JPH09203738A - Scanning probe microscope - Google Patents

Scanning probe microscope

Info

Publication number
JPH09203738A
JPH09203738A JP1266696A JP1266696A JPH09203738A JP H09203738 A JPH09203738 A JP H09203738A JP 1266696 A JP1266696 A JP 1266696A JP 1266696 A JP1266696 A JP 1266696A JP H09203738 A JPH09203738 A JP H09203738A
Authority
JP
Japan
Prior art keywords
layer
cantilever
probe
displacement
embedded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1266696A
Other languages
Japanese (ja)
Inventor
Hisahiro Nishimoto
尚弘 西本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP1266696A priority Critical patent/JPH09203738A/en
Publication of JPH09203738A publication Critical patent/JPH09203738A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cantilever chip that has the function of detecting its own displacement and is less likely to be affected by measuring environments by making a piezoresistance layer that is formed on a cantilever part into an embedded resistance layer obtained by injection of high-energy ions. SOLUTION: A cantilever chip 1 is a silicon chip, consisting of a cantilever part 1b, a base 1c, and a probe 1a, with an embedded piezoresistance layer 2 formed near the root of the lever part 1b by injection of high-energy ions. When the probe 1a is exerted with attracting or repelling forces from the surfaces of atoms in the sample S, the lever part 1b is deflected, and the resistance value 2 is changed in resistance value according to its stress. This change in resistance value is detected, whereby information about the displacement of the lever part 1b, i.e., the probe 1a, can be obtained. The resistance layer 2 is an embedded dopant layer obtained by injection of high-energy ions, and can be formed with the conducting die of a substrate surface layer left on its upper layer. Therefore, the cantilever chip that is less likely to be affected by environmental changes because of surface-layer protection can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は走査型プローブ顕微
鏡に関する。
TECHNICAL FIELD The present invention relates to a scanning probe microscope.

【0002】[0002]

【従来の技術】図4に、走査型プローブ顕微鏡の一つで
あるAFM(原子間引力顕微鏡)の構成を示す。このA
FMは、先端に曲率半径の小さい探針を備えたカンチレ
バーLと、このカンチレバーLの変位を検出する光学系
Dによって構成されており、探針を試料Sの表面に近づ
けると、試料Sと探針との間に働く力により、カンチレ
バーが撓む点を利用し、そのカンチレバーの撓みを光学
系Dによって検出する、いわゆる光てこ方式を採用した
顕微鏡である。
2. Description of the Related Art FIG. 4 shows the configuration of an AFM (atomic attraction microscope) which is one of scanning probe microscopes. This A
The FM is composed of a cantilever L having a tip with a small radius of curvature at the tip and an optical system D for detecting the displacement of the cantilever L. This is a microscope that employs a so-called optical lever method that utilizes the point where the cantilever bends due to the force acting between the needle and the optical system D to detect the bending of the cantilever.

【0003】また、この種の顕微鏡においては上記した
変位検出方式の他に、カンチレバーと変位検出系とを一
体化することも試みられており、その自己変位検出機能
をもつカンチレバーチップの例として、シリコン製のカ
ンチレバー中にピエゾ抵抗素子を形成し、その抵抗値変
化からカンチレバーの変位を検出するものがある(Inter
national Conference on Solidstate Sensors and Actu
ators,1991,Tech.dig.pp448-451)。
In addition to the displacement detection method described above, it has been attempted to integrate a cantilever and a displacement detection system in this type of microscope, and as an example of a cantilever chip having a self-displacement detection function, There is a method in which a piezoresistive element is formed in a silicon cantilever, and the displacement of the cantilever is detected from the change in the resistance value.
national Conference on Solidstate Sensors and Actu
ators, 1991, Tech.dig.pp448-451).

【0004】[0004]

【発明が解決しようとする課題】ところで、図4に示し
た構造の場合、カンチレバーチップと別に、変位検出用
の光学系が必要で装置が大型になるという問題がある。
また、高真空中で測定を行いたい場合には検出系も真空
槽内に配置する必要があり、構成に制限を受けることに
なる。
By the way, the structure shown in FIG. 4 has a problem that an optical system for displacement detection is required in addition to the cantilever chip, and the device becomes large in size.
Further, when it is desired to perform the measurement in a high vacuum, the detection system also needs to be arranged in the vacuum chamber, which limits the configuration.

