JPH09204109A - Wet image forming device - Google Patents

Wet image forming device

Info

Publication number
JPH09204109A
JPH09204109A JP1095296A JP1095296A JPH09204109A JP H09204109 A JPH09204109 A JP H09204109A JP 1095296 A JP1095296 A JP 1095296A JP 1095296 A JP1095296 A JP 1095296A JP H09204109 A JPH09204109 A JP H09204109A
Authority
JP
Japan
Prior art keywords
discharge
image forming
electric field
film
forming apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1095296A
Other languages
Japanese (ja)
Inventor
Seiichi Miyagawa
誠一 宮川
Toshio Inada
俊生 稲田
Sadayuki Iwai
貞之 岩井
Itsuo Ikeda
五男 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP1095296A priority Critical patent/JPH09204109A/en
Publication of JPH09204109A publication Critical patent/JPH09204109A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)
  • Wet Developing In Electrophotography (AREA)

Abstract

PROBLEM TO BE SOLVED: To perform uniform and stable discharge with a small current without causing rapid increase of an electric current between a photoreceptor and an electric field roller, to improve operability by relaxing the gap control between the photoreceptor and the roller, to improve the durability of a discharging surface and to prolong the service life. SOLUTION: An electric field roller 6 facing adjacently a photoreceptor drum 4 consists of a conductive core and a plasma thermal spray film 2 formed on the surface of the core. The plasma thermal spray film 12 consists of, for example, two components of plasma thermal spraying material such as titanium oxide (TiO2 ) and alumina (Al2 O3 ) whose component ratio is reqrlated. By increasing the film thickness of the plasma thermal spray film 12, the thermal spay film 12 has an enough resistance as a resistor during discharge so as to suppress the increase of electric current by this resistance. On the other hand, the increase of insulating property caused by that the film made thick in thickness can be suppressed by incorporating titanium oxide (TiO2 ).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、液体トナーを現像
剤とする静電気プリンター等の湿式の画像形成装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wet type image forming apparatus such as an electrostatic printer using liquid toner as a developer.

【0002】[0002]

【従来の技術】液体トナーを現像剤とする湿式画像形成
装置では、液体トナー画像を潰さずに転写するために、
トナー像担持体(感光体)との間に微小間隙を設けて電
界ローラを設置し、その微小間隙に放電電流を流してシ
ャープな画像を得る提案がなされている。放電電流が流
れることによって感光体表面とトナー粒子との間及びト
ナー粒子同士間の結びつき(凝集力)が強くなり、その
結果、画像潰れが回避できる、というものである。
2. Description of the Related Art In a wet image forming apparatus using a liquid toner as a developer, in order to transfer a liquid toner image without crushing it,
It has been proposed that a minute gap is provided between the toner image carrier (photoreceptor) and an electric field roller is provided, and a discharge current is passed through the minute gap to obtain a sharp image. The flow of the discharge current strengthens the bond (cohesive force) between the surface of the photoconductor and the toner particles and between the toner particles, and as a result, image crushing can be avoided.

【0003】放電電流が大き過ぎると転写条件が不利
(高い転写電圧が必要)になり、少な過ぎると局部的な
潰れトナー画像を生じることから(理由は、グロー状放
電光に局部的な暗部が見えることから局部的に放電しな
い部分が存在するためと考えられる)、シャープな画像
を得るには、微小間隙部に小電流で安定した均一なグロ
ー状の放電を生じさせる必要がある。究極的には、必要
最小限の電流により画像部のみで放電させ、地肌部では
放電させない放電形態が理想である。周知の通り、微小
間隙での安定放電を得る技術は、従来の画像形成装置に
おける除・帯電プロセスにおいて確立されており、放電
電極を抵抗体で構成する方式が多数提案(特開昭62-296
174,特開平2-256077, 特開平5-107866等)されている
が、これらの目的は全て被帯電体(感光体)を所定値の
電位に均一に帯電させることであり、且つ、そのプロセ
ス特性上大きな電流が必要であることから、湿式画像形
成装置におけるシャープ画像を得るための安定放電技術
として応用することは困難である。
If the discharge current is too large, the transfer conditions will be disadvantageous (high transfer voltage is required), and if it is too small, a locally crushed toner image will be formed (the reason is that the glow-like discharge light causes a local dark portion to occur). It is considered that there is a portion that does not discharge locally because it is visible). Therefore, in order to obtain a sharp image, it is necessary to generate a stable and uniform glow-like discharge with a small current in the minute gap. Ultimately, an ideal discharge mode is one in which the image is discharged only in the image area and not in the background area with the minimum necessary current. As is well known, a technique for obtaining a stable discharge in a minute gap has been established in a decharging / charging process in a conventional image forming apparatus, and a number of methods in which a discharge electrode is composed of a resistor are proposed (Japanese Patent Laid-Open No. 62-296
174, JP-A-2-256077, JP-A-5-107866, etc., but all of these purposes are to uniformly charge an object to be charged (photoreceptor) to a predetermined potential, and Since a large current is required in terms of characteristics, it is difficult to apply it as a stable discharge technique for obtaining a sharp image in a wet image forming apparatus.

