JPH09203741A - Aberration speedometer - Google Patents

Aberration speedometer

Info

Publication number
JPH09203741A
JPH09203741A JP1277196A JP1277196A JPH09203741A JP H09203741 A JPH09203741 A JP H09203741A JP 1277196 A JP1277196 A JP 1277196A JP 1277196 A JP1277196 A JP 1277196A JP H09203741 A JPH09203741 A JP H09203741A
Authority
JP
Japan
Prior art keywords
light
reflected
measured
interference fringes
mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1277196A
Other languages
Japanese (ja)
Other versions
JP2924754B2 (en
Inventor
Toshiyuki Tanaka
利幸 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP1277196A priority Critical patent/JP2924754B2/en
Publication of JPH09203741A publication Critical patent/JPH09203741A/en
Application granted granted Critical
Publication of JP2924754B2 publication Critical patent/JP2924754B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Optical Radar Systems And Details Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable velocity components in a direction orthogonal to the direction of the visual line of measuring personnel to be measured by calculating an aberration from the intervals between interference fringes detected from a light beam illuminating a subject for measurement and that reflected from it. SOLUTION: When a moving object 10 moving in the direction of a velocity vector 12 comes to a position orthogonal to the direction of the visual line of measuring personnel (direction of application of illuminating light 18), illuminating light 18 is applied to a half mirror 14 from a laser beam 13. Part of the light is transmitted 14 to illuminate a CCD 15, while the rest is reflected 14 and illuminates and is reflected by a corner cube 11. This reflected light 19 illuminates and transmits through the mirror 14 and illuminates and is reflected by a mirror 16. It is further reflected 14 to illuminate the CCD 15. If there is relative speed between the moving object 10 and the measuring personnel 17, the illuminating light 18 and the reflected light 19 do not become parallel but cause an aberration, producing interference fringes on the surface of the CCD 15. The aberration is calculated from the intervals between the interference fringes and the wavelength of the illuminating light 18, and the relative speed is calculated on the basis of the aberration. Thus velocity components in the direction orthogonal to the visual line of the measuring personnel can be measured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、レーザ光を利用し
て移動体の速度を測定する光行差速度計に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical differential velocity meter that measures the speed of a moving body by using laser light.

【0002】[0002]

【従来の技術】従来、移動体の速度を非接触で測定する
速度計として、光のドップラー効果を利用したレーザ・
ドップラー速度計がある(例えば、「応用光学−光計測
入門−」、谷田貝 豊彦 著、丸善kk発行、昭和63
年発行等がある)。このレーザ・ドップラー速度計は、
移動体の運動によって生じた散乱光のドップラーシフト
をヘテロダイン検出することで速度計測を行うものであ
る。
2. Description of the Related Art Conventionally, as a speedometer for measuring the speed of a moving body in a non-contact manner, a laser
There is a Doppler velocimeter (for example, "Applied optics-Introduction to optical measurement-" by Toyohiko Yatagai, published by Maruzen kk, 1988.
Issuing year etc.). This Laser Doppler Speedometer
The velocity is measured by heterodyne detection of the Doppler shift of the scattered light generated by the movement of the moving body.

【0003】従来のレーザ・ドップラー速度計について
図を用いて説明する。図3は、従来のレーザ・ドップラ
ー速度計を示す説明図である。同図において(1)は参
照光法、(2)は二入射光法(差動法)、(3)は一入
射光法によるレーザ・ドップラー速度計の構成を示し、
1a、1bは入射光の一部を透過して残りを反射するハ
ーフミラー、2はミラー、3は光検出器、4はビームス
プリッタ、5、5a、5bはレンズ、6、7、8はスリ
ット、ベクトルvは移動体の速度ベクトル、ベクトルk
s、ks1 、ks2 は入射光の波数ベクトル、ベクトル
ko、ko1 、ko2 は散乱光の波数ベクトルである。
A conventional laser Doppler velocimeter will be described with reference to the drawings. FIG. 3 is an explanatory diagram showing a conventional laser Doppler velocimeter. In the figure, (1) shows the configuration of a laser Doppler velocimeter by the reference light method, (2) the two-incidence light method (differential method), and (3) the one-incidence light method.
1a and 1b are half mirrors that transmit a part of incident light and reflect the rest, 2 is a mirror, 3 is a photodetector, 4 is a beam splitter, 5 and 5a and 5b are lenses, and 6, 7 and 8 are slits. , Vector v is the velocity vector of the moving body, vector k
s, ks 1 and ks 2 are wavenumber vectors of incident light, and vectors ko, ko 1 and ko 2 are wavenumber vectors of scattered light.