【0005】一方、カンチレバー部にピエゾ抵抗素子を
形成したカンチレバーチップを使用した場合、上記した
ような構成上の制限を受けることはないものの、ピエゾ
抵抗素子の抵抗値が測定環境(例えば湿度など)の影響
で変動し、測定誤差が生じるという問題がある。特に、
最近AFM観察の応用として注目されている、生体試料
などの液中観察においては、その抵抗値変動が顕著とな
るため観察が困難となる。
On the other hand, when a cantilever chip in which a piezoresistive element is formed in a cantilever portion is used, the resistance of the piezoresistive element is not limited by the above-described configuration, but the resistance of the piezoresistive element is measured in an environment (eg, humidity). And there is a problem that a measurement error occurs. Especially,
In in-liquid observation of a biological sample or the like, which has recently attracted attention as an application of AFM observation, the variation in resistance value becomes remarkable, which makes observation difficult.

【0006】本発明は、そのような実情に鑑みてなされ
たもので、探針の変位を検出する自己変位検出機能をも
ち、しかも測定環境の影響を受け難いカンチレバーチッ
プを備えた走査型プローブ顕微鏡を提供することを目的
とする。
The present invention has been made in view of such circumstances, and has a scanning probe microscope having a cantilever tip which has a self-displacement detecting function for detecting the displacement of a probe and is not easily affected by the measurement environment. The purpose is to provide.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
め、本発明の走査型プローブ顕微鏡は、測定に使用する
カンチレバーチップが半導体材料製で、そのカンチレバ
ー部に形成されたピエゾ抵抗層の抵抗値変化を探針の変
位検出信号として用いるように構成され、かつ、そのピ
エゾ抵抗層が高エネルギイオン注入によって形成された
埋め込み抵抗層であることによって特徴づけられる。
In order to achieve the above object, the scanning probe microscope of the present invention is such that the cantilever tip used for measurement is made of a semiconductor material, and the resistance of the piezoresistive layer formed in the cantilever portion is The piezoresistive layer is configured to use the value change as a displacement detection signal of the probe, and is characterized by being a buried resistive layer formed by high energy ion implantation.

【0008】ここで、本発明でいう高エネルギイオン注
入とは、基板表面層の導電型を残したまま、基板とは異
なる導電型のドーパント層を埋め込むことが可能なエネ
ルギでイオンを打ち込むことを指す。
The high-energy ion implantation referred to in the present invention means implanting ions with energy capable of filling a dopant layer having a conductivity type different from that of the substrate while leaving the conductivity type of the substrate surface layer. Point to.

【0009】[0009]

【作用】例えば図1において、探針1aが試料表面の原
子から、引力あるいは斥力を受けてカンチレバー部1b
が撓むと、カンチレバー部1bに形成した埋め込みピエ
ゾ抵抗層2には、その応力に応じた抵抗値変化が生じ
る。従って、埋め込みピエゾ抵抗層2の抵抗値変化を外
部回路で検出すれば、その検出値からカンチレバー部1
bの撓みつまり探針1aの変位を知ることができる。
In FIG. 1, for example, the probe 1a receives an attractive force or a repulsive force from the atoms on the sample surface to cause the cantilever portion 1b.
When the bending occurs, the embedded piezoresistive layer 2 formed on the cantilever portion 1b undergoes a change in resistance value according to the stress. Therefore, if a change in the resistance value of the embedded piezoresistive layer 2 is detected by an external circuit, the cantilever portion 1 is detected from the detected value.
The deflection of b, that is, the displacement of the probe 1a can be known.

