JPH092039A - Suspension device - Google Patents

Suspension device

Info

Publication number
JPH092039A
JPH092039A JP17444195A JP17444195A JPH092039A JP H092039 A JPH092039 A JP H092039A JP 17444195 A JP17444195 A JP 17444195A JP 17444195 A JP17444195 A JP 17444195A JP H092039 A JPH092039 A JP H092039A
Authority
JP
Japan
Prior art keywords
axis
coil spring
damper
load
damper rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17444195A
Other languages
Japanese (ja)
Inventor
Jun Umeno
純 梅野
Toshio Hamano
俊雄 浜野
Hisashi Sato
尚志 佐藤
Michiharu Okada
道治 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NHK Spring Co Ltd
Original Assignee
NHK Spring Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NHK Spring Co Ltd filed Critical NHK Spring Co Ltd
Priority to JP17444195A priority Critical patent/JPH092039A/en
Publication of JPH092039A publication Critical patent/JPH092039A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G15/00Resilient suspensions characterised by arrangement, location or type of combined spring and vibration damper, e.g. telescopic type
    • B60G15/02Resilient suspensions characterised by arrangement, location or type of combined spring and vibration damper, e.g. telescopic type having mechanical spring
    • B60G15/06Resilient suspensions characterised by arrangement, location or type of combined spring and vibration damper, e.g. telescopic type having mechanical spring and fluid damper
    • B60G15/07Resilient suspensions characterised by arrangement, location or type of combined spring and vibration damper, e.g. telescopic type having mechanical spring and fluid damper the damper being connected to the stub axle and the spring being arranged around the damper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2200/00Indexing codes relating to suspension types
    • B60G2200/10Independent suspensions
    • B60G2200/14Independent suspensions with lateral arms
    • B60G2200/142Independent suspensions with lateral arms with a single lateral arm, e.g. MacPherson type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2200/00Indexing codes relating to suspension types
    • B60G2200/40Indexing codes relating to the wheels in the suspensions
    • B60G2200/462Toe-in/out
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2202/00Indexing codes relating to the type of spring, damper or actuator
    • B60G2202/10Type of spring
    • B60G2202/12Wound spring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2202/00Indexing codes relating to the type of spring, damper or actuator
    • B60G2202/30Spring/Damper and/or actuator Units
    • B60G2202/31Spring/Damper and/or actuator Units with the spring arranged around the damper, e.g. MacPherson strut
    • B60G2202/312The spring being a wound spring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2204/00Indexing codes related to suspensions per se or to auxiliary parts
    • B60G2204/10Mounting of suspension elements
    • B60G2204/12Mounting of springs or dampers
    • B60G2204/124Mounting of coil springs
    • B60G2204/1242Mounting of coil springs on a damper, e.g. MacPerson strut

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Vehicle Body Suspensions (AREA)

Abstract

PURPOSE: To nearly conform the geometrical axis of a coil spring to the axis of a damper rod in a fixed load range so as to reduce friction generated in a damper and improve riding comfortableness by arranging the geometrical axis of the coil spring slanting against the axis of the damper rod. CONSTITUTION: The geometrical axis Ls of a compression coil spring 9 is slanted against the axis Ld of the damper rod 8a of a damper 8 centering around the middle point O in the vertical direction of the coil spring 9. The slanting direction and the slanting quantity are set so that the loaded axis Lm of the coil spring 9 is nearly conformed to the axis Ld of the damper rod 8a in a fixed load range. When the load range is 100kg-600kg; namely in a normal load, the distance (l) between at least one axis Ls of both end faces of the coil spring 9 and the axis Ld of the damper rod is in the range of 10-25% of the coil radius S of the coil spring 9.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、自動車や小型トラック
などの車両のサスペンション装置に関し、特にコイルば
ねの配置に特徴を有するサスペンション装置に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a suspension device for vehicles such as automobiles and small trucks, and more particularly to a suspension device characterized by the arrangement of coil springs.

