JPH09201664A - Casting method - Google Patents
Casting methodInfo
- Publication number
- JPH09201664A JPH09201664A JP1022796A JP1022796A JPH09201664A JP H09201664 A JPH09201664 A JP H09201664A JP 1022796 A JP1022796 A JP 1022796A JP 1022796 A JP1022796 A JP 1022796A JP H09201664 A JPH09201664 A JP H09201664A
- Authority
- JP
- Japan
- Prior art keywords
- molten metal
- electrodes
- casting
- heat
- cast product
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Resistance Heating (AREA)
- Control Of Resistance Heating (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、鋳造方法に係り、
詳しくは鋳造品の全体又は一部を目的とする品質に確実
かつ容易にすることのできる鋳造方法に関する。TECHNICAL FIELD The present invention relates to a casting method,
More specifically, the present invention relates to a casting method capable of reliably and easily achieving the desired quality of the whole or a part of the cast product.
【0002】[0002]
【従来の技術】ある形状の鋳造品を鋳造する場合、鋳造
直後の鋳造品が目的とする品質、つまり金属組織又は衝
撃値や伸び率等の機械的性質を有さない場合がある。こ
の場合、溶湯の合金成分や鋳型の形状を変更することも
なされ得るが、かかる変更は試行錯誤に近いものである
ため、一般的に、鋳造直後の鋳造品に焼鈍、焼ならし等
の熱処理を施すことがなされる。こうして得られる鋳造
品としては、例えば、オーステンパ球状黒鉛鋳鉄品(J
ISG5503)、耐熱鋼鋳鋼品(JISG5122)
がある。2. Description of the Related Art When a cast product having a certain shape is cast, the cast product immediately after casting may not have a desired quality, that is, a metal structure or mechanical properties such as impact value and elongation. In this case, the alloy composition of the molten metal and the shape of the mold may be changed, but since such a change is close to trial and error, generally, the cast product immediately after casting is subjected to heat treatment such as annealing and normalizing. Is done. As the cast product thus obtained, for example, austempered spheroidal graphite cast iron product (J
ISG5503), heat-resistant cast steel products (JISG5122)
There is.
【0003】また、アルミニウム鋳造の分野では、鋳型
全体を火炎トーチにより加熱可能としたアルミニウム鋳
物釜が知られている。このアルミニウム鋳物釜によりア
ルミニウム鋳造を行なう場合、鋳型のキャビティ内に溶
湯を注入前、火炎トーチにより鋳型全体を加熱し、これ
により溶湯全体の冷却速度を遅くし、所定のアルミニウ
ム鋳造品を得ることができる。Further, in the field of aluminum casting, there is known an aluminum casting pot in which the entire mold can be heated by a flame torch. When performing aluminum casting with this aluminum casting kettle, before injecting the molten metal into the cavity of the mold, the entire mold is heated by the flame torch, thereby slowing down the cooling rate of the entire molten metal and obtaining a predetermined aluminum cast product. it can.
【0004】さらに、鋳鉄の分野では、鋳型の所望部位
に熱伝導率の高い金属からなる冷やし金を設けた鋳造用
金型が知られている(例えば、特開昭61−60252
号公報、特開昭61−78548号公報)。この鋳造用
金型により鋳鉄鋳造を行なう場合、鋳型のキャビティ内
に溶湯を注入後、その所望部位における溶湯の冷却速度
を冷やし金で早まらせることにより、チル組織(セメン
タイト(Fe3 C))をもつ鋳鉄品を得ることができ
る。Further, in the field of cast iron, a casting mold is known in which a chill made of a metal having a high thermal conductivity is provided at a desired portion of the mold (for example, Japanese Patent Laid-Open No. 61-60252).
JP-A-61-78548). When performing cast iron casting with this casting mold, after injecting the molten metal into the cavity of the mold, the chill structure (cementite (Fe 3 C)) is increased by accelerating the cooling rate of the molten metal at the desired site with a cooling metal. It is possible to obtain cast iron products having
【0005】また、鋳型における鋳造品の薄肉部を形成
する部位にその薄肉部の冷却速度を遅らせる保温用入子
を設けるとともに、鋳型における鋳造品の厚肉部を形成
する部位にその厚肉部の冷却速度を早まらせる冷却用入
子を設けた鋳造用金型も知られている(実開平2−13
8056号公報)。この鋳造用金型により鋳造を行なう
場合、鋳型のキャビティ内に溶湯を注入後、保温用入子
と冷却用入子とで溶湯の指向性凝固を可能にし、引け巣
のない鋳造品を得ることができる。In addition, a heat insulating insert for delaying the cooling rate of the thin portion of the casting is formed in the portion of the mold forming the thin portion of the casting, and the thick portion of the casting is formed in the portion of the casting forming the thick portion of the casting. There is also known a casting mold provided with a cooling insert that speeds up the cooling rate of (No. 2-13).