【0004】このような状況に鑑み、従来の湿式画像形
成装置では、例えば抵抗体としてのハードアルマイト被
膜を有する電界ローラを用い、保護抵抗を介して電圧を
印加する構成となっている。
In view of such a situation, the conventional wet image forming apparatus is constructed such that an electric field roller having a hard alumite film as a resistor is used and a voltage is applied through a protective resistor.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上述の
ような従来技術では、数MΩ以上の保護抵抗を介して電
圧印加しなければ間隙距離を大きくすることができず、
また、間隙距離を少しでも傾けると(非平行)、片側が
暗部となって放電ムラを生じるため、製造精度の自由度
が狭いとともに、組立に高度な熟練技術を要するという
問題があった。また、間隙の電界が大きくなった場合、
放電電流が急激に大きくなるという問題もあった。
However, in the prior art as described above, the gap distance cannot be increased unless a voltage is applied via a protective resistance of several MΩ or more,
Further, if the gap distance is inclined even slightly (non-parallel), one side becomes a dark part and discharge unevenness occurs, so that there is a problem that the degree of freedom in manufacturing accuracy is narrow and a high skill is required for assembly. Also, when the electric field in the gap becomes large,
There was also a problem that the discharge current suddenly increased.

【0006】本発明は、間隙管理を緩和できて取扱いが
容易であるとともに、小電流で安定した均一なグロー状
放電を維持でき、間隙の電界が大きくなっても放電電流
の急激な増加を招来せず、また耐久性・長寿命化に優れ
た放電面を有する湿式画像形成装置の提供を、その目的
とする。
According to the present invention, the control of the gap can be eased and the handling is easy, and the stable and uniform glow discharge can be maintained with a small current, and the discharge current sharply increases even if the electric field in the gap becomes large. It is an object of the present invention to provide a wet-type image forming apparatus that has a discharge surface that is excellent in durability and longevity.

【0007】[0007]

【課題を解決するための手段】本発明者らは、従来技術
の問題点が生じる原因を追求して解決のための糸口を見
つけるべく、ハードアルマイト被膜を有する電界ローラ
を用いた場合の放電電圧・電流特性の実験を行った。な
お、電界ローラを感光体に対面させて放電させる実機搭
載の代わりに、図6に示すように、ステンレス金属20
を電極面にして電界ローラ22に対面させた、放電電圧
d と電流Id を計測する回路を使用した。ハードアル
マイト被膜を有する電界ローラの特性(厳密にはハード
アルマイト被膜の保護抵抗を介在させた放電電圧・電流
特性)を、間隙をパラメータにして計測し、その結果を
図7,8に示した。放電間隙によって電流の流れ始める
(放電開始)電圧が異なるが、電圧の増加とともにほぼ
直線になる。この時、間隙の均一グロー状放電光を確認
して計測を行った。なお、放電電流は高調波を多く含む
場合もあるため、直流電流計測に使う平均値電流で表示
している。従って電流を検知して記録をとる場合、検出
抵抗に並列に略1μFのコンデンサを接続している。こ
のため、アナログ平均値電流計と記録データは同一値を
示した。
DISCLOSURE OF THE INVENTION In order to find a clue for solving the problems of the prior art, the inventors of the present invention have tried to find a clue for solving the problems, and a discharge voltage when an electric field roller having a hard alumite coating is used.・ The experiment of current characteristics was conducted. As shown in FIG. 6, the stainless metal 20 is used instead of being mounted on an actual device in which the electric field roller is opposed to the photoconductor and discharged.
A circuit for measuring the discharge voltage V d and the current I d, which is used as the electrode surface and faces the electric field roller 22, is used. The characteristics of the electric field roller having a hard alumite coating (strictly speaking, the discharge voltage / current characteristics with the protective resistance of the hard alumite coating interposed) were measured using the gap as a parameter, and the results are shown in FIGS. Although the voltage at which the current starts to flow (discharge start) differs depending on the discharge gap, it becomes almost linear as the voltage increases. At this time, the uniform glow discharge light in the gap was confirmed and measured. Since the discharge current may contain many harmonics, the average value current used for measuring the direct current is displayed. Therefore, when recording is performed by detecting the current, a capacitor of approximately 1 μF is connected in parallel with the detection resistor. Therefore, the analog average value ammeter and the recorded data showed the same value.

