定される、中間値記録層で
ある第4磁性層のキュリー温度よりもさらに高く昇温す
ることは、樹脂製の基板および磁性膜を損傷するおそれ
がある。すなわち、一般的に用いられる基板材料である
ポリカーボネイトは150℃程度で変形または変質を生
じ、他方磁性膜は300℃以上の高温に長時間保持する
と磁気特性の劣化を生じる。
In the magnetic field modulation recording method or the magnetic transfer method, it is assumed that the temperature is higher than the Curie temperature of the fourth magnetic layer, which is the intermediate value recording layer, which is estimated to be 300 ° C. or higher. It may damage the magnetic film. That is, polycarbonate, which is a commonly used substrate material, is deformed or deteriorated at about 150 ° C., while the magnetic film is deteriorated in magnetic property when kept at a high temperature of 300 ° C. or higher for a long time.

【0009】本発明は前述のような従来の多値記録可能
な多層膜光磁気記録媒体の生産性、とくに中間値記録層
を形成するうえでの、昇温による基板および磁性膜の損
傷のおそれという問題点の解消を目的としてなされたも
のであり、中間値記録層に用いる材料と磁気特性を選ぶ
ことにより、中間値記録形成工程そのものを不要とし、
生産性に優れた多値記録可能な多層膜光磁気記録媒体を
うることを目的とする。
According to the present invention, the productivity of the conventional multi-level recordable multi-layered magneto-optical recording medium as described above, especially the risk of damage to the substrate and the magnetic film due to temperature rise in forming the intermediate value recording layer. It was made for the purpose of solving the problem that, by selecting the material and the magnetic characteristics used for the intermediate value recording layer, the intermediate value recording forming step itself becomes unnecessary,
An object of the present invention is to obtain a multi-layered magneto-optical recording medium capable of multi-valued recording with excellent productivity.

【0010】[0010]

【課題を解決するための手段】本発明は、残留磁化と飽
和磁化との比を角形比θ(以下、単に角形比θという)
と表わすとき、角形比θが室温において、0<θ<1と
なる磁気特性を示し、かつ、記録再生に用いる光スポッ
ト径の大きさが複数個の磁区を含む大きさとなる組成の
材料を中間値記録層に用いることによって、記録時の光
強度が変調され中間値記録状態がそのまま転写された状
態「0」ならびに、外部記録磁界の方向により決定され
る磁化状態「+1」および「−1」の3値の記録が行な
われる。前記角形比θは、充分な外部磁界により磁性層
が一様に磁化したときの(磁壁がない状態)磁化の大き
さである飽和磁化と、前記外部磁界を0としたときの磁
化の大きさである残留磁化との比(式2)をいう。角形
比の観測方法については後述する。
According to the present invention, the ratio between the residual magnetization and the saturation magnetization is a squareness ratio θ (hereinafter simply referred to as a squareness ratio θ).
When the squareness ratio θ is room temperature, a magnetic material having a magnetic characteristic of 0 <θ <1 and a size of a light spot used for recording / reproducing having a composition including a plurality of magnetic domains are intermediate. By using it for the value recording layer, the light intensity at the time of recording is modulated and the intermediate value recording state is transferred as it is, and the magnetization states “+1” and “−1” determined by the direction of the external recording magnetic field. The three values are recorded. The squareness ratio θ is the saturation magnetization, which is the magnitude of magnetization when the magnetic layer is uniformly magnetized by a sufficient external magnetic field (in the absence of domain walls), and the magnitude of magnetization when the external magnetic field is zero. And the residual magnetization (equation 2). The method of observing the squareness ratio will be described later.

【0011】 角形比θ=残留磁化/飽和磁化 (2) 本発明の多層膜光磁気記録媒体は基板上に垂直磁気異方
性を有する第1磁性層から第3磁性層までの3層が積層
され、それぞれ隣接する層は互いに交換結合されている
多層膜光磁気記録媒体であって、(a)第1磁性層のキ
ュリー温度をTc1、第2磁性層のキュリー温度をTc
2および第3磁性層のキュリー温度をTc3と表わすと
き、キュリー温度Tc1、Tc2およびTc3の関係が Tc1<Tc2、かつ、Tc3<Tc2 であり、(b)第3磁性層の角形比θが室温において、
0<θ<1となる磁気特性を示し、かつ、記録再生に用
いる光スポット径の大きさが複数個の磁区を含む大きさ
であることを特徴とする。
Squareness ratio θ = remanent magnetization / saturation magnetization (2) In the multilayer magneto-optical recording medium of the present invention, three layers from a first magnetic layer having perpendicular magnetic anisotropy to a third magnetic layer are laminated on a substrate. And (a) the Curie temperature of the first magnetic layer is Tc1 and the Curie temperature of the second magnetic layer is Tc.
When the Curie temperatures of the second and third magnetic layers are expressed as Tc3, the Curie temperatures Tc1, Tc2, and Tc3 have a relationship of Tc1 <Tc2 and Tc3 <Tc2, and (b) the squareness ratio θ of the third magnetic layer is room temperature. At
It is characterized in that it exhibits magnetic characteristics such that 0 <θ <1, and the size of the light spot diameter used for recording / reproduction is a size including a plurality of magnetic domains.

【0012】また、本発明の多層膜光磁気記録媒体は前
記第3磁性層が希土類−遷移金属合金からなることが好
ましい。
In the multilayer magneto-optical recording medium of the present invention, it is preferable that the third magnetic layer is made of a rare earth-transition metal alloy.

【0013】また、前記希土類−遷移金属合金の希土類
金属としてTb、遷移金属としてFeおよびFeCoの
いずれか一方からなり、磁気特性が0<θ<1であるこ
とが好ましい。
Further, it is preferable that the rare earth metal of the rare earth-transition metal alloy is Tb, the transition metal is one of Fe and FeCo, and the magnetic characteristics are 0 <θ <1.

【0014】また、本発明の多層膜光磁気記録媒体は前
記第3磁性層のキュリー温度Tc3が200℃以下であ
ることが好ましい。
In the multilayer magneto-optical recording medium of the present invention, it is preferable that the Curie temperature Tc3 of the third magnetic layer is 200 ° C. or lower.

【0015】本発明の記録方法は本発明の多層膜光磁気
記録媒体を用い、(c)記録レーザ光の低パワー照射で
は外部磁界の向きに関係無く前記第3磁性層の多磁区磁
化状態が前記第1磁性層まで転写されて多磁区中間値記
録状態となり、(d)高パワー照射では前記第1、第2
および第3の各磁性層が外部磁界の方向により決定され
る磁化状態となることにより少なくとも3値の記録を可
能とする多層膜光磁気記録方法である。
The recording method of the present invention uses the multilayer magneto-optical recording medium of the present invention. (C) When the recording laser beam is irradiated with a low power, the multi-domain magnetization state of the third magnetic layer is irrespective of the direction of the external magnetic field. The multi-domain intermediate value recording state is achieved by transferring to the first magnetic layer, and (d) high power irradiation causes the first and second magnetic layers to be recorded.
And a multi-layered magneto-optical recording method that enables at least ternary recording by setting each of the third magnetic layers into a magnetized state determined by the direction of the external magnetic field.

【0016】また、本発明の多層膜光磁気記録媒体は基
板上に垂直磁気異方性を有する第1、第2、第3および
第4の磁性層の4層が積層され、それぞれ隣接する層は
互いに交換結合されている多層膜光磁気記録媒体であっ
て、(e)前記第1磁性層の保磁力が第2磁性層から受
ける交換結合力よりも大きく、(f)第1磁性層のキュ
リー温度をTc1、第2磁性層のキュリー温度をTc
2、および第3磁性層のキュリー温度をTc3を表わす
とき、キュリー温度Tc1、Tc2およびTc3の関係
が Tc1<Tc2、かつ、Tc3<Tc2 であり、(g)前記第2磁性層、前記第3磁性層および
前記第4磁性層の副格子磁化方向が揃っており、ならび
に(h)第4磁性層の角形比θが室温において、0<θ
<1となる磁気特性を示し、記録再生に用いる光スポッ
ト径の大きさが複数個の磁区を含む大きさであることを
特徴とする。
In the multilayer magneto-optical recording medium of the present invention, four layers of the first, second, third and fourth magnetic layers having perpendicular magnetic anisotropy are laminated on the substrate, and the layers are adjacent to each other. Is a multilayer magneto-optical recording medium exchange-coupled to each other, wherein (e) the coercive force of the first magnetic layer is larger than the exchange-coupling force received from the second magnetic layer, and (f) the first magnetic layer. The Curie temperature is Tc1, and the Curie temperature of the second magnetic layer is Tc.
When the Curie temperature of the second and third magnetic layers is represented by Tc3, the Curie temperatures Tc1, Tc2 and Tc3 have a relationship of Tc1 <Tc2 and Tc3 <Tc2, and (g) the second magnetic layer and the third magnetic layer. The sublattice magnetization directions of the magnetic layer and the fourth magnetic layer are aligned, and (h) the squareness ratio θ of the fourth magnetic layer is 0 <θ at room temperature.
The magnetic characteristic is <1 and the size of the light spot diameter used for recording and reproduction is a size including a plurality of magnetic domains.

【0017】また、本発明の多層膜光磁気記録媒体は前
記第4磁性層のキュリー温度Tc4が前記第2の磁性層
のキュリー温度Tc2よりも高いことが好ましい。
In the multilayer magneto-optical recording medium of the present invention, it is preferable that the Curie temperature Tc4 of the fourth magnetic layer is higher than the Curie temperature Tc2 of the second magnetic layer.