【0002】[0002]

【従来の技術】近年の舗装路増加に伴い、自動車、特に
乗用車に於ける乗心地を向上するべくサスペンション装
置のコイルばねのばね定数低減が図られてきたが、良路
での一層の乗心地向上を図るべくフリクション領域に至
る範囲までその改善を検討することが望ましい。
2. Description of the Related Art With the increase in paved roads in recent years, the spring constant of the coil spring of a suspension device has been reduced in order to improve the riding comfort of automobiles, especially passenger cars. It is desirable to study the improvement up to the range up to the friction area in order to improve it.

【0003】従来、コイルばねの幾何学的中心軸上に荷
重が発生すると考えられてきたが、例えば「ばね論文集
第31号(1985).p54〜p60 平野武、猿
楽幸雄、西川昭彦、浜野俊雄」の記載により明らかなよ
うに、コイルばねを上下方向に圧縮する際には、その座
巻部とばね座、線間の接触状態が変化することからコイ
ルばねの幾何学的中心軸と荷重軸とは異なる(傾斜す
る)ことが判ってきた(以下、本明細書では偏心荷重と
記す)。従って、コイルばねの幾何学的軸線とダンパロ
ッドの中心軸線とを一致させた通常のレイアウトでは上
記コイルばねの偏心荷重によりダンパロッドとロッドガ
イドとの間やダンパのピストンとダンパチューブ内壁と
の間で摩擦が発生し、これらが乗心地を劣化させる要因
となっていたことも判明した。
Conventionally, it has been considered that a load is generated on the geometric center axis of a coil spring. For example, "Spring Papers No. 31 (1985). P54-p60 Takeshi Hirano, Yukio Saraku, Akihiko Nishikawa, Hamano. As is clear from the description of "Toshio", when compressing the coil spring in the vertical direction, the contact state between the end turn part, the spring seat, and the wire changes, so the geometric center axis of the coil spring and the load It has been found that it is different (inclined) from the axis (hereinafter referred to as eccentric load in this specification). Therefore, in a normal layout in which the geometric axis of the coil spring and the central axis of the damper rod are aligned with each other, the eccentric load of the coil spring causes a gap between the damper rod and the rod guide or between the piston of the damper and the inner wall of the damper tube. It was also found that friction occurred in the car, which was a factor that deteriorated the riding comfort.

【0004】[0004]

【発明が解決しようとする課題】本発明は上記したよう
な従来技術の問題点に鑑みなされたものであり、その主
な目的は、ダンパに発生する摩擦を低減して乗り心地を
向上することが可能なサスペンション装置を提供するこ
とにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the problems of the prior art as described above, and its main purpose is to reduce friction generated in the damper and improve riding comfort. To provide a suspension device capable of

【0005】[0005]

【課題を解決するための手段】上記した目的は本発明に
よれば、車体と車輪との間に設けられた筒状のダンパの
外周にコイルばねが巻装されたサスペンション装置であ
って、前記コイルばねの幾何学的軸線を前記ダンパロッ
ドの軸線に対して傾斜させて配置することにより所定の
荷重範囲で前記コイルばねの荷重軸線を前記ダンパロッ
ドの軸線と略一致させたことを特徴とするサスペンショ
ン装置を提供することにより達成される。
According to the present invention, there is provided a suspension device in which a coil spring is wound around the outer periphery of a cylindrical damper provided between a vehicle body and wheels. By arranging the geometric axis of the coil spring so as to be inclined with respect to the axis of the damper rod, the load axis of the coil spring is substantially aligned with the axis of the damper rod in a predetermined load range. This is accomplished by providing a suspension device.

【0006】[0006]

【作用】このように、コイルばねの荷重軸線がダンパロ
ッドの軸線と略一致するようにコイルばねの幾何学的軸
線をダンパロッドの軸線に対して傾斜させることによ
り、サスペンション装置の特にダンパに生じる摩擦を低
減できる。このようにすると荷重範囲が100kg〜6
00kgのとき、即ち常用範囲で上記傾斜範囲をコイル
ばねの両端面の少なくともいずれか一方に於ける上記幾
何学的軸線とダンパロッドの軸線との距離が殆どのケー
スでコイルばねのコイル半径の10%〜25%となる。
As described above, by tilting the geometric axis of the coil spring with respect to the axis of the damper rod so that the load axis of the coil spring substantially coincides with the axis of the damper rod, this occurs in the suspension device, particularly in the damper. Friction can be reduced. If this is done, the load range will be 100 kg to 6
When the weight is 00 kg, that is, in the normal range, the inclination range is 10 mm of the coil radius of the coil spring in most cases when the distance between the geometric axis and the axis of the damper rod on at least one of both end surfaces of the coil spring is large. % To 25%.