【0008】12MΩと100MΩの保護抵抗Rをそれ
ぞれ介して電圧を印加した図7,8のグラフから、直線
のそれぞれの増分ΔVd ,ΔId の比(ΔVd /ΔId
=Ri,増分抵抗と呼ぶ)は勾配を示しており、この勾
配が保護抵抗Rと同一値であることを発見した。なお、
増分抵抗値Ri のサンプリング位置は、図7が間隙=7
5μmでの20μA部位、図8が間隙=75μmでの5
μA部位である。この事実から、放電時は間隙やハード
アルマイト被膜の抵抗値が導体のように振る舞っている
と考えられる。放電開始電圧までは間隙は絶縁体として
振る舞い、それ以上の印加電圧では、電圧の増加分がツ
ェナー素子のようにキャリアの搬送に費やされる。ここ
で使用したハードアルマイト被膜の膜厚は34μmで、
導電接着剤を用いて被膜の抵抗を計った結果は、図9の
グラフに示す通りでる。グラフから明らかなように、抵
抗値は極性に依存し、また印加電圧にも依存している。
このように、ハードアルマイトの体積抵抗値は約1010
Ω−cm以上という高い抵抗値にも拘わらず、放電時は
導体のようになる理由は不明であるが、該現象により、
従来から特許公報等に記載されている被膜材料の体積固
有抵抗値では放電特性を規制することはできないと考え
られていた。このため、保護抵抗を介在させているので
ある。なお、ハードアルマイト被膜の膜厚を大きくして
保護抵抗を無くす構成にしても、被膜の抵抗値は増える
が、除・帯電プロセスに使用できると同様の大電流で安
定放電しているが、微小電流では不安定(特に高湿度環
境において)になる。
From the graphs of FIGS. 7 and 8 in which the voltage is applied through the protective resistors R of 12 MΩ and 100 MΩ, respectively, the ratio (ΔV d / ΔI d of the increments ΔV d and ΔI d of the straight line is obtained.
= R i , referred to as incremental resistance) indicates a slope, and this slope has the same value as the protection resistance R. In addition,
The sampling position of the incremental resistance value R i is as shown in FIG.
20μA site at 5μm, Figure 8 shows 5 at gap = 75μm
μA site. From this fact, it is considered that the gap and the resistance value of the hard anodized film behave like a conductor during discharge. The gap behaves as an insulator up to the discharge start voltage, and when the applied voltage is higher than that, the increase in the voltage is consumed for carrier transport like a Zener element. The thickness of the hard alumite coating used here is 34 μm,
The results of measuring the resistance of the coating with the conductive adhesive are shown in the graph of FIG. As is apparent from the graph, the resistance value depends on the polarity and also on the applied voltage.
Thus, the volume resistance value of hard anodize is about 10 10.
Despite the high resistance value of Ω-cm or more, it is unknown why it becomes a conductor during discharge, but due to this phenomenon,
It has been conventionally considered that the discharge characteristic cannot be regulated by the volume resistivity value of the coating material described in patent publications and the like. Therefore, the protective resistance is interposed. Even if the hard alumite coating is made thicker to eliminate the protective resistance, the resistance of the coating increases, but stable discharge is performed with a large current similar to that used in the decharging / charging process, Unstable under current (especially in high humidity environment).

【0009】図10は、図9と同様に導電接着剤を塗布
した計測法で、酸化チタン(TiO2 )の構成比が10
%のプラズマ溶射膜による3種類の膜厚(175μm,
220μm,320μm)の各体積固有抵抗電圧依存性
を表示したグラフである。同グラフから、膜厚や印加電
圧により体積固有抵抗値が3桁も変動することが判る。
これは薄膜を扱っているので当然であろう。
FIG. 10 shows a measurement method in which a conductive adhesive is applied as in FIG. 9, and the composition ratio of titanium oxide (TiO 2 ) is 10%.
% Of three types of plasma sprayed film (175 μm,
It is the graph which displayed each volume specific resistance voltage dependence of 220micrometer, 320micrometer. From the graph, it can be seen that the volume specific resistance value changes by three digits depending on the film thickness and the applied voltage.
This is natural because we are dealing with thin films.