【0018】また本発明の多層膜光磁気記録媒体は前記
第4磁性層として磁気特性が0<θ<1で、CoCrか
らなることが好ましい。
In the multilayer magneto-optical recording medium of the present invention, it is preferable that the fourth magnetic layer has a magnetic characteristic of 0 <θ <1 and is made of CoCr.

【0019】また本発明の多層膜光磁気記録媒体は前記
第4磁性層として磁気特性が0<θ<1で、TbCoお
よびTbFeCoのいずれか一方からなることが好まし
い。
In the multilayer magneto-optical recording medium of the present invention, it is preferable that the fourth magnetic layer has a magnetic characteristic of 0 <θ <1 and is made of either TbCo or TbFeCo.

【0020】[0020]

【発明の実施の形態】本発明は、角形比θが室温におい
て0<θ<1となる磁気特性を示し、かつ、記録再生に
用いる光スポット径の大きさが複数個の磁区を含む大き
さとなる組成の材料を中間値記録層に用いることによっ
て、記録時の光強度を変調し中間値記録状態がそのまま
転写された状態「0」と、外部記録磁界の方向により決
定される磁化状態「+1」および「−1」の3値の記録
が行なわれる。角形比θは前述したように飽和磁化と残
留磁化との比で定められるが、図4に示したようなカー
ヒステリシスループの測定によって飽和磁化としては飽
和カー回転角の値を用い、残留磁化としては外部磁界=
0でのカー回転角の値を用いて前述の式(1)により角
形比θを求めることができる。または、振動試料型磁力
計(VSM)による磁気ヒステリシスループの測定によ
っても求めうる。
BEST MODE FOR CARRYING OUT THE INVENTION According to the present invention, the squareness ratio θ exhibits magnetic characteristics such that 0 <θ <1 at room temperature, and the size of the light spot diameter used for recording / reproducing is a size including a plurality of magnetic domains. By using a material having the following composition for the intermediate value recording layer, the light intensity at the time of recording is modulated and the intermediate value recording state is directly transferred to "0" and the magnetization state "+1" determined by the direction of the external recording magnetic field. And -1 are recorded. The squareness ratio θ is determined by the ratio between the saturation magnetization and the remanent magnetization as described above, but the value of the saturation Kerr rotation angle is used as the saturation magnetization by the measurement of the Kerr hysteresis loop as shown in FIG. Is the external magnetic field =
Using the value of the Kerr rotation angle at 0, the squareness ratio θ can be obtained by the above equation (1). Alternatively, it can be obtained by measuring a magnetic hysteresis loop using a vibrating sample magnetometer (VSM).

【0021】本発明にかかわる、中間値記録層を含む多
層膜光磁気記録媒体の記録メカニズムは以下に述べると
おりである。すなわち、記録レーザー強度PHを照射す
るときには、外部記録磁界の方向により記録状態「−
1」または「+1」を記録し、記録レーザ強度がPHよ
りも低い記録レーザ強度PLを照射するときには外部記
録磁界磁界の向きには関係無く、中間値記録層により磁
化状態が決められた第2磁性層の磁化状態が第1磁性層
に転写されることで中間値記録状態「0」を記録する。
このように外部記録磁界の方向と記録レーザ強度を少な
くとも2値以上に変調することで、第1磁性層に「上向
き」、「下向き」、「中間値(多磁区)」状態の3値の
記録をする。
The recording mechanism of the multi-layered magneto-optical recording medium including the intermediate value recording layer according to the present invention is as described below. That is, when the recording laser intensity PH is applied, the recording state "-" is changed depending on the direction of the external recording magnetic field.
When "1" or "+1" is recorded and the recording laser intensity PL of which the recording laser intensity is lower than PH is irradiated, the magnetization state is determined by the intermediate value recording layer regardless of the direction of the external recording magnetic field magnetic field. The intermediate value recording state “0” is recorded by transferring the magnetization state of the magnetic layer to the first magnetic layer.
In this way, by modulating the direction of the external recording magnetic field and the recording laser intensity to at least two values or more, three-value recording of “upward”, “downward”, and “intermediate value (multi-domain)” states on the first magnetic layer. do.

【0022】前述の各磁性層間に中間層を設けることが
できる。また、第1および第2のいずれの態様において
も再生信号を増大するために再生層を設けることができ
る。
An intermediate layer can be provided between the above-mentioned magnetic layers. Further, in both the first and second aspects, a reproduction layer can be provided to increase the reproduction signal.

【0023】以下、添付図面にしたがって本発明にかか
わる多値記録可能な多層膜光磁気記録媒体についてさら
に詳細に説明する。ただし、本発明は以下の実施例に限
定されるものではない。
The multi-layer recordable magneto-optical recording medium according to the present invention will be described in more detail below with reference to the accompanying drawings. However, the present invention is not limited to the following examples.

【0024】[実施例1]図1は本発明の実施例1の多
値記録可能な多層膜光磁気記録媒体の構成を示す断面説
明図である。図1において、10は基板、11、12お
よび13はそれぞれこの基板上に形成された垂直磁気異
方性を有する第1磁性層、第2磁性層、および第3磁性
層であり、これらの層は互いに隣接する層と交換力によ
り結合されており、これら基板10ならびに磁性層1
1、12および13によって本発明の多層膜光磁気記録
媒体18は構成されている。17は外部磁界を発生させ
る外部磁界発生装置である。
[Embodiment 1] FIG. 1 is a sectional view showing the structure of a multi-layered magneto-optical recording medium capable of multilevel recording according to Embodiment 1 of the present invention. In FIG. 1, reference numeral 10 is a substrate, and 11, 12 and 13 are respectively a first magnetic layer, a second magnetic layer and a third magnetic layer having perpendicular magnetic anisotropy formed on this substrate. Are coupled to layers adjacent to each other by exchange force, and these substrate 10 and magnetic layer 1 are
The multilayer magneto-optical recording medium 18 of the present invention is composed of 1, 12 and 13. An external magnetic field generator 17 generates an external magnetic field.

【0025】前述のように構成される本発明の光磁気記
録媒体の記録動作について以下に説明する。図2は本発
明の記録メカニズムを模式的に示した説明図である。前
記基板10は記録動作には直接関係しないので図2では
基板10を省略した。図2において、白矢印は遷移金属
副格子磁気モーメントを、斜線部は光スポット径より小
さい記録密度の磁化(中間値記録)状態を、白色部はキ
ュリー温度以上に昇温し強磁性が失われている状態を、
そして横縞矢印は外部磁界をそれぞれ示している。図2
において、かかる中間値記録層を形成した状態(zとし
て図示)として、第1磁性層11および第2磁性層12
にはいずれも斜線部、第3磁性層には上向き矢印、斜線
部および下向き斜線部がともに示されている。
The recording operation of the magneto-optical recording medium of the present invention configured as described above will be described below. FIG. 2 is an explanatory view schematically showing the recording mechanism of the present invention. Since the substrate 10 is not directly related to the recording operation, the substrate 10 is omitted in FIG. In FIG. 2, the white arrow indicates the transition metal sublattice magnetic moment, the shaded area indicates the magnetization (intermediate value recording) state with a recording density smaller than the light spot diameter, and the white area increases the temperature above the Curie temperature and the ferromagnetism is lost. The state
The horizontal stripe arrows indicate the external magnetic field. FIG.
In the state where the intermediate value recording layer is formed (shown as z), the first magnetic layer 11 and the second magnetic layer 12
Shows a shaded portion, and the third magnetic layer has an upward arrow, a shaded portion, and a downward shaded portion.

【0026】図2において、光強度PLのレーザ光照射
(PLとして図示)により各磁性層を第1磁性層11の
キュリー温度Tc1近傍まで昇温させると、中間値記録
状態にある第2磁性層12の副格子磁化の状態が第1磁
性層11に転写され、第1磁性層11は中間値記録状態
(b−2)になる。このとき、第3磁性層13は動作に
対してとくに寄与することなく、中間値記録状態
「0」、すなわち低パワープロセス(b−2およびb−
3)が行われる。
In FIG. 2, when each magnetic layer is heated to near the Curie temperature Tc1 of the first magnetic layer 11 by irradiation with laser light having a light intensity PL (shown as PL), the second magnetic layer in the intermediate value recording state. The sublattice magnetization state of No. 12 is transferred to the first magnetic layer 11, and the first magnetic layer 11 enters the intermediate value recording state (b-2). At this time, the third magnetic layer 13 does not particularly contribute to the operation, and the intermediate value recording state is "0", that is, the low power process (b-2 and b-).
3) is performed.