【0007】[0007]

【実施例】以下、本発明の好適実施例を添付の図面につ
いて詳しく説明する。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram of a preferred embodiment of the present invention.

【0008】図1は、本発明が適用されたダブルウィッ
シュボーン型のサスペンション装置の構造を簡略化して
示す模式的側面図である。このサスペンション装置には
片側100kg〜600kgの範囲の荷重が通常加わる
ものとする。タイヤTの図示されないホイールハブに接
続されたステアリングナックル2は、ジョイント3、4
を介してロアアーム5及びアッパアーム6の遊端に接続
されている。これらロアアーム5及びアッパアーム6の
基端は図示されないブシュを介して揺動可能に車体1に
接続されている。また、ロアアーム5と車体1との間に
は概ね円筒状をなす公知の筒型ダンパ8と、このダンパ
8に巻装された圧縮コイルばね9とが設けられている。
FIG. 1 is a schematic side view showing a simplified structure of a double wishbone type suspension device to which the present invention is applied. A load in the range of 100 kg to 600 kg on one side is normally applied to this suspension device. The steering knuckle 2 connected to a wheel hub (not shown) of the tire T has joints 3, 4
It is connected to the free ends of the lower arm 5 and the upper arm 6 via. The base ends of the lower arm 5 and the upper arm 6 are swingably connected to the vehicle body 1 via bushes (not shown). Further, between the lower arm 5 and the vehicle body 1, a known cylindrical damper 8 having a substantially cylindrical shape, and a compression coil spring 9 wound around the damper 8 are provided.

【0009】ここで、図2に良く示すように、圧縮コイ
ルばね9の幾何学的軸線Lsは、ダンパ8のダンパロッ
ド8aの軸線Ldに対してコイルばね9の上下方向中間
点Oを中心として傾斜している。その傾斜方向及び傾斜
量は、後記する方法により求められるコイルばね9の荷
重軸線Lmがダンパロッド8aの軸線Ldと略一致する
ように設定されている。すると、後記する図4(a)、
図4(b)により分かるように、コイルばね9の両端面
の少なくともいずれか一方に於ける上記軸線Lsとダン
パロッドの軸線Ldとの距離lが、コイルばね9のコイ
ル半径sの10%〜25%の範囲となる。
As shown in FIG. 2, the geometrical axis line Ls of the compression coil spring 9 is centered on the vertical middle point O of the coil spring 9 with respect to the axis line Ld of the damper rod 8a of the damper 8. It is inclined. The inclination direction and the inclination amount are set so that the load axis Lm of the coil spring 9 obtained by the method described later substantially coincides with the axis Ld of the damper rod 8a. Then, as shown in FIG.
As can be seen from FIG. 4 (b), the distance l between the axis Ls of at least one of the two end faces of the coil spring 9 and the axis Ld of the damper rod is 10% of the coil radius s of the coil spring 9. It is in the range of 25%.

【0010】以下に、本実施例に於けるコイルばね9が
発生する偏心荷重の荷重軸を算出する。コイルばねは圧
縮するに伴い座巻部と座面、線間の接触状態が変化する
ことからそれらの接触を考慮した非線形解析が必要とな
る。非線形解析によって得られた全体座標形での接点反
力から横力を算出する場合、コイルばねには偏心荷重P
だけでなく曲げモーメントMも発生する。この曲げモー
メントもロッドに作用するため、コイルばねに於ける力
学的関係より、図2に示す局所座標系λ(ξη ζ)上
に於て、Pξ=Pη=Mξ=Mη=0となる点Cを考え
る。このとき点Cに於ては、Pξ1及びMξ1のみが作用
する。この点Cを以下に求める。全体座標系から局所座
標系への座標変換マトリックスを[T]とすれば、
The load axis of the eccentric load generated by the coil spring 9 in this embodiment will be calculated below. Since the contact state between the end turn portion, the seat surface, and the wire changes as the coil spring is compressed, a non-linear analysis that takes these contacts into account is required. When calculating the lateral force from the contact reaction force in the overall coordinate form obtained by the nonlinear analysis, the eccentric load P is applied to the coil spring.
Not only the bending moment M also occurs. Since this bending moment also acts on the rod, the point C where Pξ = Pη = Mξ = Mη = 0 on the local coordinate system λ (ξη ζ) shown in FIG. 2 from the mechanical relationship in the coil spring. think of. At this time, at point C, only Pξ 1 and Mξ 1 act. This point C is obtained below. If the coordinate transformation matrix from the global coordinate system to the local coordinate system is [T],