【0004】以上の構成による従来例の動作について各
方法毎に説明する。 (1)参照光法 波数ベクトルksである入射光をハーフミラー1aで二
分し、反射光を参照光としてミラー2に照射してからハ
ーフミラー1bで反射させて光検出器3に入射させる。
また、透過光を速度ベクトルvで移動する移動体に照射
し、波数ベクトルkoの散乱光をハーフミラー1bを介
して光検出器3に入射させる。これら光検出器3に入射
した2つのレーザ光は、互いに重なり合って干渉縞を生
じる。よって、この干渉縞の間隔を測定することによっ
て移動体の速度を求めることができる。
The operation of the conventional example having the above configuration will be described for each method. (1) Reference Light Method The incident light having the wave number vector ks is bisected by the half mirror 1a, the reflected light is applied to the mirror 2 as the reference light, and then reflected by the half mirror 1b to be incident on the photodetector 3.
Further, the transmitted light is applied to the moving body that moves at the velocity vector v, and the scattered light having the wave number vector ko is incident on the photodetector 3 through the half mirror 1b. The two laser beams incident on these photodetectors 3 overlap each other to generate interference fringes. Therefore, the velocity of the moving body can be obtained by measuring the interval of the interference fringes.

【0005】(2)二入射光法(差動法) 入射光をビームスプリッタ4によって波数ベクトルks
1、ks2の2つのビームに二分してからレンズ5aを介
して速度ベクトルvの移動体に照射する。移動体での散
乱光はスリット6、レンズ5b、スリット7を介して光
検出器3に入射される。入射した散乱光は(1)と同様
に干渉縞を生じ、この間隔を測定することにより移動体
の速度を求めることができる。
(2) Two-incidence light method (differential method) The incident light is wavenumber vector ks by the beam splitter 4.
It is divided into two beams of 1 and ks 2 and then radiated to a moving body having a velocity vector v via a lens 5a. The scattered light from the moving body enters the photodetector 3 through the slit 6, the lens 5b, and the slit 7. The incident scattered light causes interference fringes as in (1), and the velocity of the moving body can be obtained by measuring this interval.

【0006】(3)一入射光法 波数ベクトルksの入射光を速度ベクトルvの移動体に
照射し、波数ベクトルko1 、ko2 の散乱光をスリッ
ト8、レンズ5、スリット7を介して光検出器3に入射
させる。入射した散乱光は(1)と同様に干渉縞を生
じ、この間隔を図ることにより移動体の速度を求めるこ
とができる。
(3) One-incidence light method Incident light of wave number vector ks is applied to a moving body of velocity vector v, and scattered light of wave number vectors ko 1 and ko 2 is transmitted through slit 8, lens 5 and slit 7. It is incident on the detector 3. The incident scattered light produces interference fringes as in the case of (1), and the velocity of the moving body can be obtained by setting this interval.

【0007】以上、(1)、(2)、(3)のいずれと
も光計測器3に生じた干渉縞の間隔を測定することによ
り移動体の速度を求めることができる。しかし、これら
はいずれも光のドップラー効果を利用しているため測定
者と移動体との測定者の視線方向における相対速度しか
もとめることができない。すなわち、測定者の視線方向
に直交する速度成分を測定することは不可能である。
As described above, in any of (1), (2), and (3), the velocity of the moving body can be obtained by measuring the interval of the interference fringes generated in the optical measuring instrument 3. However, since all of them utilize the Doppler effect of light, it is only possible to stop the relative speed between the measurer and the moving body in the direction of the line of sight of the measurer. That is, it is impossible to measure the velocity component orthogonal to the direction of the line of sight of the measurer.