【0027】また、図2において、光強度PHのレーザ
光照射(外部磁界の向きを含めてPH+またはPH-とし
て図示)により各磁性層を第2磁性層12のキュリー温
度Tc2近傍まで昇温させると、第1磁性層11および
第3磁性層13の磁化は消失し、かつ、第1磁性層11
および第3磁性層13からの交換力を受けない。また、
このとき第2磁性層12の副格子磁化の方向は外部記録
磁界が上向きのばあい(PH+として図示)にはその磁
界方向である上向きになる(a−1)。つぎに、各磁性
層を第1磁性層11のキュリー温度Tc1よりも低い温
度に降温させると、第2磁性層12の副格子磁化の状態
が第1磁性層11に転写され、第1磁性層11の副格子
磁化の方向は上向きになる(a−2)。また、各磁性層
を第3磁性層13のキュリー温度Tc3よりも低い温度
に降温させると第3磁性層13は角形比θが1より小さ
い磁気特性であるため外部磁界=0で飽和磁化状態がエ
ネルギー的に不安定であることを意味しており、磁壁を
形成して多磁区化した状態で安定化(多磁区状態)す
る。このとき、レーザ光照射の光スポット径の大きさは
複数個の磁区を含む大きさとなっている。この第3磁性
層13の多磁区状態が第2磁性層12に転写され、第2
磁性層12は多磁区状態となる。このとき、第1磁性層
11の保磁力は第1磁性層11が第2磁性層12から受
ける交換結合力に比べて大きいために第1磁性層11の
磁化状態は変化しない(a−3)。こうして第1磁性層
11に上向き磁化状態「+1」の高パワープロセス(a
−1、a−2およびa−3)が行われる。同様に光強度
PHのレーザ光照射時に外部記録磁界が下向きのばあい
(PH-として図示)には下向き磁化状態「−1」の高
パワープロセス(c−1、c−2およびc−3)が行わ
れる。以上のようにして、外部記録磁界の方向と記録レ
ーザ強度を少なくとも2値に変調することによって状態
「−1」、状態「0」および状態「+1」の3値記録が
可能になる。
In FIG. 2, each magnetic layer is heated to near the Curie temperature Tc2 of the second magnetic layer 12 by irradiation with laser light having a light intensity PH (shown as PH + or PH including the direction of the external magnetic field). Then, the magnetizations of the first magnetic layer 11 and the third magnetic layer 13 disappear, and the first magnetic layer 11
And the exchange force from the third magnetic layer 13 is not received. Also,
At this time, the direction of the sub-lattice magnetization of the second magnetic layer 12 is upward (a-1) which is the magnetic field direction when the external recording magnetic field is upward (shown as PH + ). Next, when each magnetic layer is cooled to a temperature lower than the Curie temperature Tc1 of the first magnetic layer 11, the state of the sub-lattice magnetization of the second magnetic layer 12 is transferred to the first magnetic layer 11, and the first magnetic layer The direction of the sublattice magnetization of 11 is upward (a-2). Further, when the temperature of each magnetic layer is lowered to a temperature lower than the Curie temperature Tc3 of the third magnetic layer 13, the third magnetic layer 13 has a magnetic characteristic that the squareness ratio θ is smaller than 1. It means that it is energetically unstable, and stabilizes in a state in which a domain wall is formed and multi-domains are formed (multi-domain state). At this time, the size of the light spot diameter of the laser light irradiation is a size including a plurality of magnetic domains. The multi-domain state of the third magnetic layer 13 is transferred to the second magnetic layer 12,
The magnetic layer 12 is in a multi-domain state. At this time, since the coercive force of the first magnetic layer 11 is larger than the exchange coupling force that the first magnetic layer 11 receives from the second magnetic layer 12, the magnetization state of the first magnetic layer 11 does not change (a-3). . In this way, the high power process (a) of the upward magnetization state “+1” is applied to the first magnetic layer 11.
-1, a-2 and a-3) are performed. Light intensity as well
If the external recording magnetic field at the time the laser beam irradiation of PH is downward - downward magnetization state "-1" in the high power process is (c-1, c-2 and c-3) is performed (PH shown as). As described above, by modulating the direction of the external recording magnetic field and the recording laser intensity into at least two values, three-value recording of the state "-1", the state "0" and the state "+1" becomes possible.

【0028】図3は実施例1の多値(3値)情報の記録
・再生方法について概略的に示した説明図であり、図3
(a)、3(b)、3(c)および3(d)は、図3
(a)の記録トラック上の磁化区分と図3(b)、3
(c)および3(d)に示される再生信号の値、記録パ
ワーの値および外部記録磁界の値とが対応するように示
されている。図3(a)において31は記録トラック、
32は光スポットであり、その領域に光スポットが照射
されていることを示しており、これにより図3(a)は
記録トラック31上の磁化状態を示している。図3
(b)は、再生信号は、たとえば磁化がS状態(白色)
のばあいに「−1」、N状態(黒色)のばあいに「+
1」、複数磁区(中間値記録)状態のばあいに「0」と
なることを示している。記録方法は、図3(a)に示す
記録を行なうためには、記録時のレーザ光強度を磁化状
態が「S」または「N」の時に「PH(PH+またはP
-)」、このときの外部磁界をそれぞれ「−Hb」ま
たは「+Hb」とし、中間値記録時にレーザ光強度を
「PL」とする(図3(c)、(d))。中間値記録時
の外部磁界は「+Hb」および「−Hb」のいずれでも
よい。
FIG. 3 is an explanatory view schematically showing the recording / reproducing method of multi-valued (three-valued) information according to the first embodiment.
(A), 3 (b), 3 (c) and 3 (d) are shown in FIG.
Magnetization sections on the recording track of (a) and FIGS.
The values of the reproduction signal, the value of the recording power, and the value of the external recording magnetic field shown in (c) and 3 (d) are shown so as to correspond to each other. In FIG. 3A, 31 is a recording track,
Reference numeral 32 denotes a light spot, which indicates that the area is irradiated with the light spot, whereby FIG. 3A shows the magnetization state on the recording track 31. FIG.
In (b), the reproduction signal has, for example, an S-state magnetization (white).
"-1" in case of, "+" in case of N state (black)
1 ”, it becomes“ 0 ”in the state of plural magnetic domains (recording of intermediate value). In the recording method, in order to perform the recording shown in FIG. 3A, the laser light intensity at the time of recording is set to "PH (PH + or P when the magnetization state is" S "or" N ".
H ) ”, the external magnetic field at this time is“ −Hb ”or“ + Hb ”, and the laser light intensity is“ PL ”at the time of recording the intermediate value (FIGS. 3C and 3D). The external magnetic field at the time of recording the intermediate value may be either “+ Hb” or “−Hb”.

【0029】[0029]

【表1】 [Table 1]

【0030】本発明の多値情報を記録できる多層膜光磁
気記録媒体の各磁性層の組成と膜厚とキュリー温度の1
例を表1に示す。表1において、組成式中の数値は元素
などの組成比率を表わしている。たとえば第1磁性層の
Tb24(Fe95Co576はTbが24atom%、F
95Co5が76atom%であり、Fe95Co5はFe
が95atom%、Coが5atom%である。本実施
例にかかわる各磁性層のキュリー温度の関係はTc1<
Tc2、かつ、Tc3<Tc2であり、第3磁性層には
磁気特性が0<θ<1である希土類−遷移金属合金Tb
12(Fe93Co788を用いた。該希土類−遷移金属合
金Tb12(Fe93Co788は、室温で大きな磁気異方
性を有しているため、微細な磁区状態をうることができ
るとともに、第2磁性層からの交換力による磁化反転が
生じない。なお第3磁性層のキュリー温度Tc3は20
0℃以下となるようにして、ハイパワープロセスにおい
て第2磁性層の、外部磁界による磁化反転に影響しない
ようにした。この多層膜光磁気記録媒体を溝付のガラス
基板上にスパッタ法により成膜した。これら多層磁性膜
のほかに基板と第1磁性層とのあいだおよび第3磁性層
上に窒化シリコン膜を成膜した。実施例1においては基
板に溝付のガラス基板を用いたがポリカーボネイトなど
の樹脂基板を用いてもよい。
The composition, film thickness and Curie temperature of each magnetic layer of the multi-layered magneto-optical recording medium according to the present invention capable of recording multi-valued information are 1
An example is shown in Table 1. In Table 1, the numerical values in the composition formula represent the composition ratio of elements and the like. For example, Tb 24 (Fe 95 Co 5 ) 76 of the first magnetic layer has Tb of 24 atom% and F
e 95 Co 5 is 76 atom%, and Fe 95 Co 5 is Fe.
Is 95 atom% and Co is 5 atom%. The relationship between the Curie temperatures of the magnetic layers according to this embodiment is Tc1 <
Tc2 and Tc3 <Tc2, and the third magnetic layer has a rare earth-transition metal alloy Tb having a magnetic property of 0 <θ <1.
12 (Fe 93 Co 7 ) 88 was used. Since the rare earth-transition metal alloy Tb 12 (Fe 93 Co 7 ) 88 has a large magnetic anisotropy at room temperature, a fine magnetic domain state can be obtained and the exchange force from the second magnetic layer can be obtained. Does not cause magnetization reversal. The Curie temperature Tc3 of the third magnetic layer is 20.
The temperature was set to 0 ° C. or lower so as not to affect the magnetization reversal of the second magnetic layer by the external magnetic field in the high power process. This multilayered magneto-optical recording medium was formed on a glass substrate having a groove by a sputtering method. In addition to these multilayer magnetic films, a silicon nitride film was formed between the substrate and the first magnetic layer and on the third magnetic layer. Although the glass substrate with the groove is used as the substrate in the first embodiment, a resin substrate such as polycarbonate may be used.

【0031】図4は成膜後に室温において第3磁性層側
から測定した、本発明の多層膜光磁気記録媒体のカーヒ
ステリシスループを示すグラフである。通常光磁気記録
媒体に用いられる磁性膜の角形比は「1」であるのに対
し、図4より、実施例1の第3磁性層の角形比θは
「0.1」であった。ヒステリシスループの角形比θ<
1であるということは、無磁界では多磁区状態が安定で
あることを示している。
FIG. 4 is a graph showing the Kerr hysteresis loop of the multilayer magneto-optical recording medium of the present invention measured from the side of the third magnetic layer at room temperature after film formation. While the squareness ratio of the magnetic film normally used for the magneto-optical recording medium was "1", the squareness ratio θ of the third magnetic layer of Example 1 was "0.1" from FIG. Squareness ratio of hysteresis loop θ <
A value of 1 indicates that the multi-domain state is stable under no magnetic field.