【0011】[0011]

【数1】Ft=[T]Fh ## EQU1 ## F t = [T] F h

【0012】ここで[T]は、Where [T] is

【0013】[0013]

【数2】 [Equation 2]

【0014】とおけば、[0014]

【0015】[0015]

【数3】 (Equation 3)

【0016】である。局所座標系λの原点を点Hにと
り、荷重PhとモーメントMhとを座標変換マトリックス
[T]で表すと、
## EQU1 ## When the origin of the local coordinate system λ is set to a point H and the load P h and the moment M h are represented by a coordinate transformation matrix [T],

【0017】[0017]

【数4】Pt={Pξ Pη Pζ}T=[T]Pht={Mξ Mη Mζ}T=[T]Ph Equation 4] P t = {Pξ Pη Pζ} T = [T] P h M t = {Mξ Mη Mζ} T = [T] P h

【0018】となる。このとき、## EQU1 ## At this time,

【0019】[0019]

【数5】 (Equation 5)

【0020】次に、Mξ=0、Mη=0となる点C(ξ
1,η1,ζ1)をλ上に考える。rt=(ξ1,η1
ζ1)とすればMt=rt×Ptより
Next, the point C (ξ where Mξ = 0 and Mη = 0
Let 1 , η 1 , ζ 1 ) be on λ. r t = (ξ 1 , η 1 ,
If ζ 1 ) then M t = r t × P t

【0021】[0021]

【数6】 (Equation 6)

【0022】となり、,

【0023】[0023]

【数7】 ξ1=−Mη/Pζ及びη1=Mξ/Pζ(ζ1は不定)(7) ξ 1 = -Mη / Pζ and η 1 = Mξ / Pζ (ζ 1 is indefinite)

【0024】が求まる。従って、点Cを通り座標系λの
ζ軸に平行な軸、即ちPξ=Pη=Mξ=Mη=0とな
る荷重軸Lmを設定することができる。
Is obtained. Therefore, it is possible to set an axis that passes through the point C and is parallel to the ζ axis of the coordinate system λ, that is, a load axis Lm that satisfies Pξ = Pη = Mξ = Mη = 0.

【0025】実際にばねの形状測定を行い解析モデルを
作成した後、平行に圧縮荷重を付加する非線形解析を実
施し、荷重軸Lmが通る点をコイルばねの上端面または
下端面上に求め、ばね高の変化(=圧縮荷重の変化)に
伴い移動する点の軌跡を求めた(図4(a)、図4
(b))。この図により荷重軸Lmは上下荷重の増加に
伴いコイルの幾何学的中心軸に向かって移動する傾向に
あることが分かる。
After actually measuring the shape of the spring and creating an analytical model, a non-linear analysis in which a compressive load is applied in parallel is performed, and the point through which the load axis Lm passes is found on the upper end surface or the lower end surface of the coil spring. A locus of points that move with changes in spring height (= changes in compression load) was obtained (FIG. 4A, FIG.
(B)). From this figure, it can be seen that the load axis Lm tends to move toward the geometric center axis of the coil as the vertical load increases.