【0010】ここで、高エネルギイオン注入による埋め
込みドーパント層は、その上層に基板表面層の導電型を
残したままの状態で形成することができるので、表面層
によって外部に対し保護され環境変化の影響を受け難い
という特徴があり、従って、このような高エネルギイオ
ン注入で形成された埋め込みピエゾ抵抗層は耐環境性に
優れている。
Here, since the buried dopant layer formed by the high energy ion implantation can be formed in a state where the conductivity type of the substrate surface layer is left as an upper layer, the buried dopant layer is protected from the outside by the surface layer and the environmental change is prevented. It has a characteristic that it is hardly affected, and therefore, the buried piezoresistive layer formed by such high energy ion implantation has excellent environmental resistance.

【0011】[0011]

【発明の実施の形態】図1は本発明の実施の形態の構成
図である。この図1に示す走査型プローブ顕微鏡は、公
知の顕微鏡と同様に、自己変位検出機能をもつカンチレ
バーチップ1と、試料Sを走査するためのステージ(図
4参照)によって構成されているが、そのカンチレバー
チップ1の構造に特徴がある。
FIG. 1 is a block diagram of an embodiment of the present invention. The scanning probe microscope shown in FIG. 1 is composed of a cantilever tip 1 having a self-displacement detecting function and a stage (see FIG. 4) for scanning the sample S, as in a known microscope. The structure of the cantilever tip 1 is characteristic.

【0012】すなわち、この例のカンチレバーチップ1
は、カンチレバー部1bとこれを支持する台座1cと、
カンチレバー部1bの自由端に設けられた探針1aを備
えたシリコン製のチップで、そのカンチレバー部1bの
根元付近に、高エネルギイオン注入によって埋め込みピ
エゾ抵抗層2が形成されている。
That is, the cantilever tip 1 of this example
Is a cantilever portion 1b and a pedestal 1c supporting the cantilever portion 1b,
A silicon chip having a probe 1a provided at the free end of the cantilever portion 1b, and a buried piezoresistive layer 2 is formed by high-energy ion implantation near the root of the cantilever portion 1b.

【0013】また、カンチレバーチップ1には、図1及
び図2に示すように、埋め込みピエゾ抵抗層2に導通す
る一対の電極2aが形成されており、この一対の電極2
aを利用して、埋め込みピエゾ抵抗層2の抵抗値変化を
電気信号として外部へと取り出すことができる。そし
て、その電気信号は増幅器を介して検出回路(図示せ
ず)等に導かれる。なお、図1に示す構造において電極
3aはバイアス印加用の電極である。
Further, as shown in FIGS. 1 and 2, the cantilever chip 1 is formed with a pair of electrodes 2a electrically connected to the embedded piezoresistive layer 2.
By utilizing a, the change in the resistance value of the embedded piezoresistive layer 2 can be taken out as an electric signal to the outside. Then, the electric signal is guided to a detection circuit (not shown) or the like via the amplifier. In the structure shown in FIG. 1, the electrode 3a is a bias application electrode.

【0014】以上の構造において、探針1aが試料Sの
表面原子から引力あるいは斥力を受けるとカンチレバー
部1bが撓む。このとき、カンチレバー部1bに形成さ
れた埋め込みピエゾ抵抗層2にはその応力に応じて抵抗
値変化が生じる。従って、埋め込み抵抗層2の抵抗値変
化を外部の検出回路等によって検出することにより、こ
の検出値をカンチレバー部1bの撓みつまり探針1aの
変位情報として用いることができる。
In the above structure, when the probe 1a receives an attractive force or a repulsive force from the surface atoms of the sample S, the cantilever portion 1b bends. At this time, the resistance value changes in the embedded piezoresistive layer 2 formed in the cantilever portion 1b according to the stress. Therefore, by detecting a change in the resistance value of the embedded resistance layer 2 by an external detection circuit or the like, this detected value can be used as the deflection of the cantilever portion 1b, that is, the displacement information of the probe 1a.