【0008】[0008]

【発明が解決しようとする課題】以上のように、従来の
光のドップラー効果を利用した速度計は、測定者の視線
方向と直交する速度成分は測定できないという問題点が
あった。本発明はこのような課題を解決するためのもの
であり、測定者の視線方向と直交する速度成分を測定す
ることができる速度計を提供することを目的としてい
る。
As described above, the conventional speedometer utilizing the Doppler effect of light has a problem that it cannot measure the velocity component orthogonal to the line of sight of the measurer. The present invention is intended to solve such a problem, and an object thereof is to provide a speedometer capable of measuring a speed component orthogonal to the line-of-sight direction of a measurer.

【0009】[0009]

【課題を解決するための手段】このような目的を達成す
るために、本発明による光行差速度計は、被測定物に照
射光を照射し、この照射光と照射光の被測定物からの反
射光とを重ね合わせることによって生じた干渉縞の間隔
を検出する干渉縞検出手段と、干渉縞の間隔から光行差
を求め、照射光と直交する方向における被測定物の速度
を算出する速度算出手段とを備えている。このように構
成することにより、本発明は移動体へ照射した照射光と
その反射光との間に生じた光行差を測定することがで
き、この光行差から測定者の視線方向と直交する移動体
の速度成分を測定することができる。
In order to achieve such an object, the optical differential velocity meter according to the present invention irradiates an object to be measured with irradiation light, and the irradiation light and the object to be measured of the irradiation light are used. Interference fringe detection means for detecting the interval of the interference fringes generated by superimposing the reflected light of the above, and the optical line difference is obtained from the interval of the interference fringes, and the velocity of the DUT in the direction orthogonal to the irradiation light is calculated. And speed calculation means. With such a configuration, the present invention can measure the optical path difference generated between the irradiation light applied to the moving body and the reflected light, and from this optical path difference, it is orthogonal to the line of sight of the measurer. The velocity component of the moving body can be measured.

【0010】[0010]

【発明の実施の形態】次に、本発明の詳細について図面
を参照して説明する。図1は本発明の一つの実施の形態
を示した説明図である。同図において、10は被測定物
である移動体、11は移動体10上に設けられ光を反射
するコーナキューブ、12は移動体10の速度ベクト
ル、13はレーザ光源、14は入射光の一部を透過し残
りを反射するハーフミラー、15はCCD(Charge Cou
pled Device)、16はミラー、17はレーザ光源13
とハーフミラー14とCCD15とミラー16とから構
成された干渉縞検出手段、18は照射光、19は反射
光、20は干渉縞、εは照射光18と反射光19との光
行差、θは照射光18のCCD15への入射角、ΔLは
干渉縞の間隔である。
Next, details of the present invention will be described with reference to the drawings. FIG. 1 is an explanatory diagram showing one embodiment of the present invention. In the figure, 10 is a moving body which is an object to be measured, 11 is a corner cube which is provided on the moving body 10 and reflects light, 12 is a velocity vector of the moving body 10, 13 is a laser light source, and 14 is an incident light. A half mirror for transmitting the remainder and reflecting the rest, 15 is a CCD (Charge Cou
pled Device), 16 is a mirror, 17 is a laser light source 13
Interference fringe detection means composed of a half mirror 14, a CCD 15, and a mirror 16, 18 irradiation light, 19 reflected light, 20 interference fringes, ε is the optical path difference between the irradiation light 18 and reflected light 19, θ Is the angle of incidence of the irradiation light 18 on the CCD 15, and ΔL is the interval of the interference fringes.