No. 8056). When casting with this casting mold, after injecting the molten metal into the cavity of the mold, the heat retention insert and cooling insert enable directional solidification of the melt to obtain a cast product without shrinkage cavities. You can
【0006】[0006]
【発明が解決しようとする課題】しかし、上記一般的な
鋳造直後の熱処理による方法では、一旦常温程度まで冷
却された鋳造品を再加熱しなければならないため、エネ
ルギーの無駄な消費により、製造コストが高くなる。ま
た、この方法では、バッチ炉や連続炉により鋳造品全体
を再加熱することから、鋳造品の一部のみを目的とする
品質にすることができない。鋳型全体を火炎トーチによ
り加熱する上記アルミニウム鋳物釜においても、鋳造品
の一部のみを目的とする品質にすることができない。However, in the above-mentioned general method of heat treatment immediately after casting, the cast product once cooled to room temperature has to be reheated, resulting in wasteful consumption of energy, resulting in manufacturing cost. Becomes higher. Further, in this method, since the entire cast product is reheated by the batch furnace or the continuous furnace, it is not possible to obtain the desired quality for only a part of the cast product. Even in the above-mentioned aluminum casting kettle in which the entire mold is heated by the flame torch, it is not possible to achieve the desired quality for only a part of the cast product.
【0007】他方、鋳型の特定部位等の所望部位に冷や
し金、保温用入子又は冷却用入子を設けた上記鋳造用金
型では、鋳造品の一部のみを目的とする品質にすること
が一応は可能ではあるものの、冷やし金等自体の内部特
性により溶湯の冷却速度を早まらせたり、遅らせたりす
ることから、冷却速度がバラツキやすく、その品質の実
現が不確実又は困難なものである。On the other hand, in the above-mentioned casting mold in which a chill, a heat retaining insert or a cooling insert is provided at a desired portion such as a specific portion of the mold, only a part of the cast product should have a desired quality. Although it is possible for a while, since the cooling rate of the molten metal is accelerated or delayed depending on the internal characteristics of the chiller itself, the cooling rate tends to vary, and its quality is uncertain or difficult to achieve. .
【0008】本発明は、上記従来の実情に鑑みてなされ
たものであって、鋳造品の全体又は一部を目的とする品
質にすることができ、しかもそれが安価であり、確実か
つ容易な鋳造方法を提供することを解決課題とする。The present invention has been made in view of the above-mentioned conventional circumstances, and the whole or a part of a cast product can be made to have a desired quality, and it is inexpensive, reliable and easy. The problem to be solved is to provide a casting method.
【0009】[0009]
(1)請求項1の鋳造方法は、鋳型のキャビティ内に溶
湯を注入後、該溶湯の所望部位に外部制御可能な熱量を
付与することにより、該所望部位における該溶湯の冷却
速度を制御することを特徴とする。請求項1の鋳造方法
では、鋳型のキャビティ内に溶湯を注入後、溶湯の所望
部位に熱量を付与する。ここで、熱量を付与しないこと
は消極的な自然冷却であるのに対し、請求項1の鋳造方
法のように、熱量を付与することは積極的なものであ
る。そして、プラスの熱量を付与することは加熱又は保
温であり、マイナスの熱量を付与することは冷却であ
る。(1) The casting method according to claim 1 controls the cooling rate of the molten metal in the desired portion by injecting the molten metal into the cavity of the mold and then applying an externally controllable amount of heat to the desired portion of the molten metal. It is characterized by According to the casting method of claim 1, after the molten metal is injected into the cavity of the mold, heat is applied to a desired portion of the molten metal. Here, not applying the amount of heat is passive natural cooling, whereas applying the amount of heat is positive, as in the casting method of claim 1. Applying a positive amount of heat is heating or heat retention, and applying a negative amount of heat is cooling.