【0026】一方、乗用車または小型トラック程度の自
動車のサスペンション装置用コイルばねは実用上100
kg〜600kgの荷重範囲で使用される。図4(a)、図
4(b)に於て、コイルばねの両端面の少なくともいず
れか一方に於て、この範囲の荷重軸Lmが通る範囲は、
コイルばねの平均半径に対して10%〜25%となる。
このように、コイルばね9に曲げモーメントが発生しな
い荷重軸Lmは、ばね高と共に変化するので、所定のば
ね高、即ち所定の荷重範囲(100kg〜600kg)でダ
ンパロッド8aの軸線Ldがこの荷重軸Lmを通るよう
にコイルばね9をダンパ8に対してレイアウトすれば良
い。尚、本実施例ではダブルウィッシュボーン型のサス
ペンション装置について説明したが、その他の形式のサ
スペンション装置にも同様に適用できることは云うまで
もないが、特に、例えばトーションビーム型などでダン
パがリンクの一部として使用されず、タイヤからの横力
があまり発生しないような形式のサスペンション装置に
ついて本発明を適用することでその効果は一層顕著に現
れる。
On the other hand, a coil spring for a suspension device of an automobile such as a passenger car or a light truck is practically 100.
Used in the load range of kg to 600 kg. In FIGS. 4 (a) and 4 (b), the range through which the load axis Lm of this range passes on at least one of both end surfaces of the coil spring is
The average radius of the coil spring is 10% to 25%.
In this way, the load axis Lm in which the bending moment is not generated in the coil spring 9 changes with the spring height, so that the axis Ld of the damper rod 8a has this load within a predetermined spring height, that is, a predetermined load range (100 kg to 600 kg). The coil spring 9 may be laid out with respect to the damper 8 so as to pass through the axis Lm. In addition, although the double wishbone type suspension device is described in the present embodiment, it is needless to say that the same can be applied to other types of suspension devices. In particular, for example, a torsion beam type damper is a part of the link. When the present invention is applied to a suspension device of a type that is not used as the above and a lateral force from the tire is not generated so much, the effect becomes more remarkable.

【0027】[0027]

【発明の効果】上記した説明により明らかなように、本
発明によるサスペンション装置によれば、コイルばねの
荷重軸線がダンパロッドの軸線と略一致するようにコイ
ルばねの幾何学的軸線をダンパロッドの軸線に対して傾
斜させてコイルばねの荷重軸線をダンパロッドの軸線と
一致させることにより、サスペンション装置の特にダン
パに生じる摩擦を低減でき、乗心地が改善される。この
ようにすると、荷重範囲が100kg〜600kgのと
き、即ち常用範囲で上記傾斜範囲をコイルばねの両端面
のいずれか一方に於ける上記幾何学的軸線とダンパロッ
ドの軸線との距離がコイルばねのコイル半径の10%〜
25%となる。
As is apparent from the above description, according to the suspension device of the present invention, the geometric axis of the coil spring is set so that the load axis of the coil spring substantially coincides with the axis of the damper rod. By making the load axis of the coil spring coincide with the axis of the damper rod by inclining with respect to the axis, the friction generated particularly in the damper of the suspension device can be reduced and the riding comfort is improved. In this way, when the load range is 100 kg to 600 kg, that is, in the normal range, the inclination range is the distance between the geometric axis and the axis of the damper rod on either one of the two end faces of the coil spring. 10% of the coil radius of
It becomes 25%.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明が適用されたダブルウィッシュボーン型
のサスペンション装置の構造を簡略化して示す模式的側
面図
FIG. 1 is a schematic side view showing a simplified structure of a double wishbone type suspension device to which the present invention is applied.

【図2】図1の要部拡大側面図。FIG. 2 is an enlarged side view of a main part of FIG. 1;

【図3】コイルばねの荷重軸線を求める手順を説明する
図。
FIG. 3 is a diagram illustrating a procedure for obtaining a load axis line of a coil spring.

【図4】(a)及び(b)は、コイルばねの上端面また
は下端面上に求めた荷重軸Lmが通る点が、ばね高の変
化(=圧縮荷重の変化)に伴い移動する軌跡を求めたグ
ラフ。
4 (a) and 4 (b) show a locus along which a point on the upper end surface or the lower end surface of a coil spring through which a load axis Lm passes moves along with a change in spring height (= change in compression load). The obtained graph.