【0015】次に、図1の構造のカンチレバーチップ1
を作製する手順を、以下、図3に示す工程 (1)〜(5) を
参照して説明する。 (1) まず、SOIウェハ11(Silicon on Insulator;
シリコン中に酸化膜層11aがあるウェハ)を材料とす
る。ここでは、表面側の活性層の厚さとして15μm程度
のものを用いる。
Next, the cantilever tip 1 having the structure shown in FIG.
The procedure for producing the above will be described below with reference to steps (1) to (5) shown in FIG. (1) First, SOI wafer 11 (Silicon on Insulator;
A wafer having an oxide film layer 11a in silicon) is used as a material. Here, the thickness of the active layer on the front surface side is about 15 μm.

【0016】(2) ウェハ11の表面に酸化膜を形成し、
これをフォトリソグラフィ技術を用いてパターニング
し、このパターニング後の酸化膜12をマスクとしてウ
ェハ11のエッチングを行って探針1aを形成する。こ
こではドライエッチング(RIE;反応性イオンエッチ
ング)を用いるが、KOHなどを用いたウェットエッチ
ングであってもよいし、あるいはこれらの組み合わせで
もよい。
(2) An oxide film is formed on the surface of the wafer 11,
This is patterned using a photolithography technique, and the wafer 11 is etched using the patterned oxide film 12 as a mask to form a probe 1a. Here, dry etching (RIE; reactive ion etching) is used, but wet etching using KOH or the like may be used, or a combination thereof.

【0017】(3) ウェハ11の表面にパッシベーション
膜(酸化膜)11bを形成した後、基板コンタクトのた
めのn+ 層3をリンイオン注入によって形成し、次いで
抵抗層コンタクトのためのp+ 層2bを、ホウ素イオン
注入(低エネルギイオン注入;例えば30KeV)によ
って形成する。この後、ホウ素イオン注入により、埋め
込みピエゾ抵抗層2を形成する。このときホウ素の注入
エネルギは、基板であるウェハ11の導電型を残したま
ま、埋め込み抵抗層を形成できるエネルギ(例えば1M
eV)とする。
(3) After forming the passivation film (oxide film) 11b on the surface of the wafer 11, the n + layer 3 for the substrate contact is formed by phosphorus ion implantation, and then the p + layer 2b for the resistance layer contact. Are formed by boron ion implantation (low energy ion implantation; for example, 30 KeV). After that, the buried piezoresistive layer 2 is formed by implanting boron ions. At this time, the implantation energy of boron is such that the buried resistance layer can be formed while leaving the conductivity type of the wafer 11 as a substrate (for example, 1 M).
eV).

【0018】(4) イオン注入層の活性化のためにアニー
ルを行い、次いで埋め込みピエゾ抵抗層2及びn+ 層3
へのコンタクトホールを形成した後、その各層にそれぞ
れ導通する電極2a及び3aを形成する。
(4) Annealing is performed to activate the ion-implanted layer, and then the buried piezoresistive layer 2 and n + layer 3 are formed.
After forming a contact hole to the electrodes, electrodes 2a and 3a which are electrically connected to the respective layers are formed.

【0019】(5) ウェハ11の裏面側でカンチレバーチ
ップ1の台座1cとなる部分のみを酸化膜(図示せず)
で覆った状態で、ウェハ11の裏面からエッチングを行
ってカンチレバー部1bを形成する。
(5) An oxide film (not shown) is formed only on the back surface side of the wafer 11 to be the base 1c of the cantilever chip 1.
In the state covered with, the back surface of the wafer 11 is etched to form the cantilever portion 1b.

【0020】以上の工程で図1に示した構造のチップ、
すなわち変位検出のための埋め込みピエゾ抵抗層2がカ
ンチレバー部1bに形成された構造のカンチレバーチッ
プ1が完成する。
Through the above steps, the chip having the structure shown in FIG.
That is, the cantilever chip 1 having a structure in which the embedded piezoresistive layer 2 for displacement detection is formed in the cantilever portion 1b is completed.