【0010】本発明は、上記諸実験事実を総合勘案した
上で、動作機能中、すなわち放電時に被膜の抵抗値を存
在ならしめて電流の急激増加を抑制するとともに、耐久
性の向上並びに長寿命化をも同時に図る、ということを
狙ったものである。具体的には、請求項1記載の発明で
は、放電時における被膜の抵抗値を被膜の厚肉化によっ
て存在ならしめるとともに厚肉化による絶縁化を酸化チ
タン(TiO2 )の含有によって調整し、これによって
電流の急激増加を抑制するとともに、酸化チタンを含む
プラズマ溶射膜特有の高硬度によって耐久性の向上並び
に長寿命化(小電流化によっても得られる)を図る、と
いうものである。請求項2記載の発明では、請求項1記
載の構成において、上記プラズマ溶射膜が少なくとも酸
化チタン(TiO2 )とアルミナ(Al23 )のプラ
ズマ溶射材料2成分以上を含んで各成分の構成比を調整
して形成されているとともに、放電開始点以上の放電電
流Id と印加電圧Vd における増分抵抗値Ri =ΔVd
/ΔId を200KΩ〜600KΩの範囲内で動作させ
る制御手段を備えている、という構成を採っている。
In view of the above experimental facts, the present invention suppresses a sudden increase in current by making the resistance value of the coating exist during the operation function, that is, at the time of discharging, and improves the durability and prolongs the service life. The aim is to achieve both at the same time. Specifically, in the invention according to claim 1, the resistance value of the coating at the time of discharge is made uniform by increasing the thickness of the coating, and the insulation due to the increasing thickness is adjusted by the inclusion of titanium oxide (TiO 2 ), This suppresses a sharp increase in current, and improves the durability and extends the life (which can also be obtained by reducing the current) due to the high hardness peculiar to the plasma sprayed coating containing titanium oxide. According to a second aspect of the present invention, in the configuration of the first aspect, the plasma sprayed film includes at least two plasma sprayed materials of titanium oxide (TiO 2 ) and alumina (Al 2 O 3 ) and the composition of each component. It is formed by adjusting the ratio, and the incremental resistance value R i = ΔV d at the discharge current I d above the discharge start point and the applied voltage V d .
/ A [Delta] I d and a control means for operating within a 200Keiomega~600keiomega, adopts a configuration that.

【0011】請求項3記載の発明では、請求項1記載の
構成において、電界ローラの径20mm,放電面の軸長
50mmの条件下、増分抵抗値が10MΩ以下の比較的
低抵抗のプラズマ溶射膜を有する電界ローラでは、電圧
印加する場合固定抵抗器を介して放電電流を流す、とい
う構成を採っている。請求項4記載の発明では、請求項
1記載の構成において、増分抵抗値が低抵抗の場合、少
なくとも5MΩ以上の固定抵抗器を接続して動作させ
る、という構成を採っている。請求項5記載の発明で
は、請求項1記載の構成において、上記プラズマ溶射膜
が、酸化チタン(TiO2 )とアルミナ(Al23
のプラズマ溶射材料を含むとともに酸化チタン(TiO
2 )の構成比が2%以上20%以下に設定され、プラズ
マ溶射膜の膜厚が50〜450μmに設定されている、
という構成を採っている。
According to a third aspect of the present invention, in the structure of the first aspect, the plasma sprayed film having a relatively low resistance of 10 MΩ or less is obtained under the condition that the diameter of the electric field roller is 20 mm and the axial length of the discharge surface is 50 mm. The electric field roller having the configuration adopts a configuration in which a discharge current flows through a fixed resistor when a voltage is applied. According to a fourth aspect of the invention, in the configuration of the first aspect, when the incremental resistance value is low, a fixed resistor of at least 5 MΩ or more is connected and operated. According to a fifth aspect of the invention, in the configuration of the first aspect, the plasma sprayed film is titanium oxide (TiO 2 ) and alumina (Al 2 O 3 ).
Titanium oxide (TiO 2)
2 ) the composition ratio is set to 2% or more and 20% or less, and the thickness of the plasma sprayed film is set to 50 to 450 μm,
The configuration is adopted.

【0012】[0012]

【実施例】以下、本発明の一実施例を図1乃至図4に基
づいて説明する。本実施例で示す湿式画像形成装置2に
は、図1に示すように、感光体ドラム4と、この感光体
ドラム4の表面との間に微小間隙gをおいて近接対面さ
せられた電界ローラ6と、感光体ドラム4の表面に現像
されたトナー像を転写する前に電界ローラ6に上記微小
間隙に放電を生じさせる電圧を印加するように制御され
る電源8が備えられている。なお、その他の作像要素は
省略している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to FIGS. In the wet image forming apparatus 2 shown in this embodiment, as shown in FIG. 1, an electric field roller closely facing each other with a minute gap g between the photosensitive drum 4 and the surface of the photosensitive drum 4. 6 and a power source 8 controlled so as to apply a voltage to the electric field roller 6 to generate a discharge in the minute gap before transferring the developed toner image to the surface of the photosensitive drum 4. Note that other image forming elements are omitted.