【0032】従来例では多磁区状態とする第4磁性層に
角形比θ=1の磁性膜を用いているため、成膜後に磁界
変調記録方式または磁気転写方式による中間値記録状態
形成のための工程が必要となっていたが、本発明の実施
例1のように第3磁性層に角形比θが0<θ<1となる
磁気特性を有する材料を用いることによって、中間値記
録状態形成工程を不要とすることができた。
In the conventional example, since a magnetic film having a squareness ratio of θ = 1 is used for the fourth magnetic layer in the multi-domain state, it is necessary to form an intermediate value recording state by a magnetic field modulation recording method or a magnetic transfer method after film formation. Although a step was required, an intermediate value recording state forming step is performed by using a material having magnetic characteristics such that the squareness ratio θ is 0 <θ <1 as in the first embodiment of the present invention. Could be eliminated.

【0033】[実施例2]本実施例は磁性層間に中間層
を設ける例について説明する。図5は本発明の実施例2
の多値記録可能な多層膜光磁気記録媒体の構成を示す断
面説明図である。図5において、10は基板、11、1
2および13はそれぞれこの基板上に形成された垂直磁
気異方性を有する第1磁性層、第2磁性層および第3磁
性層であり、これらの層は互いに隣接する層と交換力に
より結合されており、15は中間層、16は再生層であ
る。本実施例にかかわる多層膜光磁気記録媒体の各磁性
層および中間層の組成と膜厚とキュリー温度の1例を表
2に示す。各磁性層のキュリー温度の関係および各磁性
層に用いる材料は実施例1のばあいと同様である。ここ
に、第1磁性層11と交換結合しており、かつ垂直磁気
異方性を有する再生層16が再生信号を増大するために
第1磁性層と基板10とのあいだに設けられている。ま
た第1磁性層11と第2磁性層12のあいだにこれら磁
性層間の交換結合力を制御するために中間層15が設け
られている。ここで中間層15として垂直磁気異方性の
小さい、または面内磁気異方性を有する磁性層を用いる
ことにより、第1磁性層11と第2磁性層12間の界面
磁壁エネルギーを減少させることができる。このように
して中間層15により第1磁性層11と第2磁性層12
間の交換結合力を制御できる。再生層と中間層は記録・
再生特性および安定性向上などの性能向上のために付加
したもので基本的には第1、第2および第3の3つの磁
性層により本発明の基本特性はえられる。本実施例の記
録動作メカニズムは実施例1のばあいと同様である。こ
のほかに第3磁性層に直接または絶縁体などを介して熱
良導体層を付加するばあいもある。かかるばあいには熱
良導体としてアルミニウムなどを記録膜の作製時に他の
各磁性層のばあいと同様にスパッタ法により成膜する。
熱良導体層を付加することで記録レーザ光照射による記
録膜の温度分布を制御できることとなる結果、(1)記
録レーザ強度PHおよびPLのマージンが拡大できる効
果、(2)4層構造媒体での第4磁性層のキュリー温度
Tc4以上、または磁化反転温度までの昇温を抑制でき
る効果をうることができる。
[Embodiment 2] In this embodiment, an example in which an intermediate layer is provided between magnetic layers will be described. FIG. 5 shows a second embodiment of the present invention.
FIG. 3 is an explanatory sectional view showing the structure of the multi-layered magneto-optical recording medium capable of multi-valued recording. In FIG. 5, 10 is a substrate, 11 and 1
Reference numerals 2 and 13 respectively denote a first magnetic layer, a second magnetic layer, and a third magnetic layer having perpendicular magnetic anisotropy formed on this substrate, and these layers are coupled to adjacent layers by exchange force. 15 is an intermediate layer and 16 is a reproducing layer. Table 2 shows an example of the composition, film thickness and Curie temperature of each magnetic layer and the intermediate layer of the multilayer magneto-optical recording medium according to this example. The relationship between the Curie temperatures of the magnetic layers and the materials used for the magnetic layers are the same as in the first embodiment. Here, a reproducing layer 16 exchange-coupled with the first magnetic layer 11 and having perpendicular magnetic anisotropy is provided between the first magnetic layer and the substrate 10 in order to increase a reproduced signal. An intermediate layer 15 is provided between the first magnetic layer 11 and the second magnetic layer 12 to control the exchange coupling force between these magnetic layers. Here, by using a magnetic layer having a small perpendicular magnetic anisotropy or an in-plane magnetic anisotropy as the intermediate layer 15, the interface domain wall energy between the first magnetic layer 11 and the second magnetic layer 12 is reduced. You can Thus, the first magnetic layer 11 and the second magnetic layer 12 are formed by the intermediate layer 15.
The exchange coupling force between can be controlled. Recording layer and intermediate layer
This is added to improve the reproduction characteristics and performance such as stability, and basically the basic characteristics of the present invention can be obtained by the first, second and third magnetic layers. The recording operation mechanism of this embodiment is similar to that of the first embodiment. In addition to this, there is a case where a good thermal conductor layer is added to the third magnetic layer directly or through an insulator or the like. In such a case, aluminum or the like is formed as a good thermal conductor by the sputtering method in the same manner as in the case of each of the other magnetic layers when the recording film is formed.
As a result of the fact that the temperature distribution of the recording film due to the irradiation of the recording laser beam can be controlled by adding the thermal conductive layer, (1) the effect of expanding the margins of the recording laser intensity PH and PL, (2) the four-layer structure medium It is possible to obtain the effect of suppressing the temperature rise up to the Curie temperature Tc4 or higher of the fourth magnetic layer or the magnetization reversal temperature.

【0034】[0034]

【表2】 [Table 2]

【0035】[実施例3]図6は本発明の実施例3の多
値記録が可能な多層膜光磁気記録媒体の構成を示す断面
説明図である。図6において、10は基板であり、1
1、12、13および14はそれぞれこの基板上に形成
された垂直磁気異方性を有する第1磁性層、第2磁性
層、第3磁性層および第4磁性層であり、これらの層は
互いに隣接する層と交換力により結合されており、か
つ、第1磁性層の保磁力は第2磁性層から受ける交換結
合力より大きくされており、これら基板10ならびに磁
性層11、12、13および14、ならびに後述する中
間層および再生層によって本発明の多層膜光磁気記録媒
体18は構成されている。また、第2、第3および第4
の3つの磁性層の副格子磁化方向は揃えられている。さ
らに、各磁性層のキュリー温度の関係はTc1<Tc
2、かつ、Tc3<Tc2となるように形成されてい
る。記録媒体18において、第1磁性層11と交換結合
し垂直磁気異方性を有する再生層16が再生信号を増大
するために基板10と第1磁性層11とのあいだに設け
られており、また第1磁性層11と第2磁性層12のあ
いだにこれら磁性層間の交換結合力を制御するために中
間層15が設けられている。17は外部磁界を発生させ
る外部磁界発生装置である。
[Embodiment 3] FIG. 6 is a sectional view showing the structure of a multi-layered magneto-optical recording medium capable of multilevel recording according to Embodiment 3 of the present invention. In FIG. 6, 10 is a substrate, and 1
Reference numerals 1, 12, 13 and 14 denote a first magnetic layer, a second magnetic layer, a third magnetic layer and a fourth magnetic layer having perpendicular magnetic anisotropy formed on this substrate, respectively, and these layers are mutually The first magnetic layer is coupled to an adjacent layer by exchange force, and the coercive force of the first magnetic layer is made larger than the exchange coupling force received from the second magnetic layer, so that the substrate 10 and the magnetic layers 11, 12, 13 and 14 are connected. , And an intermediate layer and a reproducing layer which will be described later constitute the multilayer magneto-optical recording medium 18 of the present invention. Also, the second, third and fourth
The sub-lattice magnetization directions of the three magnetic layers are aligned. Further, the relationship of Curie temperature of each magnetic layer is Tc1 <Tc
2 and Tc3 <Tc2. In the recording medium 18, a reproducing layer 16 exchange-coupled with the first magnetic layer 11 and having perpendicular magnetic anisotropy is provided between the substrate 10 and the first magnetic layer 11 to increase a reproduced signal, and An intermediate layer 15 is provided between the first magnetic layer 11 and the second magnetic layer 12 to control the exchange coupling force between these magnetic layers. An external magnetic field generator 17 generates an external magnetic field.