【0021】なお、以上の実施の形態では、SOIウェ
ハを材料として用いたが、これに限定されず、例えばp
型シリコン基板上にn型層をエピタキシャル成長させた
ウェハ、あるいはp型シリコン基板の表面層にn型層を
拡散によって形成したウェハをチップ製作用の材料とし
て用いてもよい。この場合、図3の工程(5) で行うシリ
コンエッチングの際に、電気化学的なエッチングストッ
プ技術 (IEEE,Transactions on Electron Devices vol.
36,No.4,1989) を用いてカンチレバー部を形成すればよ
い。
In the above embodiments, the SOI wafer is used as the material, but the material is not limited to this and, for example, p
A wafer in which an n-type layer is epitaxially grown on a type silicon substrate or a wafer in which an n-type layer is diffused on a surface layer of a p-type silicon substrate may be used as a material for chip fabrication. In this case, electrochemical etching stop technology (IEEE, Transactions on Electron Devices vol.
36, No. 4, 1989) to form the cantilever portion.

【0022】また、本発明において、カンチレバーチッ
プの材料としてはシリコンに限定されず、埋め込みピエ
ゾ抵抗層が形成できるものであれば他の任意の半導体材
料を用いてもよい。
In the present invention, the material of the cantilever tip is not limited to silicon, and any other semiconductor material may be used as long as it can form the buried piezoresistive layer.

【0023】[0023]

【発明の効果】以上説明したように、本発明の走査型プ
ローブ顕微鏡によれば、カンチレバーチップが、カンチ
レバー部に形成されたピエゾ抵抗層の抵抗値変化から探
針の変位を検出する自己変位検出機能をもつ構造で、そ
のピエゾ抵抗層が高エネルギイオン注入によって形成さ
れた埋め込み抵抗層であるので、測定環境の変化を受け
難く安定した試料観察が可能となる。これにより、自己
変位検出機能をもつカンチレバーチップを備えた走査型
プローブ顕微鏡を、例えばAFM観察の応用として注目
されている生体試料などの液中観察に適用することが可
能になる。
As described above, according to the scanning probe microscope of the present invention, the cantilever tip detects the displacement of the probe from the change in the resistance value of the piezoresistive layer formed in the cantilever portion. Since the structure is functional and the piezoresistive layer is a buried resistive layer formed by high-energy ion implantation, stable sample observation is possible because it is less susceptible to changes in the measurement environment. This makes it possible to apply a scanning probe microscope equipped with a cantilever tip having a self-displacement detection function to in-liquid observation of a biological sample or the like, which is attracting attention as an application of AFM observation.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の形態の構造図FIG. 1 is a structural diagram of an embodiment of the present invention.

【図2】その実施の形態の埋め込みピエゾ抵抗層2と電
極2aの構造を模式的に示す図
FIG. 2 is a diagram schematically showing a structure of a buried piezoresistive layer 2 and an electrode 2a according to the embodiment.

【図3】図1に示すカンチレバーチップ1の作製方法を
説明する図
FIG. 3 is a diagram illustrating a method of manufacturing the cantilever tip 1 shown in FIG.

【図4】走査型プローブ顕微鏡(AFM)の構造例を示
す図
FIG. 4 is a diagram showing a structural example of a scanning probe microscope (AFM).

【符号の説明】[Explanation of symbols]

1 カンチレバーチップ 1a 探針 1b カンチレバー部 1c 台座 2 埋め込みピエゾ抵抗層 2a 電極 1 cantilever tip 1a probe 1b cantilever part 1c pedestal 2 embedded piezoresistive layer 2a electrode

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 探針をもつカンチレバーチップと、試料
を探針に対して2次元方向に走査するステージを有し、
その走査過程で探針の変位を検出して試料表面の微細構
造の測定情報を得る顕微鏡において、上記カンチレバー
チップが半導体材料製で、そのカンチレバー部に形成さ
れたピエゾ抵抗層の抵抗値変化を探針の変位検出信号と
して用いるように構成され、かつ、そのピエゾ抵抗層が
高エネルギイオン注入によって形成された埋め込み抵抗
層であることを特徴とする走査型プローブ顕微鏡
1. A cantilever tip having a probe, and a stage for scanning a sample in a two-dimensional direction with respect to the probe,
In a microscope that detects the displacement of the probe in the scanning process and obtains measurement information of the fine structure of the sample surface, the cantilever tip is made of a semiconductor material, and the change in resistance of the piezoresistive layer formed on the cantilever part is searched A scanning probe microscope, which is configured to be used as a needle displacement detection signal, and whose piezoresistive layer is a buried resistive layer formed by high energy ion implantation.
JP1266696A 1996-01-29 1996-01-29 Scanning probe microscope Pending JPH09203738A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1266696A JPH09203738A (en) 1996-01-29 1996-01-29 Scanning probe microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1266696A JPH09203738A (en) 1996-01-29 1996-01-29 Scanning probe microscope