【符号の説明】[Explanation of symbols]

1 車体 2 ステアリングナックル 3、4 ジョイント 5 ロアアーム 6 アッパアーム 8 オイルダンパ 8a ダンパロッド 9 圧縮コイルばね T タイヤ Ls コイルばねの幾何学的軸線 Lm コイルばねの荷重軸線 Ld ダンパロッドの軸線 s コイルばねのコイル半径 l コイルばねの両端面に於けるLsとLdとの距離 1 Car Body 2 Steering Knuckle 3, 4 Joint 5 Lower Arm 6 Upper Arm 8 Oil Damper 8a Damper Rod 9 Compression Coil Spring T Tire Ls Coil Spring Geometric Axis Lm Coil Spring Load Axis Ld Damper Rod Axis s Coil Spring Coil Radius l Distance between Ls and Ld on both ends of coil spring

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岡田 道治 神奈川県横浜市金沢区福浦3丁目10番地 日本発条株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Michiharu Okada 3-10 Fukuura, Kanazawa-ku, Yokohama, Kanagawa Prefecture

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 車体と車輪との間に設けられた筒状の
ダンパの外周にコイルばねが巻装されたサスペンション
装置であって、 所定の荷重範囲で前記コイルばねの荷重軸線が前記ダン
パロッドの軸線と略一致するように、前記コイルばねの
幾何学的軸線を前記ダンパロッドの軸線に対して傾斜さ
せて配置したことを特徴とするサスペンション装置。
1. A suspension device in which a coil spring is wound around an outer periphery of a cylindrical damper provided between a vehicle body and a wheel, wherein a load axis line of the coil spring is within a predetermined load range. The suspension device in which the geometric axis of the coil spring is arranged to be inclined with respect to the axis of the damper rod so as to substantially coincide with the axis of the suspension rod.
JP17444195A 1995-06-16 1995-06-16 Suspension device Pending JPH092039A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17444195A JPH092039A (en) 1995-06-16 1995-06-16 Suspension device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17444195A JPH092039A (en) 1995-06-16 1995-06-16 Suspension device

Publications (1)

Publication Number Publication Date
JPH092039A true JPH092039A (en) 1997-01-07

Family

ID=15978575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17444195A Pending JPH092039A (en) 1995-06-16 1995-06-16 Suspension device

Country Status (1)

Country Link
JP (1) JPH092039A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7354051B2 (en) 2003-10-24 2008-04-08 Nissan Motor Co., Ltd. Independent suspension system for a wheeled vehicle
WO2017002297A1 (en) * 2015-06-30 2017-01-05 株式会社デンソー High-pressure pump

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7354051B2 (en) 2003-10-24 2008-04-08 Nissan Motor Co., Ltd. Independent suspension system for a wheeled vehicle
WO2017002297A1 (en) * 2015-06-30 2017-01-05 株式会社デンソー High-pressure pump
JP2017014957A (en) * 2015-06-30 2017-01-19 株式会社デンソー High-pressure pump

Similar Documents

Publication Publication Date Title
US6550796B2 (en) Vehicle suspension
US2279120A (en) Automobile chassis
KR101072793B1 (en) Axle Clamp Assembly Top Pad and Air Spring Mounting Assembly
CA2680630C (en) Primary air spring and secondary leaf suspension for vehicle
RU2517274C2 (en) Independent suspension of transport facility
US5016905A (en) Tandem axle vehicle suspension system
US6357768B1 (en) Straight line linkage mechanism
EP0880440A1 (en) Linkage suspension system
US4033608A (en) Air spring unit
US5566928A (en) Suspension device for a commercial vehicle
JPH092039A (en) Suspension device
US20080143175A1 (en) Beam axle system
US5085457A (en) Independent front air suspension apparatus and method
JP2000233621A5 (en)
US10933711B2 (en) Suspension sensor
US5884925A (en) Solid axle suspension for vehicles
JPH08332823A (en) Suspension device for vehicle
JP4717217B2 (en) Vehicle suspension system
US2736570A (en) Independent spring suspensions for dirigible wheels
JP2917710B2 (en) Rear wheel steering device such as truck
JP3151354B2 (en) Device for driving and steering the wheels of a car
JP4098898B2 (en) Strut type suspension system
JP3780812B2 (en) Vehicle rear wheel suspension system
JPS6185207A (en) Car rear wheel suspension device
RU2048303C1 (en) Suspension for vehicle

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20040624

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040720

A02 Decision of refusal

Effective date: 20050105

Free format text: JAPANESE INTERMEDIATE CODE: A02