【0013】電界ローラ6は、図2に示すように、導体
材料で形成された芯部10と、この芯部10の表面に形
成されたプラズマ溶射膜12とから構成されている。な
お、図2中、芯部10の大きさに対してプラズマ溶射膜
12の膜厚は誇張表示である。プラズマ溶射膜12は、
酸化チタン(TiO2 )を含むか、あるいは酸化チタン
(TiO2 )とアルミナ(Al23 )のプラズマ溶射
材料2成分以上を含み、その構成比を調整されるもの
で、望ましくは、酸化チタン(TiO2 )の構成比が2
%以上20%以下で、膜厚が50〜450μmの範囲内
で適宜選定されるものである(請求項1,2,5)。
As shown in FIG. 2, the electric field roller 6 comprises a core portion 10 made of a conductive material and a plasma sprayed film 12 formed on the surface of the core portion 10. In FIG. 2, the thickness of the plasma sprayed film 12 is exaggerated with respect to the size of the core 10. The plasma sprayed film 12 is
It contains titanium oxide (TiO 2 ), or contains two or more components of plasma spray material of titanium oxide (TiO 2 ) and alumina (Al 2 O 3 ) and the composition ratio thereof is adjusted. Desirably, titanium oxide is used. The composition ratio of (TiO 2 ) is 2
% And 20% or less, and the film thickness is appropriately selected within the range of 50 to 450 μm (claims 1, 2 and 5).

【0014】図3及び図4は、特定の酸化チタン構成比
並びに膜厚でのプラズマ溶射膜12の放電特性を示す実
験グラフで、微小間隙gをパラメータにして計測したも
のである。また、保護抵抗Rを介さず電源8による電圧
を直接印加している。図3は、酸化チタン(TiO2
の構成比10%、膜厚175μmで、図4は、酸化チタ
ン(TiO2 )の構成比10%、膜厚220μmであ
り、両図とも膜抵抗(増分抵抗)Ri のサンプリング位
置は、微小間隙g=75μmでの10μA部位である。
図3では増分抵抗値Ri =ΔVd /ΔId =200v
10μA=20MΩとなっており、図4では増分抵抗値
i =ΔVd /ΔId =400v /10μA=40MΩ
となっている。これらの増分抵抗値Ri は、ハードアル
マイト被膜の特性図から類推して、プラズマ溶射膜12
の抵抗値と考えられる。図3の場合、すなわち膜厚が小
さい場合には増分抵抗値Ri は印加電圧が高い程小さく
なり、電圧依存性が顕著になることが判る。なお、この
実施例で使用した電界ローラ6の径は20mmで、放電
面の軸長は50mmである。
3 and 4 are experimental graphs showing the discharge characteristics of the plasma sprayed film 12 at a specific titanium oxide composition ratio and film thickness, which are measured using the minute gap g as a parameter. Further, the voltage from the power source 8 is directly applied without passing through the protection resistor R. Figure 3 shows titanium oxide (TiO 2 )
4 has a composition ratio of 10% and a film thickness of 175 μm, and FIG. 4 shows a composition ratio of titanium oxide (TiO 2 ) of 10% and a film thickness of 220 μm. In both figures, the sampling position of the film resistance (incremental resistance) R i is very small. It is a 10 μA site with a gap g = 75 μm.
In FIG. 3, the incremental resistance value R i = ΔV d / ΔI d = 200 v /
10 μA = 20 MΩ, and in FIG. 4, the incremental resistance value R i = ΔV d / ΔI d = 400 v / 10 μA = 40 MΩ
It has become. These incremental resistance values R i are estimated by analogy from the characteristic diagram of the hard anodized coating, and the plasma sprayed coating 12
It is considered to be the resistance value of. In the case of FIG. 3, that is, when the film thickness is small, it can be seen that the incremental resistance value R i becomes smaller as the applied voltage becomes higher, and the voltage dependence becomes remarkable. The electric field roller 6 used in this embodiment has a diameter of 20 mm and the discharge surface has an axial length of 50 mm.

【0015】既述の通り、ハードアルマイト被膜を有す
る電界ローラを使用する場合、数MΩ以上の保護抵抗を
介して電圧印加しなければ、輝点状の不均一放電になる
ため、微小間隙gを大きく(100μm以上)できなか
ったが、本実施例の場合、保護抵抗を介することなく、
100μm以上の間隙領域における均一グロー状放電を
得ることができる。また、ハードアルマイト被膜の場合
には、微小間隙を故意に傾けると、片側が暗部になる放
電ムラを生じるが、保護抵抗を介さない本実施例の場合
には、目視では判断できないほど均一な放電状態を得る
ことができた。これによって、実機搭載における微小間
隙の管理は緩和され、製造の容易化、品質の均一化(信
頼性)を得ることができる。
As described above, when an electric field roller having a hard alumite coating is used, unless a voltage is applied through a protective resistance of several MΩ or more, bright spot-like non-uniform discharge occurs, so that a minute gap g is formed. Although it could not be made large (100 μm or more), in the case of the present embodiment, without a protective resistor,
It is possible to obtain a uniform glow discharge in a gap region of 100 μm or more. Further, in the case of a hard alumite coating, if the minute gap is intentionally tilted, discharge unevenness in which one side becomes a dark part occurs, but in the case of this example without a protective resistance, a uniform discharge that cannot be visually judged. I was able to get the status. As a result, the management of minute gaps when mounted on an actual machine is relaxed, and manufacturing can be facilitated and quality can be made uniform (reliability).