【0011】以上の構成による本発明の動作について詳
細に説明する。移動体10は速度ベクトル12を伴って
図の下方から上方へ向けて移動している。移動体10が
測定者の視線方向(照射光18の照射方向)と直交する
位置に来ると、レーザ光源13から照射光18をハーフ
ミラー14に照射する。照射光18の一部はハーフミラ
ー14を透過してCCD15に照射され、残りのレーザ
光はハーフミラー14に反射されて移動体10上に設け
られたコーナキューブ11に照射される。照射光18は
コーナキューブ11に反射されて反射光19としてハー
フミラー14に照射される。この反射光19はハーフミ
ラー14を透過し、ミラー16に照射されてから反射さ
れ、さらにハーフミラー14で反射されてCCD15に
照射される。
The operation of the present invention having the above configuration will be described in detail. The moving body 10 is moving together with the velocity vector 12 from the lower side to the upper side in the figure. When the moving body 10 comes to a position orthogonal to the line-of-sight direction (irradiation direction of the irradiation light 18) of the measurer, the irradiation light 18 is irradiated from the laser light source 13 to the half mirror 14. A part of the irradiation light 18 passes through the half mirror 14 and is irradiated to the CCD 15, and the remaining laser light is reflected by the half mirror 14 and irradiated to the corner cube 11 provided on the moving body 10. The irradiation light 18 is reflected by the corner cube 11 and is applied to the half mirror 14 as reflected light 19. The reflected light 19 is transmitted through the half mirror 14, is reflected by the mirror 16, is reflected by the half mirror 14, is further reflected by the half mirror 14, and is irradiated by the CCD 15.

【0012】このとき、移動体10と干渉縞検出手段
(測定者)17との間の相対速度をvとすると、コーナ
キューブ11への照射光18と反射光19とは平行にな
らず、以下に示すような光行差εが生じる。 ε=v/c (ε<<1) (1) ここで、cは光速度とし、相対速度vは照射光18と直
交する方向の速度である。
At this time, if the relative speed between the moving body 10 and the interference fringe detection means (measurer) 17 is v, the irradiation light 18 and the reflected light 19 to the corner cube 11 are not parallel, and The optical error ε is generated as shown in. ε = v / c (ε << 1) (1) Here, c is the speed of light, and the relative speed v is the speed in the direction orthogonal to the irradiation light 18.

【0013】次に、この光行差εの検出方法について図
2を用いて説明する。図2は、図1のCCD15に生じ
た干渉縞を示す説明図である。移動体10と干渉縞検出
手段(測定者)17との間に相対速度vがあると照射光
18と反射光19との間に光行差εが生じ、CCD15
面上に干渉縞20が生じる。この干渉縞20の間隔をΔ
Lとすると、照射光18の波長λと光行差εと照射光1
8のCCD15への入射角θから、 ΔL=λ/(sinε+sinθ) が成り立つ。
Next, a method of detecting the optical path difference ε will be described with reference to FIG. FIG. 2 is an explanatory diagram showing interference fringes generated in the CCD 15 of FIG. When there is a relative velocity v between the moving body 10 and the interference fringe detection means (measuring person) 17, an optical path difference ε is generated between the irradiation light 18 and the reflected light 19, and the CCD 15
Interference fringes 20 occur on the surface. The distance between the interference fringes 20 is Δ
Let L be the wavelength λ of the irradiation light 18, the optical path difference ε, and the irradiation light 1
From the incident angle θ of 8 on the CCD 15, ΔL = λ / (sin ε + sin θ) holds.

【0014】ここで、θ=0、ε<<1とすると、ΔL
=λ/εとなり、 ε=λ/(ΔL) (2) となる。以上より、CCD15で検出されたΔLと照射
光18の波長λとを式(2)に代入してεを求め、この
εを式(1)に代入することによって相対速度vを求め
ることができる。なお、以上の計算は、図示しない速度
算出手段において行われる。
Here, if θ = 0 and ε << 1, then ΔL
= Λ / ε, and ε = λ / (ΔL) (2). From the above, ΔL detected by the CCD 15 and the wavelength λ of the irradiation light 18 are substituted into the equation (2) to obtain ε, and this ε is substituted into the equation (1) to obtain the relative velocity v. . Note that the above calculation is performed by a speed calculating means (not shown).