【0010】こうして、請求項1の鋳造方法では、鋳造
品を常温程度まで自然冷却しつつ、積極的に加熱、保温
又は冷却を行なうため、常温程度まで冷却された鋳造品
を再加熱することはしない。このため、この方法では、
エネルギーの無駄な消費がなく、製造コストが低くな
る。また、鋳造品の薄肉部では大きな冷却速度で自然冷
却されるのに対し、鋳造品の厚肉部では小さな冷却速度
で自然冷却される。このため、この場合には、鋳造品の
全体を目的とする品質にしにくい。また、この場合、薄
肉部は厚肉部よりも先に凝固し、溶湯中の不純物や含有
ガスが厚肉部近傍に凝集することから、ガス抜きや押し
湯を有効に行い難く、鋳造品に引け巣を生じやすかっ
た。Thus, in the casting method according to the first aspect, since the cast product is naturally cooled to about room temperature and is actively heated, kept warm or cooled, the cast product cooled to about room temperature is not reheated. do not do. So this method
There is no waste of energy and manufacturing costs are low. Further, while the thin portion of the cast product is naturally cooled at a high cooling rate, the thick portion of the cast product is naturally cooled at a low cooling rate. Therefore, in this case, it is difficult to obtain the desired quality of the entire cast product. Further, in this case, the thin portion is solidified before the thick portion, and impurities and contained gas in the molten metal are aggregated in the vicinity of the thick portion, which makes it difficult to effectively perform degassing and riser, making it a cast product. It was prone to shrinkage.
【0011】これに対し、請求項1の鋳造方法におい
て、所望部位をキャビティの形状に応じて設定すること
で、鋳造品の全体を目的とする品質にしたり、鋳造品の
一部を目的とする品質にすることができる。また、ガス
抜きや押し湯を有効に行なうこともでき、引け巣の発生
を防止できる。そして、これらの間、熱量として外部制
御可能なものを採用しているため、所望部位における溶
湯の冷却速度が安定制御され、鋳造品の品質の実現が確
実かつ容易なものとなる。On the other hand, in the casting method according to the first aspect, by setting the desired portion in accordance with the shape of the cavity, the quality of the entire cast product can be obtained, or a part of the cast product can be obtained. Can be quality. Further, it is possible to effectively perform degassing and hot water, and to prevent shrinkage cavities from occurring. In addition, since the amount of heat that can be externally controlled is adopted during these periods, the cooling rate of the molten metal at the desired portion is stably controlled, and the quality of the cast product is surely and easily realized.
【0012】外部制御可能なプラスの熱量の付与手段と
しては、請求項2に係る手段の他、溶湯や鋳型の所望部
位に溶湯とは異なる材質であって電気抵抗の大きな抵抗
体を埋設し、この抵抗体へ通電する手段等を採用するこ
とができる。溶湯に埋設する抵抗体として黒鉛塊を採用
すれば、同時に加炭材としての機能をも発揮し得る。ま
た、外部制御可能なマイナスの熱量の付与手段として
は、鋳型の所望部位に冷却管を埋設し、この冷却管へ吸
熱可能な冷媒を流す手段等を採用することができる。As means for applying a positive amount of heat that can be externally controlled, in addition to the means according to claim 2, a molten material or a resistor made of a material different from the molten metal and having a large electric resistance is embedded in a desired portion of the mold, Means for energizing this resistor can be adopted. If graphite lumps are used as the resistor embedded in the molten metal, the function as a carburizing material can be exhibited at the same time. Further, as the externally controllable means for applying a negative heat quantity, a means such as burying a cooling pipe in a desired portion of the mold and flowing a heat-absorbable refrigerant into the cooling pipe can be employed.
【0013】(2)請求項2の鋳造方法は、請求項1記
載の鋳造方法において、所望部位で対の電極を溶湯に接
触させ、両該電極へ通電することによりプラスの熱量の
付与を行うことを特徴とする。通電は外部制御しやすい
ものであるため、請求項2の鋳造方法によれば、鋳造品
の所望部位における溶湯の冷却速度を確実に安定制御す
ることができ、鋳造品の品質の実現がさらに確実かつ容
易なものとなる。通電の外部制御の仕方としては、請求
項3に係る手段の他、同一鋳型と同一溶湯とを用いた事
前テストによって予め求めた電力パターンで通電する手
段を採用することができる。(2) The casting method according to claim 2 is the casting method according to claim 1, in which a pair of electrodes is brought into contact with the molten metal at a desired portion, and a positive amount of heat is applied by energizing both electrodes. It is characterized by Since energization can be easily controlled externally, according to the casting method of claim 2, the cooling rate of the molten metal at a desired portion of the cast product can be reliably and stably controlled, and the quality of the cast product is further ensured. And it will be easy. As a method for externally controlling the energization, in addition to the means according to claim 3, it is possible to employ means for energizing with a power pattern previously obtained by a preliminary test using the same mold and the same molten metal.