【0036】[0036]

【表3】 [Table 3]

【0037】前述のように構成される本発明の光磁気記
録媒体の記録動作について図8を用いて説明する。図8
は前述の従来の多層膜光磁気記録媒体を温度範囲ごとに
模式的に示した説明図であるが、第1から第4までの4
層の磁性層の記録動作によって本実施例の光磁気記録媒
体の記録動作を説明する。また、本実施例にかかわる第
1から第4までの4つの磁性層11、12、13、14
の構造配置は前記従来の多層膜光磁気記録媒体と同じで
あるので使宜上同じ図8を用いて、本実施例の磁性層1
1、12、13、14を図8において21、22、2
3、24として説明する。なお、本実施例にかかわる再
生層および中間層は記録動作そのものには関係しないの
で、その記載を省略する。図8において、白矢印は遷移
金属副格子磁気モーメントを、斜線部は光スポット径よ
り小さい記録密度の磁化(中間値記録)状態を、白色部
はキュリー温度以上に昇温し強磁性が失われている状態
を、そして横縞矢印は外部磁界をそれぞれ示している。
図8において、光強度PLのレーザ光照射(PLとして
図示)により各磁性層を第1磁性層21のキュリー温度
Tc1近傍まで昇温させると、中間値記録状態にある第
2磁性層22の副格子磁化の状態が第1磁性層21に転
写され、第1磁性層21は中間値記録状態(b−2)に
なる。このとき、第3磁性層23および第4磁性層24
は動作に対してとくに寄与することはなく、第3磁性層
23の磁化が消失(b−2)しても第4磁性層24との
交換力で再び元の状態に戻るように磁化され、中間値記
録状態「0」、すなわち低パワープロセスが行なわれ
る。また、図8において、光強度PHのレーザ光照射
(外部磁界の向きを含めてPH+またはPH-として図
示)により各磁性層を、第2磁性層22のキュリー温度
近傍まで昇温させると、第1磁性層21および第3磁性
層23の磁化は消失により他の磁性層からの交換力を受
けること無く、第2磁性層22の副格子磁化の方向は外
部記録磁界の向きが上向きの場合(PH+として図示)
にはその磁界方向である上向きになる(a−1)。つぎ
に、各磁性層を、第1磁性層21のキュリー温度Tc1
よりも低い温度にまで降温させると、第2磁性層22の
副格子磁化が第1磁性層21に転写され、第1磁性層2
1の副格子磁化は上向きになる(a−2)。さらに第3
磁性層23のキュリー温度Tc3以下に降温し磁化が生
じると、第3磁性層23は第4磁性層24からの交換力
により第4磁性層の磁化状態、つまり中間値記録状態で
ある多磁区状態となり、さらに第2磁性層22も第3磁
性層23からの交換力により中間値記録状態となる。こ
のとき、第1磁性層21の保磁力は第1磁性層21が第
2磁性層22より受ける交換結合力に比べて大きいため
に第1磁性層21の磁化状態は変化しない。こうして高
パワープロセス(a−1、a−2およびa−3)が行な
われる。同様に、光強度PHのレーザ光照射時に外部記録
磁界が下向きのばあい(PH-として図示)には下向き
磁化状態「−1」の高パワープロセス(c−1、c−2
およびc−3)が行われる。以上のようにして、外部記
録磁界の方向と記録レーザ強度を少なくとも2値に変調
することによって状態「−1」、状態「0」および状態
「+1」の3値記録が可能になる。
The recording operation of the magneto-optical recording medium of the present invention configured as described above will be described with reference to FIG. FIG.
FIG. 4 is an explanatory view schematically showing the above-mentioned conventional multilayered magneto-optical recording medium for each temperature range.
The recording operation of the magneto-optical recording medium of this embodiment will be described with reference to the recording operation of the magnetic layer. In addition, the four magnetic layers 11, 12, 13, 14 of the first to the fourth according to the present embodiment.
Since the structural arrangement is the same as that of the conventional multi-layered magneto-optical recording medium, the magnetic layer 1 of this embodiment will be described with the same FIG. 8 for convenience.
1, 12, 13, and 14 in FIG.
3 and 24 will be described. Since the reproducing layer and the intermediate layer according to this embodiment are not related to the recording operation itself, their description will be omitted. In FIG. 8, the white arrow indicates the transition metal sublattice magnetic moment, the shaded portion indicates the magnetization (intermediate value recording) state with a recording density smaller than the light spot diameter, and the white portion rises above the Curie temperature to lose ferromagnetism. , And the horizontal stripe arrow indicates the external magnetic field.
In FIG. 8, when the temperature of each magnetic layer is raised to near the Curie temperature Tc1 of the first magnetic layer 21 by irradiation with a laser beam having a light intensity PL (illustrated as PL), the sub magnetic field of the second magnetic layer 22 in the intermediate value recording state is increased. The state of lattice magnetization is transferred to the first magnetic layer 21, and the first magnetic layer 21 becomes the intermediate value recording state (b-2). At this time, the third magnetic layer 23 and the fourth magnetic layer 24
Does not particularly contribute to the operation, and even if the magnetization of the third magnetic layer 23 disappears (b-2), it is magnetized so as to return to the original state by the exchange force with the fourth magnetic layer 24, The intermediate value recording state "0", that is, the low power process is performed. Further, in FIG. 8, when the temperature of each magnetic layer is raised to near the Curie temperature of the second magnetic layer 22 by irradiation with laser light having a light intensity PH (shown as PH + or PH including the direction of the external magnetic field), The magnetizations of the first magnetic layer 21 and the third magnetic layer 23 do not receive exchange forces from other magnetic layers due to disappearance, and the direction of sublattice magnetization of the second magnetic layer 22 is when the direction of the external recording magnetic field is upward. (Illustrated as PH + )
The magnetic field direction is upward (a-1). Next, the Curie temperature Tc1 of the first magnetic layer 21 is set to each magnetic layer.
When the temperature is lowered to a lower temperature, the sub-lattice magnetization of the second magnetic layer 22 is transferred to the first magnetic layer 21 and the first magnetic layer 2
The sub-lattice magnetization of 1 is upward (a-2). Furthermore the third
When the temperature is lowered to below the Curie temperature Tc3 of the magnetic layer 23 and the magnetization occurs, the third magnetic layer 23 is magnetized by the fourth magnetic layer 24 due to the exchange force, that is, the multi-domain state in the intermediate value recording state. Then, the second magnetic layer 22 also enters the intermediate value recording state by the exchange force from the third magnetic layer 23. At this time, since the coercive force of the first magnetic layer 21 is larger than the exchange coupling force that the first magnetic layer 21 receives from the second magnetic layer 22, the magnetization state of the first magnetic layer 21 does not change. Thus, the high power process (a-1, a-2 and a-3) is performed. Similarly, when the external recording magnetic field is downward (shown as PH ) when the laser beam with the light intensity PH is irradiated, the high power process (c-1, c-2) of the downward magnetization state “−1” is performed.
And c-3) are performed. As described above, by modulating the direction of the external recording magnetic field and the recording laser intensity into at least two values, three-value recording of the state "-1", the state "0" and the state "+1" becomes possible.

【0038】本発明の多値情報を記録できる多層膜光磁
気記録媒体の各磁性層の組成と膜厚とキュリー温度の1
例を表3に示す。本実施例にかかわる第4磁性層には、
磁気特性が0<θ<1であるCr15Co85を用いた。該
Cr15Co85は室温から記録動作温度まで大きな垂直磁
気異方性を有しているため、微細な磁区状態をうること
ができるとともにCr15Co85を用いた第4磁性層はT
c4>Tc2とならしめたので第2磁性層からの交換力
による磁化反転を生じない。この多層膜光磁気記録媒体
は溝付のガラス基板上にスパッタ法により成膜した。こ
れら多層磁性膜のほかに基板と再生層とのあいだ、およ
び第4磁性層上に窒化シリコン膜を成膜した。実施例3
では基板に溝付のガラス基板を用いたがポリカーボネイ
トなどの樹脂基板を用いてもよい。再生層と中間層は記
録・再生特性および安定性向上などの性能向上のために
付加したものであり、基本的には第1、第2、第3およ
び第4の4つの磁性層により本発明の基本特性はえられ
る。
The composition, film thickness and Curie temperature of each magnetic layer of the multi-layered magneto-optical recording medium according to the present invention capable of recording multi-valued information are 1
An example is shown in Table 3. The fourth magnetic layer according to this embodiment includes
Cr 15 Co 85 having a magnetic property of 0 <θ <1 was used. Since Cr 15 Co 85 has a large perpendicular magnetic anisotropy from room temperature to the recording operation temperature, it is possible to obtain a fine magnetic domain state and the fourth magnetic layer using Cr 15 Co 85 has T
Since c4> Tc2, the magnetization reversal due to the exchange force from the second magnetic layer does not occur. This multi-layered magneto-optical recording medium was formed by sputtering on a glass substrate with grooves. In addition to these multilayer magnetic films, a silicon nitride film was formed between the substrate and the reproducing layer and on the fourth magnetic layer. Example 3
Although the glass substrate with the groove is used as the substrate, a resin substrate such as polycarbonate may be used. The reproducing layer and the intermediate layer are added to improve recording / reproducing characteristics and performance such as stability, and basically, the present invention includes the first, second, third and fourth magnetic layers. The basic characteristics of can be obtained.

【0039】かかる4つの磁性層、再生層および中間層
の成膜後に室温において第4磁性層側から測定したカー
ヒステリシスループは図4に示したものと同じであっ
た。通常、光磁気記録媒体に用いられる磁性膜の角形比
は「1」であるのに対し、図4より、実施例1の第4磁
性層の角形比θは「0.1」であった。ヒステリシスル
ープの角形比θがθ<1であるということは、無磁界で
は多磁区状態が安定であることを示している。
The Kerr hysteresis loop measured from the fourth magnetic layer side at room temperature after the formation of the four magnetic layers, the reproducing layer and the intermediate layer was the same as that shown in FIG. Normally, the squareness ratio of the magnetic film used for the magneto-optical recording medium was "1", while from Fig. 4, the squareness ratio θ of the fourth magnetic layer of Example 1 was "0.1". The fact that the squareness ratio θ of the hysteresis loop is θ <1 indicates that the multi-domain state is stable in the absence of a magnetic field.