【0016】また、ハードアルマイト被膜の場合、図7
及び図8から明らかなように、微小間隙gが150μm
以上の放電開始電圧近くの特性は、勾配急峻で増分抵抗
が保護抵抗より小さく、不安定な不均一放電(目視確認
可)になっているが、本発明に係る図3及び図4の場
合、勾配が緩やかで1μAレベルの電流でも均一放電光
が確認できる。これは、体積固有抵抗がアルマイトとほ
ぼ同桁でも、膜厚の差で現象の差を生じているものと考
えられる。プラズマ溶射膜12の放電開始点近辺の1μ
Aレベルの微小な電流が印加電圧に大きな影響を受けな
い理由も不明だが、膜体の構成や表面性に依存している
ものと思われる。
In the case of a hard alumite coating, FIG.
And as is clear from FIG. 8, the minute gap g is 150 μm.
The above characteristics near the discharge start voltage are steep gradients, the incremental resistance is smaller than the protective resistance, and unstable non-uniform discharge (visual confirmation is possible). However, in the case of FIGS. 3 and 4 according to the present invention, A uniform discharge light can be confirmed even at a current of 1 μA level with a gentle gradient. It is considered that this is because the difference in film thickness causes a difference in phenomenon even if the volume resistivity is almost the same order as that of alumite. 1μ near the discharge start point of the plasma sprayed film 12
The reason why the minute current of A level is not greatly affected by the applied voltage is not clear, but it seems that it depends on the structure and surface property of the film body.

【0017】実施テストの結果、酸化チタン(TiO
2 )とアルミナ(Al23 )の混合体であるプラズマ
溶射膜12は、酸化チタンが多い程抵抗値が小さく、3
0%以上では導体に近かった。酸化チタンの構成比が5
%以下では絶縁体のようになるが、膜厚を薄く研磨調整
すれば放電は可能で、2%が限界であった。プラズマ溶
射膜12による場合、微小電流で放電が安定しているの
で、実機装填したとき、設定電流を従来60〜120μ
Aにしていたのを、5〜30μAに低下させて均一なシ
ャープ画像が得られた。強制ランニング試験では、電流
を低下させたことと、プラズマ溶射膜特有の高硬度等か
ら10倍以上の寿命を確認できた。寿命の判定は、グロ
ー状放電光から輝点状の放電光に変化した時点、また、
膜の剥離した時点の寿命を限界とした。
As a result of the implementation test, titanium oxide (TiO 2
2 ) and alumina (Al 2 O 3 ), the plasma sprayed film 12 has a smaller resistance value as the amount of titanium oxide increases.
At 0% or more, it was close to a conductor. The composition ratio of titanium oxide is 5
If it is less than or equal to%, it becomes like an insulator, but if the film thickness is thinly adjusted by polishing, discharge is possible, and the limit is 2%. When the plasma sprayed film 12 is used, the discharge is stable with a small current.
The value of A was lowered to 5 to 30 μA, and a uniform sharp image was obtained. In the forced running test, it was confirmed that the life was 10 times or more due to the reduced current and the high hardness peculiar to the plasma sprayed film. The life is determined when the glow discharge light changes to a bright spot discharge light,
The life at the time of peeling the film was set as the limit.

【0018】また、図1に示すように、電圧を制御する
制御手段14を設け、この制御手段14によって、湿式
画像形成装置2を、放電開始点以上の放電電流Id と印
加電圧Vd における増分抵抗値Ri =ΔVd /ΔId
200KΩ〜600KΩの範囲内に維持して動作させる
こともできる(請求項2)。
Further, as shown in FIG. 1, a control means 14 for controlling the voltage is provided, and the wet image forming apparatus 2 is controlled by the control means 14 at the discharge current I d and the applied voltage V d above the discharge start point. It is also possible to maintain the incremental resistance value R i = ΔV d / ΔI d within the range of 200 KΩ to 600 KΩ (Claim 2).

【0019】図5は、請求項3及び4に対応する実施例
を示すものである。上記実施例と異なる点は、固定抵抗
器16(5MΩ以上)を備えていることである。プラズ
マ溶射膜12の膜厚が小さく、放電時における導体挙動
のウェートが高い場合への対処構成である。この場合で
も酸化チタン(TiO2 )含有によって電界ローラ6の
耐久性・長寿命化は減殺されない。
FIG. 5 shows an embodiment corresponding to claims 3 and 4. The difference from the above embodiment is that a fixed resistor 16 (5 MΩ or more) is provided. This is a configuration for dealing with the case where the thickness of the plasma sprayed film 12 is small and the weight of the conductor behavior during discharge is high. Even in this case, the durability and the extension of the life of the electric field roller 6 are not impaired by the inclusion of titanium oxide (TiO 2 ).