【0015】[0015]

【発明の効果】以上説明したように、本発明は、被測定
物への照射光とその反射光との間に生じた光行差を求
め、この光行差から被測定物の速度を算出するため、測
定者の視線と直交する方向の被測定物の速度成分を測定
することができる。また、照射光と反射光との干渉縞の
間隔を計測することにより、高精度な速度測定ができ
る。
As described above, according to the present invention, the optical path difference generated between the irradiation light to the object to be measured and its reflected light is calculated, and the speed of the object to be measured is calculated from the optical path difference. Therefore, the velocity component of the measured object in the direction orthogonal to the line of sight of the measurer can be measured. Further, by measuring the interval of the interference fringes between the irradiation light and the reflected light, highly accurate speed measurement can be performed.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一つの実施の形態を示す断面図と説
明図である。
FIG. 1 is a sectional view and an explanatory view showing an embodiment of the present invention.

【図2】 図1のCCDに生じた干渉縞を示す説明図で
ある。
FIG. 2 is an explanatory diagram showing interference fringes generated in the CCD of FIG.

【図3】 従来例を示す説明図である。FIG. 3 is an explanatory diagram showing a conventional example.

【符号の説明】[Explanation of symbols]

1a、1b、14…ハーフミラー、2、16…ミラー、
3…光検出器、4…ビームスプリッタ、5、5a、5b
…レンズ、6、7、8…スリット、10…移動体、11
…コーナキューブ、12…移動体10の移動方向、13
…レーザ光源、15…CCD、17…干渉縞検出手段、
18…照射光、19…反射光、20…干渉縞、ε…光行
差、θ…照射光18と反射光19との間に生じた光行
差、ΔL…干渉縞の間隔。
1a, 1b, 14 ... Half mirror, 2, 16 ... Mirror,
3 ... Photodetector, 4 ... Beam splitter, 5, 5a, 5b
... Lens, 6, 7, 8 ... Slit, 10 ... Moving body, 11
… Corner cubes, 12… Moving direction of moving body 10, 13
... laser light source, 15 ... CCD, 17 ... interference fringe detection means,
18 ... Irradiation light, 19 ... Reflected light, 20 ... Interference fringes, ε ... Optical path difference, θ ... Optical misalignment between the irradiation light 18 and the reflected light 19, ΔL ... Interval of interference fringes.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 被測定物に照射光を照射し、この照射光
と照射光の被測定物からの反射光とを重ね合わせること
によって生じた干渉縞の間隔を検出する干渉縞検出手段
と、 干渉縞の間隔から光行差を求め、照射光と直交する方向
における被測定物の速度を算出する速度算出手段とを備
えたことを特徴とする光行差速度計。
1. Interference fringe detection means for irradiating an object to be measured with irradiation light, and detecting an interval of interference fringes generated by superposing the irradiation light and the reflected light from the object to be measured of the irradiation light, An optical path difference velocimeter, comprising: a speed calculating unit that calculates an optical path difference from an interval of interference fringes and calculates a speed of an object to be measured in a direction orthogonal to the irradiation light.
【請求項2】 請求項1において、 干渉縞検出手段は、 所定波長のレーザ光を照射するレーザ光源と、 このレーザ光の一部を透過し、残りのレーザ光を反射し
て被測定物に照射するハーフミラーと、 被測定物で反射されてからハーフミラーを透過したレー
ザ光を反射するミラーと、 ミラーで反射されてからハーフミラーで反射されたレー
ザ光とハーフミラーを透過したレーザ光とを受光する受
光素子とから構成されていることを特徴とする光行差速
度計。
2. The interference fringe detection means according to claim 1, wherein the laser light source for irradiating the laser light of a predetermined wavelength and a part of the laser light are transmitted and the remaining laser light is reflected to the object to be measured. The half mirror that irradiates, the mirror that reflects the laser light that is reflected by the DUT and then passes through the half mirror, and the laser light that is reflected by the mirror and then reflected by the half mirror and the laser light that passes through the half mirror. An optical path difference speedometer characterized by comprising a light receiving element for receiving light.
【請求項3】 請求項1または2において、 速度算出手段は、照射光の波長を受光素子に生じた干渉
縞の間隔で割ることによって光行差を求め、光行差と光
速度を乗算することにより被測定物の速度を求めること
を特徴とする光行差速度計。
3. The velocity calculation means according to claim 1, wherein the velocity calculation means divides the wavelength of the irradiation light by the interval of the interference fringes generated in the light receiving element to obtain the optical error, and multiplies the optical error by the optical error. An optical cross-velocity velocimeter, characterized in that the velocity of an object to be measured is obtained thereby.
【請求項4】 請求項2または3において、 受光素子は、CCDであることを特徴とする光行差速度
計。
4. The optical path difference speedometer according to claim 2, wherein the light receiving element is a CCD.
JP1277196A 1996-01-29 1996-01-29 Optical differential velocity meter Expired - Lifetime JP2924754B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1277196A JP2924754B2 (en) 1996-01-29 1996-01-29 Optical differential velocity meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1277196A JP2924754B2 (en) 1996-01-29 1996-01-29 Optical differential velocity meter