【0040】従来例では第4磁性層に角形比θ=1の磁
性膜を用いているため、成膜後に磁界変調記録もしくは
磁気転写による中間値記録状態形成のための工程が必要
となっていたが、本発明の実施例3のように第4磁性層
に角形比θが0<θ<1となる磁気特性を有する材料を
用いることで、中間値記録状態形成工程を不要とするこ
とができた。
In the conventional example, since a magnetic film having a squareness ratio θ = 1 is used for the fourth magnetic layer, a step for forming an intermediate value recording state by magnetic field modulation recording or magnetic transfer is required after the film formation. However, by using a material having magnetic characteristics such that the squareness ratio θ is 0 <θ <1 as in the third embodiment of the present invention, the intermediate value recording state forming step can be omitted. It was

【0041】[実施例4]本実施例は第4磁性層に実施
例3とは別の材料を用いるとともに、実施例3と同様に
磁性層間に中間層15を設ける例について説明する。本
実施例の多値記録が可能な多層膜光磁気記録媒体の構成
は実施例3と同様であるので、以下、図6を用いて説明
する。
[Embodiment 4] In this embodiment, an example in which a material different from that of Embodiment 3 is used for the fourth magnetic layer and an intermediate layer 15 is provided between the magnetic layers as in Embodiment 3 will be described. The structure of the multi-layered magneto-optical recording medium capable of multi-valued recording according to the present embodiment is the same as that of the third embodiment, and will be described below with reference to FIG.

【0042】本実施例にかかわる多層膜光磁気記録媒体
の各磁性層および中間層の組成と膜厚とキュリー温度の
1例を表4に示す。
Table 4 shows an example of the composition, film thickness and Curie temperature of each magnetic layer and the intermediate layer of the multilayered magneto-optical recording medium according to this example.

【0043】[0043]

【表4】 [Table 4]

【0044】本実施例にかかわる第4磁性層には磁気特
性が0<θ<1である表4に示すTb12Co88を用い
た。同表には示さなかったが第4磁性層にはTbFeC
oを用いることもでき、同等の効果を有している。磁気
特性が0<θ<1であるTbCoおよびTbFeCo
は、室温から記録動作温度まで大きな磁気異方性を有し
ているため、微細な磁区状態をうることができるととも
に、これらのうちのいずれかを用いた第4磁性層は第2
磁性層からの交換力による磁化反転を生じない。ここ
に、第1磁性層11と交換結合しており、かつ垂直磁気
異方性を有する再生層16が再生信号を増大するために
設けられている。また第1磁性層11と第2磁性層12
のあいだにこれら磁性層間の交換結合力を制御するため
に中間層15が設けられている。再生層と中間層は記録
・再生特性および安定性向上などの性能向上のために付
加したもので基本的には第1磁性層〜第4磁性層の4つ
の磁性層により本発明の基本特性はえられる。本実施例
の記録動作メカニズムは実施例3のばあいと同様であ
る。このほかに第4磁性層に直接または絶縁体などを介
して熱良導体層を付加するばあいもある。かかるばあい
の構成や作用については実施例2のばあいと同じであ
る。
Tb 12 Co 88 shown in Table 4 having a magnetic characteristic of 0 <θ <1 was used for the fourth magnetic layer according to this example. Although not shown in the table, TbFeC was formed in the fourth magnetic layer.
It is also possible to use o and it has the same effect. TbCo and TbFeCo whose magnetic properties are 0 <θ <1
Has a large magnetic anisotropy from room temperature to the recording operating temperature, it is possible to obtain a fine magnetic domain state, and the fourth magnetic layer using any of these has a second magnetic layer.
The magnetization reversal due to the exchange force from the magnetic layer does not occur. Here, a reproducing layer 16 exchange-coupled with the first magnetic layer 11 and having perpendicular magnetic anisotropy is provided to increase a reproduced signal. In addition, the first magnetic layer 11 and the second magnetic layer 12
In between, an intermediate layer 15 is provided to control the exchange coupling force between these magnetic layers. The reproducing layer and the intermediate layer are added for improving performance such as recording / reproducing characteristics and stability. Basically, the four magnetic layers of the first magnetic layer to the fourth magnetic layer form the basic characteristics of the present invention. available. The recording operation mechanism of this embodiment is similar to that of the third embodiment. In addition to this, there is a case where a good thermal conductor layer is added to the fourth magnetic layer directly or through an insulator. The structure and operation in this case are the same as those in the second embodiment.

【0045】本発明において最も実用上好ましい実施の
形態について説明する。
The most practically preferred embodiment of the present invention will be described.

【0046】まず、第1から第4までの4層の磁性膜か
らなる多層膜光磁気記録媒体を溝付基板上にスパッタ法
により成膜した。これら4層の磁性膜のほかに基板と再
生層とのあいだおよび第4磁性層上に窒化シリコン膜を
それぞれ700Åと1000Åの膜厚によって成膜し
た。各磁性層の組成、膜厚およびキュリー温度を表4に
示す。第4磁性層には大きな垂直磁気異方性を有するT
bCo膜で角形比0.1程度の磁気特性の組成を用いた
ことにより常に第4磁性層は1000Å以下の磁区サイ
ズの多磁区となり、線速度LV=9m/sec、周波数
f=1MHz、記録磁界(±250Oe程度)および記
録レーザ強度(PH/PL=10mW/4mW)の2値
変調により3値記録がえられた。これらの効果により本
発明の多値記録が可能な多層膜光磁気記録媒体は、従来
必要であった中間値記録状態の形成工程を不要にし、生
産性を向上させた。
First, a multi-layered magneto-optical recording medium consisting of four layers of magnetic films, first to fourth, was formed on a grooved substrate by a sputtering method. In addition to these four layers of magnetic film, a silicon nitride film was formed between the substrate and the reproducing layer and on the fourth magnetic layer to a film thickness of 700Å and 1000Å, respectively. Table 4 shows the composition, film thickness and Curie temperature of each magnetic layer. T having a large perpendicular magnetic anisotropy in the fourth magnetic layer
By using a composition of magnetic characteristics with a squareness ratio of about 0.1 in the bCo film, the fourth magnetic layer is always multi-domain with a domain size of 1000 Å or less, linear velocity LV = 9 m / sec, frequency f = 1 MHz, recording magnetic field. Ternary recording was obtained by binary modulation of (± 250 Oe) and recording laser intensity (PH / PL = 10 mW / 4 mW). Due to these effects, the multi-layered magneto-optical recording medium of the present invention capable of multi-valued recording eliminates the step of forming the intermediate value recording state, which has been conventionally required, and improves the productivity.

【0047】[0047]

【発明の効果】中間値記録層に角形比θが室温におい
て、0<θ<1となる磁気特性を示し、かつ記録再生に
用いる光スポット径の大きさが複数個の磁区状態を含む
大きさとなる組成の材料を用いることで、記録時の光強
度を変調し中間値記録状態がそのまま転写された状態
「0」と、外部記録磁界の方向により決定される磁化状
態「+1」および「−1」の3値の記録が行われる。
EFFECTS OF THE INVENTION The median value recording layer exhibits a magnetic characteristic that the squareness ratio θ is 0 <θ <1 at room temperature, and the size of the light spot diameter used for recording / reproducing is a size including a plurality of magnetic domain states. By using a material having the following composition, the light intensity at the time of recording is modulated and the intermediate value recording state is directly transferred to "0", and the magnetization states "+1" and "-1" determined by the direction of the external recording magnetic field. Is recorded.

【0048】本発明の多層膜光磁気記録媒体は基板上に
垂直磁気異方性を有する第1磁性層から第3磁性層まで
の3層が積層され、それぞれ隣接する層は互いに交換結
合されている多層膜光磁気記録媒体であって、(a)第
1磁性層のキュリー温度をTc1、第2磁性層のキュリ
ー温度をTc2および第3磁性層のキュリー温度をTc
3と表わすとき、キュリー温度Tc1、Tc2およびT
c3の関係が Tc1<Tc2、かつ、Tc3<Tc2 であり、(b)第3磁性層の角形比θが室温において、
0<θ<1となる磁気特性を示し、かつ、記録再生に用
いる光スポット径の大きさが複数個の磁区を含む大きさ
としたことにより従来必要であった中間値記録状態の形
成工程を不要とするという効果を奏する。
In the multilayer magneto-optical recording medium of the present invention, three layers, that is, a first magnetic layer to a third magnetic layer having perpendicular magnetic anisotropy are laminated on a substrate, and adjacent layers are exchange-coupled with each other. (A) the Curie temperature of the first magnetic layer is Tc1, the Curie temperature of the second magnetic layer is Tc2, and the Curie temperature of the third magnetic layer is Tc.
When expressed as 3, the Curie temperatures Tc1, Tc2 and T
The relationship of c3 is Tc1 <Tc2 and Tc3 <Tc2, and (b) the squareness ratio θ of the third magnetic layer is at room temperature,
Since the magnetic property of 0 <θ <1 is exhibited and the size of the light spot diameter used for recording / reproducing is a size including a plurality of magnetic domains, the step of forming the intermediate value recording state which is conventionally required is unnecessary. Has the effect of

【0049】また前記第3磁性層は希土類−遷移金属合
金からなることから室温で大きな垂直磁気異方性を有し
ているため、微細な磁区状態となるとともに、第2磁性
層からの交換力による磁化反転が生じないという効果を
奏する。
Further, since the third magnetic layer is made of a rare earth-transition metal alloy and has a large perpendicular magnetic anisotropy at room temperature, it becomes a fine magnetic domain state and the exchange force from the second magnetic layer. This has the effect that the magnetization reversal due to the magnetic field does not occur.