【0020】[0020]

【発明の効果】以上の通り、本発明によれば、放電時に
おける被膜の抵抗値を厚肉のプラズマ溶射膜化によって
存在ならしめるとともに、(抵抗体の)厚肉化による絶
縁化を酸化チタン(TiO2 )の含有によって調整する
構成としたので、電流の急激増加を抑制することができ
るとともに、微小電流の均一放電によって間隙管理を緩
和することができ、さらには酸化チタンを含むプラズマ
溶射膜特有の高硬度によって耐久性の向上並びに長寿命
化を図ることができる。
As described above, according to the present invention, the resistance value of the coating film at the time of discharge is made to exist by thickening the plasma sprayed film, and the insulation due to the thickening (of the resistor) is made of titanium oxide. Since the composition is adjusted by the content of (TiO 2 ), it is possible to suppress the rapid increase of the current, relax the gap management by the uniform discharge of the minute current, and further, the plasma sprayed film containing titanium oxide. Due to the unique high hardness, it is possible to improve durability and extend the service life.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す湿式画像形成装置の一
部省略の概要図である。
FIG. 1 is a schematic view of a wet image forming apparatus according to an embodiment of the present invention with a part thereof omitted.

【図2】電界ローラの断面図である。FIG. 2 is a sectional view of an electric field roller.

【図3】プラズマ溶射膜の放電特性を示すグラフであ
る。
FIG. 3 is a graph showing discharge characteristics of a plasma sprayed film.

【図4】プラズマ溶射膜の放電特性を示すグラフであ
る。
FIG. 4 is a graph showing discharge characteristics of a plasma sprayed film.

【図5】他の実施例を示す湿式画像形成装置の一部省略
の概要図である。
FIG. 5 is a schematic view of a wet image forming apparatus according to another embodiment with a part thereof omitted.

【図6】放電特性計測回路の概要図でる。FIG. 6 is a schematic diagram of a discharge characteristic measuring circuit.

【図7】ハードアルマイト被膜の放電特性を示すグラフ
である。
FIG. 7 is a graph showing discharge characteristics of a hard alumite coating.

【図8】ハードアルマイト被膜の放電特性を示すグラフ
である。
FIG. 8 is a graph showing discharge characteristics of a hard alumite coating.

【図9】ハードアルマイト被膜の体積固有抵抗電圧依存
性を示すグラフである。
FIG. 9 is a graph showing the volume resistivity voltage dependence of a hard alumite coating.

【図10】酸化チタン含有のプラズマ溶射膜の体積固有
抵抗電圧依存性を示すグラフである。
FIG. 10 is a graph showing the volume resistivity voltage dependence of a plasma sprayed coating containing titanium oxide.

【符号の説明】[Explanation of symbols]

4 感光体 6 電界ローラ 10 芯部 12 プラズマ溶射膜 g 微小間隙 4 Photoreceptor 6 Electric Field Roller 10 Core 12 Plasma Sprayed Film g Small Gap