Publications (1)

Publication Number Publication Date
JPH09203738A true JPH09203738A (en) 1997-08-05

Family

ID=11811700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1266696A Pending JPH09203738A (en) 1996-01-29 1996-01-29 Scanning probe microscope

Country Status (1)

Country Link
JP (1) JPH09203738A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003096409A1 (en) * 2002-05-08 2003-11-20 Samsung Electronics Co., Ltd. Semiconductor probe with resistive tip and method of fabricating the same, and information recording apparatus, information reproducing apparatus, and information measuring apparatus having the semiconductor probe

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003096409A1 (en) * 2002-05-08 2003-11-20 Samsung Electronics Co., Ltd. Semiconductor probe with resistive tip and method of fabricating the same, and information recording apparatus, information reproducing apparatus, and information measuring apparatus having the semiconductor probe
US7141999B2 (en) 2002-05-08 2006-11-28 Samsung Electronics Co., Ltd. Semiconductor probe with resistive tip and method of fabricating the same, and information recording apparatus, information reproducing apparatus, and information measuring apparatus having the semiconductor probe
US7442571B2 (en) 2002-05-08 2008-10-28 Samsung Electronics Co., Ltd. Semiconductor probe with resistive tip and method of fabricating the same, and information recording apparatus, information reproducing apparatus, and information measuring apparatus having the semiconductor probe

Similar Documents

Publication Publication Date Title
US5844251A (en) High aspect ratio probes with self-aligned control electrodes
KR100214152B1 (en) Piezoresistive cantilever for atomic force microscoph
US5235187A (en) Methods of fabricating integrated, aligned tunneling tip pairs
US6952042B2 (en) Microelectromechanical device with integrated conductive shield
Chui et al. Independent detection of vertical and lateral forces with a sidewall-implanted dual-axis piezoresistive cantilever
US5994160A (en) Process for manufacturing micromechanical components having a part made of diamond consisting of at least one tip, and micromechanical components comprising at least one diamond tip
KR20020089624A (en) cantilever for high sensitivity piezoresistive of Atomic Force Microscope type
JPH08510094A (en) Integrated micromechanical sensor device and manufacturing method thereof
JP4579352B2 (en) Optical semiconductor element
Duc et al. Lateral nano-Newton force-sensing piezoresistive cantilever for microparticle handling
US6156216A (en) Method for making nitride cantilevers devices
US6388252B1 (en) Self-detecting type of SPM probe and SPM device
CN114684774A (en) Silicon piezoresistive pressure sensor chip and preparation method thereof
JPH09203738A (en) Scanning probe microscope
EP2801831B1 (en) Vertical embedded sensor and process of manufacturing thereof
US5526703A (en) Force detecting sensor and method of making
JPH08262039A (en) Scanning probe microscope
JPH1183874A (en) Scanning type probe microscope
JP3384116B2 (en) Method for manufacturing single-crystal Si cantilever and scanning probe microscope
JP3433782B2 (en) Scanning probe microscope, its semiconductor strain sensor, and its manufacturing method
JPH11304825A (en) Semiconductor distortion sensor and its manufacture, and scanning probe microscope
Chui et al. A novel dual-axial AFM cantilever with independent piezoresistive sensors for simultaneous detection of lateral and vertical forces
Vallin et al. High-temperature piezoresistive gauge fabricated on commercially available silicon-on-insulator wafers
Nguyen et al. Insertion force sensor by sidewall-doping with rapid thermal diffusion
JPH10239327A (en) Scan type probe microscope