【0050】また、前記希土類−遷移金属合金の希土類
金属としてTb、遷移金属としてFeおよびFeCoの
いずれか一方からなり、磁気特性が0<θ<1であるこ
とから室温で大きな垂直磁気異方性を有しているため、
微細な磁区状態となるとともに、第2磁性層からの交換
力による磁化反転が生じないという効果を奏する。
Further, the rare earth-transition metal alloy is composed of Tb as a rare earth metal and one of Fe and FeCo as a transition metal, and has a magnetic characteristic of 0 <θ <1, so that a large perpendicular magnetic anisotropy is obtained at room temperature. Because it has
The magnetic domain is in a fine magnetic domain state, and the magnetization reversal due to the exchange force from the second magnetic layer does not occur.

【0051】また前記第3磁性層のキュリー温度Tc3
が200℃以下であるため、ハイパワープロセスにおい
てはキュリー温度以上となり、第2磁性層の外部磁界に
よる磁化反転に影響しないという効果を奏する。
The Curie temperature Tc3 of the third magnetic layer
Is 200 ° C. or less, the Curie temperature is exceeded in the high power process, and there is an effect that it does not affect the magnetization reversal of the second magnetic layer due to the external magnetic field.

【0052】本発明の記録方法は本発明にかかわる多層
膜光磁気記録媒体を用い、(c)記録レーザ光の低パワ
ー照射では外部磁界の向きに関係無く前記第3磁性層の
多磁区磁化状態が前記第1磁性層まで転写されて多磁区
中間値記録状態となり、(d)高パワー照射では前記第
1から第3の各磁性層が外部磁界の方向により決定され
る磁化状態となることにより光強度変調と外部記録磁界
の方向により磁化状態「+1」と「−1」と中間値記録
状態「0」の3値記録が可能となるという効果を奏す
る。
The recording method of the present invention uses the multi-layered magneto-optical recording medium of the present invention, and (c) multi-domain magnetization state of the third magnetic layer under low power irradiation of the recording laser light regardless of the direction of the external magnetic field. Is transferred to the first magnetic layer to be in a multi-domain intermediate value recording state, and (d) in high power irradiation, each of the first to third magnetic layers is in a magnetization state determined by the direction of the external magnetic field. There is an effect that three-value recording of the magnetization states “+1” and “−1” and the intermediate value recording state “0” can be performed by the light intensity modulation and the direction of the external recording magnetic field.

【0053】本発明の多層膜光磁気記録媒体は基板上に
垂直磁気異方性を有する第1磁性層から第4磁性層まで
の4層が積層され、それぞれ隣接する層は互いに交換結
合されている多層膜光磁気記録媒体であって、(e)前
記第1磁性層の保磁力が第2磁性層から受ける交換結合
力よりも大きく、(f)第1磁性層のキュリー温度をT
c1、第2磁性層のキュリー温度をTc2、および第3
磁性層のキュリー温度をTc3を表わすとき、キュリー
温度Tc1、Tc2およびTc3の関係が Tc1<Tc2、かつ、Tc3<Tc2 であり、(g)前記第2磁性層、前記第3磁性層および
前記第4磁性層の副格子磁化方向が揃っており、ならび
に(h)第4磁性層の角形比が室温において、0<θ<
1となる磁気特性を示し、記録再生に用いる光スポット
径の大きさが複数個の磁区を含む大きさとしたことによ
り従来必要であった中間値記録状態の形成工程を不要と
するという効果を奏する。
In the multilayer magneto-optical recording medium of the present invention, four layers from a first magnetic layer having a perpendicular magnetic anisotropy to a fourth magnetic layer are laminated on a substrate, and adjacent layers are exchange-coupled with each other. (E) the coercive force of the first magnetic layer is larger than the exchange coupling force received from the second magnetic layer, and (f) the Curie temperature of the first magnetic layer is T.
c1, the Curie temperature of the second magnetic layer is Tc2, and the third
When the Curie temperature of the magnetic layer is represented by Tc3, the Curie temperatures Tc1, Tc2 and Tc3 have a relationship of Tc1 <Tc2 and Tc3 <Tc2, and (g) the second magnetic layer, the third magnetic layer and the third magnetic layer. The sublattice magnetization directions of the four magnetic layers are aligned, and (h) the squareness ratio of the fourth magnetic layer is 0 <θ <at room temperature.
The magnetic property of 1 is obtained, and the size of the light spot diameter used for recording / reproducing includes a plurality of magnetic domains, so that there is an effect that the step of forming the intermediate value recording state, which is conventionally required, is unnecessary. .

【0054】また前記第4磁性層のキュリー温度Tc4
が前記第2磁性層のキュリー温度Tc2よりも高いので
第2磁性層からの交換力による磁化反転が生じないとい
う効果を奏する。
The Curie temperature Tc4 of the fourth magnetic layer
Is higher than the Curie temperature Tc2 of the second magnetic layer, there is an effect that the magnetization reversal due to the exchange force from the second magnetic layer does not occur.

【0055】また前記第4磁性層として磁気特性が0<
θ<1で、CoCrからなるので室温から記録動作温度
まで大きな垂直磁気異方性を有するため微細な磁区状態
となるとともに、第3磁性層からの交換力による磁化反
転が生じないという効果を奏する。
The magnetic characteristic of the fourth magnetic layer is 0 <
When θ <1, since it is made of CoCr and has a large perpendicular magnetic anisotropy from room temperature to the recording operation temperature, it is in a fine magnetic domain state, and there is an effect that magnetization reversal due to exchange force from the third magnetic layer does not occur. .

【0056】また前記第4磁性層として磁気特性が0<
θ<1で、TbCoおよびTbFeCoのいずれか一方
からなるので室温から記録動作温度まで大きな垂直磁気
異方性を有するため微細な磁区状態となるとともに、第
3磁性層からの交換力による磁化反転が生じないという
効果を奏する。
The magnetic characteristic of the fourth magnetic layer is 0 <
When θ <1, since it consists of either TbCo or TbFeCo and has a large perpendicular magnetic anisotropy from room temperature to the recording operating temperature, it becomes a fine magnetic domain state, and the magnetization reversal due to the exchange force from the third magnetic layer is caused. The effect that it does not occur is produced.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施例1にかかわる多値記録可能な
多層膜光磁気記録媒体の構成を示す断面説明図である。
FIG. 1 is a cross-sectional explanatory view showing a configuration of a multi-layered magneto-optical recording medium capable of multilevel recording according to Example 1 of the present invention.

【図2】 実施例1の記録メカニズムを説明するための
説明図である。
FIG. 2 is an explanatory diagram illustrating a recording mechanism according to the first embodiment.

【図3】 実施例1の多値(3値)情報の記録・再生方
法を説明するための説明図である。
FIG. 3 is an explanatory diagram for explaining a method of recording / reproducing multi-valued (three-valued) information according to the first embodiment.

【図4】 本発明の多層膜光磁気記録媒体の磁気特性を
測定したカーヒステリシスループを示すグラフである。
FIG. 4 is a graph showing a Kerr hysteresis loop obtained by measuring the magnetic characteristics of the multilayered magneto-optical recording medium of the present invention.

【図5】 本発明の実施例2にかかわる多値記録が可能
な多層膜光磁気記録媒体の構成を示す断面説明図であ
る。
FIG. 5 is a cross-sectional explanatory view showing a configuration of a multi-layered magneto-optical recording medium capable of multilevel recording according to Example 2 of the present invention.

【図6】 本発明の実施例3にかかわる多値記録が可能
な多層膜光磁気記録媒体の構成を示す断面説明図であ
る。
FIG. 6 is a cross-sectional explanatory view showing the structure of a multi-layered magneto-optical recording medium capable of multilevel recording according to Example 3 of the present invention.

【図7】 従来の多値記録が可能な多層膜光磁気記録媒
体の構成を示す断面説明図である。
FIG. 7 is an explanatory sectional view showing the structure of a conventional multi-layered magneto-optical recording medium capable of multilevel recording.

【図8】 従来例の記録メカニズムを説明するための説
明図である。
FIG. 8 is an explanatory diagram for explaining a recording mechanism of a conventional example.