Publications (2)

Publication Number Publication Date
JPH09203741A true JPH09203741A (en) 1997-08-05
JP2924754B2 JP2924754B2 (en) 1999-07-26

Family

ID=11814675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1277196A Expired - Lifetime JP2924754B2 (en) 1996-01-29 1996-01-29 Optical differential velocity meter

Country Status (1)

Country Link
JP (1) JP2924754B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2757953A1 (en) * 1996-12-26 1998-07-03 Nec Corp Line of Sight Speed Measurement Apparatus for Moving Objects

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2757953A1 (en) * 1996-12-26 1998-07-03 Nec Corp Line of Sight Speed Measurement Apparatus for Moving Objects

Also Published As

Publication number Publication date
JP2924754B2 (en) 1999-07-26

Similar Documents

Publication Publication Date Title
US10725179B2 (en) Laser tracker
US5610705A (en) Doppler velocimeter
US10444361B2 (en) Laser tracker having two measurement functionalities
AU2014202103A1 (en) Apparatus For Detecting A 3D Structure Of An Object
JPS60233581A (en) Device and method of measuring distance up to arbitrary target
JPH0823588B2 (en) Device for measuring the displacement of a retroreflective target moving from a reference position
CN109556593B (en) Angular velocity measuring device, method and carrier thereof
JP2755757B2 (en) Measuring method of displacement and angle
CN111982028A (en) Laser radar scanning galvanometer three-dimensional angle measuring device and method
JPH0663867B2 (en) Interfering device for wavefront condition detection
JP4026929B2 (en) Interference measuring device
US5026162A (en) Optical interference position measurement system
US5519491A (en) Process for measuring the inclination of boundary areas in an optical system using interferometry to extract reflections from disturbance-generating boundary areas
JPH0256604B2 (en)
JP3439803B2 (en) Method and apparatus for detecting displacement or change in position of an object from the focal point of an objective lens
JPH09203741A (en) Aberration speedometer
JP2517551B2 (en) Phase distribution measuring device
JPS62263428A (en) Apparatus for measuring phase change
WO1981003073A1 (en) Process and apparatus for measurement of physical parameters of moving matter by means of coherent light source,by heterodyne detection of light reflected or scattered by moving matter
JP2877119B2 (en) Mobile body speed measurement device
SU1101672A1 (en) Device for touch=free measuring of deformations
Albrecht et al. Basic measurement principles
GB2236178A (en) Monitoring arrangements
Czarske et al. Measurement of velocity gradients in boundary layers by a spatially resolving laser Doppler sensor
JPS6225232A (en) Method and instrument for measuring wavelength dispersion of optical fiber