───────────────────────────────────────────────────── フロントページの続き (72)発明者 池田 五男 東京都大田区中馬込1丁目3番6号・株式 会社リコー内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Goo Ikeda 1-3-6 Nakamagome, Ota-ku, Tokyo ・ Inside Ricoh Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】表面にトナー像が現像される感光体と、該
感光体表面との間に微小間隙をおいて近接対面する電界
ローラとが備えられ、上記感光体上に現像されたトナー
像の対感光体及びトナー同士間の結びつきを強めるため
に、転写前に上記電界ローラに上記微小間隙に放電を生
じさせる電圧を印加する湿式の画像形成装置において、 上記電界ローラは、導体である芯部と、この芯部の表面
に形成された酸化チタン(TiO2 )を含むプラズマ溶
射膜とから構成されていることを特徴とする湿式画像形
成装置。
1. A toner image developed on the photoconductor, comprising a photoconductor on which a toner image is developed, and an electric field roller closely facing the photoconductor surface with a minute gap therebetween. In order to strengthen the bond between the photoreceptor and the toner, the wet type image forming apparatus applies a voltage to the electric field roller to generate discharge in the minute gap before transfer, and the electric field roller is a core which is a conductor. And a plasma sprayed film containing titanium oxide (TiO 2 ) formed on the surface of the core portion, a wet image forming apparatus.
【請求項2】上記プラズマ溶射膜が少なくとも酸化チタ
ン(TiO2 )とアルミナ(Al23 )のプラズマ溶
射材料2成分以上を含んで各成分の構成比を調整して形
成されているとともに、放電開始点以上の放電電流Id
と印加電圧Vd における増分抵抗値Ri =ΔVd /ΔI
d を200KΩ〜600KΩの範囲内で動作させる制御
手段を備えていることを特徴とする請求項1記載の湿式
画像形成装置。
2. The plasma sprayed film is formed by containing at least two plasma sprayed materials of titanium oxide (TiO 2 ) and alumina (Al 2 O 3 ) and adjusting the composition ratio of each component. Discharge current I d above the discharge start point
And the incremental resistance value R i = ΔV d / ΔI at the applied voltage V d
The wet image forming apparatus according to claim 1, further comprising control means for operating d within a range of 200 KΩ to 600 KΩ.
【請求項3】電界ローラの径20mm,放電面の軸長5
0mmの条件下、増分抵抗値が10MΩ以下の比較的低
抵抗のプラズマ溶射膜を有する電界ローラでは、電圧印
加する場合固定抵抗器を介して放電電流を流すことを特
徴とする請求項1記載の湿式画像形成装置。
3. The diameter of the electric field roller is 20 mm, and the axial length of the discharge surface is 5
2. An electric field roller having a plasma sprayed film having a relatively low resistance with an incremental resistance value of 10 MΩ or less under a condition of 0 mm, discharge current is caused to flow through a fixed resistor when voltage is applied. Wet image forming apparatus.
【請求項4】増分抵抗値が低抵抗の場合、少なくとも5
MΩ以上の固定抵抗器を接続して動作させることを特徴
とする請求項1記載の湿式画像形成装置。
4. At least 5 if the incremental resistance is low.
The wet image forming apparatus according to claim 1, wherein a fixed resistor having a resistance of MΩ or more is connected to operate.
【請求項5】上記プラズマ溶射膜が、酸化チタン(Ti
2 )とアルミナ(Al23 )のプラズマ溶射材料を
含むとともに酸化チタン(TiO2 )の構成比が2%以
上20%以下に設定され、プラズマ溶射膜の膜厚が50
〜450μmに設定されていることを特徴とする請求項
1記載の湿式画像形成装置。
5. The plasma sprayed film is made of titanium oxide (Ti).
O 2 ) and alumina (Al 2 O 3 ) plasma spray material, the composition ratio of titanium oxide (TiO 2 ) is set to 2% or more and 20% or less, and the film thickness of the plasma spray film is 50%.
The wet image forming apparatus according to claim 1, wherein the wet image forming apparatus has a thickness of about 450 μm.
JP1095296A 1996-01-25 1996-01-25 Wet image forming device Pending JPH09204109A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1095296A JPH09204109A (en) 1996-01-25 1996-01-25 Wet image forming device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1095296A JPH09204109A (en) 1996-01-25 1996-01-25 Wet image forming device

Publications (1)

Publication Number Publication Date
JPH09204109A true JPH09204109A (en) 1997-08-05

Family

ID=11764537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1095296A Pending JPH09204109A (en) 1996-01-25 1996-01-25 Wet image forming device

Country Status (1)

Country Link
JP (1) JPH09204109A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0986089A2 (en) * 1998-09-08 2000-03-15 Matsushita Electric Industrial Co., Ltd. Resistor for cathode-ray tube, method for producing the same, cathode-ray tube, and field emission display including the resistor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0986089A2 (en) * 1998-09-08 2000-03-15 Matsushita Electric Industrial Co., Ltd. Resistor for cathode-ray tube, method for producing the same, cathode-ray tube, and field emission display including the resistor
EP0986089A3 (en) * 1998-09-08 2002-08-14 Matsushita Electric Industrial Co., Ltd. Resistor for cathode-ray tube, method for producing the same, cathode-ray tube, and field emission display including the resistor

Similar Documents

Publication Publication Date Title
US5235386A (en) Charging device having charging member, process cartridge and image forming apparatus
US4783716A (en) Charging or discharging device
JP3425950B2 (en) Charge donor roller with mixed ceramic layer
JP2003295540A (en) Electrophotographic apparatus
KR920008749B1 (en) Brush connecting charging apparatus in image forming apparatus
JPS62141578A (en) Electrostatic discharging and charging method
JPH09204109A (en) Wet image forming device
US8577262B2 (en) Charging device, cartridge for image forming apparatus, and image forming apparatus
EP0232136B1 (en) Charging or discharging device
JPH03203754A (en) Electrostatic charging device
US5258782A (en) Device for removing charge from a dielectric member in an image forming apparatus
JPH05142931A (en) Developing device
JPH0635299A (en) Electrostatic charging device
KR19980018288A (en) Charging Device and Image Forming Device
JPH0862937A (en) Electrifying and cleaning device
JPH08106201A (en) Electrostatic charging member and electrifying device and image forming device
JP3439773B2 (en) Contact charging device
JPH0749601A (en) Contact electrifier
JP2814799B2 (en) Contact charging device
JPH0862939A (en) Electrophotographic electrifying roll
JPS62286074A (en) Electrostatic charging and discharging device
JPH0822167A (en) Electrostatically charged member, electrostatically charging device, image forming device and process cartridge
JPS57178244A (en) Transfer type electrostatic recording body
JPH04254871A (en) Contact electrification device
JPS63136060A (en) Electrifying device