【符号の説明】[Explanation of symbols]

10 基板、11 第1磁性層、12 第2磁性層、1
3 第3磁性層、14 第4磁性層、15 中間層、1
6 再生層、17 外部磁界発生装置、18 本発明の
多層膜光磁気記録媒体、20 基板、21 第1磁性
層、22 第2磁性層、 23 第3磁性層、24 第
4磁性層、26 磁界変調ヘッド、27 従来例の多層
膜光磁気記録媒体、31 記録トラック、32 光スポ
ット。
10 substrate, 11 first magnetic layer, 12 second magnetic layer, 1
3 3rd magnetic layer, 14 4th magnetic layer, 15 intermediate layer, 1
6 reproducing layer, 17 external magnetic field generator, 18 multilayered magneto-optical recording medium of the present invention, 20 substrate, 21 first magnetic layer, 22 second magnetic layer, 23 third magnetic layer, 24 fourth magnetic layer, 26 magnetic field Modulation head, 27 conventional multilayered magneto-optical recording medium, 31 recording tracks, 32 light spots.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 基板上に垂直磁気異方性を有する第1、
第2および第3の磁性層の3層が積層され、それぞれ隣
接する層は互いに交換結合されている多層膜光磁気記録
媒体であって、(a)第1磁性層のキュリー温度をTc
1、第2磁性層のキュリー温度をTc2および第3磁性
層のキュリー温度をTc3と表わすとき、キュリー温度
Tc1、Tc2およびTc3の関係が Tc1<Tc2、かつ、Tc3<Tc2 であり、(b)残留磁化と飽和磁化との比を角形比θと
表わすとき、前記第3磁性層の角形比が室温において、
0<θ<1となる磁気特性を示し、かつ、記録再生に用
いる光スポット径の大きさが複数個の磁区を含む大きさ
であることを特徴とする多層膜光磁気記録媒体。
1. A first having perpendicular magnetic anisotropy on a substrate,
A multilayer magneto-optical recording medium in which three layers of a second magnetic layer and a third magnetic layer are laminated, and adjacent layers are exchange-coupled to each other, and (a) the Curie temperature of the first magnetic layer is Tc.
1. When the Curie temperature of the second magnetic layer is Tc2 and the Curie temperature of the third magnetic layer is Tc3, the Curie temperatures Tc1, Tc2 and Tc3 are Tc1 <Tc2 and Tc3 <Tc2, and (b) When the ratio of the residual magnetization to the saturation magnetization is represented by a squareness ratio θ, the squareness ratio of the third magnetic layer is
A multi-layered magneto-optical recording medium exhibiting a magnetic characteristic of 0 <θ <1 and having a size of a light spot diameter used for recording / reproducing that includes a plurality of magnetic domains.
【請求項2】 前記第3磁性層は希土類−遷移金属合金
からなる請求項1記載の多層膜光磁気記録媒体。
2. The multilayer magneto-optical recording medium according to claim 1, wherein the third magnetic layer is made of a rare earth-transition metal alloy.
【請求項3】 前記希土類−遷移金属合金の希土類金属
としてTb、遷移金属としてFeおよびFeCoのいず
れか一方からなり、磁気特性が0<θ<1である請求項
2記載の多層膜光磁気記録媒体。
3. The multilayer magneto-optical recording according to claim 2, wherein the rare earth-transition metal alloy comprises Tb as a rare earth metal and one of Fe and FeCo as a transition metal, and has magnetic characteristics of 0 <θ <1. Medium.
【請求項4】 前記第3磁性層のキュリー温度Tc3が
200℃以下である請求項1記載の多層膜光磁気記録媒
体。
4. The multilayer magneto-optical recording medium according to claim 1, wherein the Curie temperature Tc3 of the third magnetic layer is 200 ° C. or lower.
【請求項5】 請求項1、2、3または4記載の多層膜
光磁気記録媒体を用い、(c)記録レーザ光の低パワー
照射では外部磁界の向きに関係無く前記第3磁性層の多
磁区磁化状態が前記第1磁性層まで転写されて多磁区中
間値記録状態となり、(d)高パワー照射では前記第
1、第2および第3の各磁性層が外部磁界の方向により
決定される磁化状態となることにより少なくとも3値の
記録を可能とする多層膜光磁気記録方法。
5. The multilayered magneto-optical recording medium according to claim 1, 2, 3 or 4, wherein (c) the recording laser beam is irradiated with a low power, the multi-layered multi-layered magnetic layer is formed regardless of the direction of the external magnetic field. The magnetic domain magnetized state is transferred to the first magnetic layer to form a multi-domain intermediate value recording state, and in (d) high power irradiation, each of the first, second and third magnetic layers is determined by the direction of the external magnetic field. A multilayer magneto-optical recording method capable of recording at least ternary value by being in a magnetized state.
【請求項6】 基板上に垂直磁気異方性を有する第1、
第2、第3および第4の磁性層の4層が積層され、それ
ぞれ隣接する層は互いに交換結合されている多層膜光磁
気記録媒体であって、(e)前記第1磁性層の保磁力が
第2磁性層から受ける交換結合力よりも大きく、(f)
第1磁性層のキュリー温度をTc1、第2磁性層のキュ
リー温度をTc2、および第3磁性層のキュリー温度を
Tc3を表わすとき、キュリー温度Tc1、Tc2およ
びTc3の関係が Tc1<Tc2、かつ、Tc3<Tc2 であり、(g)前記第2磁性層、前記第3磁性層および
前記第4磁性層の副格子磁化方向が揃っており、ならび
に(h)残留磁化と飽和磁化との比を角形比θと表わす
とき、第4磁性層の角形比が室温において、0<θ<1
となる磁気特性を示し、記録再生に用いる光スポット径
の大きさが複数個の磁区を含む大きさであることを特徴
とする多層膜光磁気記録媒体。
6. A first having perpendicular magnetic anisotropy on a substrate,
A multilayer magneto-optical recording medium in which four layers of a second magnetic layer, a third magnetic layer and a fourth magnetic layer are laminated, and adjacent layers are exchange-coupled to each other, and (e) a coercive force of the first magnetic layer. Is larger than the exchange coupling force received from the second magnetic layer, (f)
When the Curie temperature of the first magnetic layer is Tc1, the Curie temperature of the second magnetic layer is Tc2, and the Curie temperature of the third magnetic layer is Tc3, the relationship between Curie temperatures Tc1, Tc2, and Tc3 is Tc1 <Tc2, and Tc3 <Tc2, (g) the sublattice magnetization directions of the second magnetic layer, the third magnetic layer, and the fourth magnetic layer are aligned, and (h) the ratio between the residual magnetization and the saturation magnetization is square. When expressed as a ratio θ, the squareness ratio of the fourth magnetic layer is 0 <θ <1 at room temperature.
A multi-layered magneto-optical recording medium having the following magnetic characteristics, wherein the size of the light spot diameter used for recording / reproducing is a size including a plurality of magnetic domains.
【請求項7】 前記第4磁性層のキュリー温度Tc4が
前記第2磁性層のキュリー温度Tc2よりも高い請求項
6記載の多層膜光磁気記録媒体。
7. The multilayer magneto-optical recording medium according to claim 6, wherein the Curie temperature Tc4 of the fourth magnetic layer is higher than the Curie temperature Tc2 of the second magnetic layer.
【請求項8】 前記第4磁性層として磁気特性が0<θ
<1で、CoCrからなる請求項7記載の多層膜光磁気
記録媒体。
8. The magnetic characteristic of the fourth magnetic layer is 0 <θ.
The multilayer magneto-optical recording medium according to claim 7, wherein <1 and CoCr is used.
【請求項9】 前記第4磁性層として磁気特性が0<θ
<1で、TbCoおよびTbFeCoのいずれか一方か
らなる請求項7記載の多層膜光磁気記録媒体。
9. The magnetic characteristic of the fourth magnetic layer is 0 <θ.
8. The multilayer magneto-optical recording medium according to claim 7, wherein <1 and it is made of one of TbCo and TbFeCo.
JP1240996A 1996-01-29 1996-01-29 Multilayer magnetooptic recording medium capable of multilevel recording Pending JPH09204699A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1240996A JPH09204699A (en) 1996-01-29 1996-01-29 Multilayer magnetooptic recording medium capable of multilevel recording

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1240996A JPH09204699A (en) 1996-01-29 1996-01-29 Multilayer magnetooptic recording medium capable of multilevel recording

Publications (1)

Publication Number Publication Date
JPH09204699A true JPH09204699A (en) 1997-08-05

Family

ID=11804470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1240996A Pending JPH09204699A (en) 1996-01-29 1996-01-29 Multilayer magnetooptic recording medium capable of multilevel recording

Country Status (1)

Country Link
JP (1) JPH09204699A (en)

Similar Documents

Publication Publication Date Title
US5168482A (en) Magnetooptical recording and playback method employing multi-layer recording medium with record holding layer and playback layer
JP2910250B2 (en) Magneto-optical recording medium
JP2805746B2 (en) Signal reproducing method for magneto-optical recording medium
JPH09147436A (en) Magneto-optical recording medium and its reproducing method
CA2060548C (en) Magneto-optical recording medium
JP4080538B2 (en) Method and apparatus for reproducing magneto-optical recording medium
JP3038853B2 (en) Overwritable magneto-optical recording medium with high-level margin expanded
AU659976B2 (en) Magnetooptical recording medium and recording/reproduction method for medium
JP3519293B2 (en) Magneto-optical recording medium, reproducing method of magneto-optical recording medium, magneto-optical recording and reproducing apparatus
JP2762445B2 (en) Signal reproducing method for magneto-optical recording medium
JP3434242B2 (en) Magneto-optical recording medium and reproducing method thereof
KR100201450B1 (en) Magneto-optical recording medium
KR950003184B1 (en) Magneto-optical recording medium
JPH09204699A (en) Multilayer magnetooptic recording medium capable of multilevel recording
JPH03242845A (en) Magneto-optical recording method
JP2001222843A (en) Magneto-optical recording medium
JP3666057B2 (en) Magneto-optical recording / reproducing method and magneto-optical recording medium used therefor
JP3792366B2 (en) Magneto-optical recording medium
JP3075048B2 (en) Magneto-optical recording medium and reproducing method thereof
JPH08212607A (en) Magneto-optical recording medium
JP2002170292A (en) Magneto-optical recording medium and its reproducing method
JP2805145B2 (en) Method of reproducing signal from optical recording medium
JPH04313833A (en) Magneto-optical recording medium and magneto-optical recording and reproducing method using this medium
JP3559206B2 (en) Magneto-optical recording medium
JP2001014746A (en) Magneto-optical recording medium