【0014】また、溶湯とは異なる材質の抵抗体を溶湯
の所望部位に埋設することは、その抵抗体をインモール
ドすることになる鋳造品の所望の品質上、加炭材として
の機能をも発揮し得る黒鉛棒や黒鉛塊である場合を除
き、不可能な場合が多い。これに対し、請求項2の鋳造
方法では、溶湯自体に通電して得られる電気抵抗による
発熱をプラスの熱量として利用しているため、抵抗体を
鋳造品にインモールドすることはなく、鋳造品の所望の
品質を損なうこともない。埋設はさせないが、溶湯と接
触する電極として、溶湯と異なる材質のものを採用する
場合には、加炭材としての機能をも発揮し得る黒鉛棒で
ある場合を除き、鋳造品の所望の品質上、鋳造後にその
電極を切除する必要を生じる。これに対し、鋳鉄鋳造を
行なうのであれば鋳鉄用溶接棒、アルミニウム鋳造を行
なうのであればアルミニウム棒というように、溶湯と同
一又は同種材質の電極を採用すれば、鋳造後の切除を最
小限にし、メンテナンスフリーも実現され、製造コスト
が低くなる。また、溶湯に埋設され又は接触し、溶湯と
は異なる材質の抵抗体又は電極として採用され得る黒鉛
棒では、注湯の際のヒートショック等でクラックを生じ
やすく、これにより電気抵抗が変化し、発熱量の変化か
ら外部制御性を損なうことになる。これに対し、溶湯と
同一又は同種材質の電極を採用すれば、注湯の際のヒー
トショック等でクラックを生じにくく、外部制御性を損
なわない。但し、クラックを生じにくい黒鉛塊を抵抗体
として採用すれば、外部制御性の不具合は解消される。Further, embedding a resistor made of a material different from that of the molten metal in a desired portion of the molten metal also functions as a carburizing material in view of the desired quality of the cast product in which the resistor is in-molded. It is often impossible except for a graphite rod or a lump of graphite that can perform. On the other hand, in the casting method of claim 2, since the heat generated by the electric resistance obtained by energizing the molten metal itself is used as a positive amount of heat, the resistor is not in-molded in the cast product, It does not impair the desired quality of. If you do not embed, but if you use a material different from the molten metal as the electrode that comes into contact with the molten metal, the desired quality of the cast product, unless it is a graphite rod that can also function as a carburizing material. Moreover, it is necessary to cut off the electrode after casting. On the other hand, if cast iron welding rods are used for casting, aluminum rods are used for aluminum casting, and electrodes of the same or similar material as the molten metal are used, cutting after casting is minimized. Also, maintenance-free is realized and the manufacturing cost is reduced. Further, in a graphite rod that is embedded in or in contact with the molten metal and can be adopted as a resistor or an electrode made of a material different from that of the molten metal, cracks easily occur due to heat shock during pouring, thereby changing the electrical resistance, External controllability is impaired due to changes in the amount of heat generated. On the other hand, if an electrode made of the same material as or a material similar to that of the molten metal is used, cracks are less likely to occur due to heat shock during pouring, and external controllability is not impaired. However, if a graphite lump that hardly causes cracks is adopted as the resistor, the problem of external controllability can be solved.
【0015】(3)請求項3の鋳造方法は、請求項2記
載の鋳造方法において、両電極への印加電圧と溶湯の所
望部位を流れる電流とから電気抵抗を求め、求めた電気
抵抗に基づいて該所望部位の温度を求め、求めた温度が
目標温度になるように両該電極への印加電圧をフィード
バック制御することを特徴とする。請求項3の鋳造方法
では、溶湯の所望部位の温度が目標温度になるように両
電極への印加電圧をフィードバック制御するため、鋳造
品の所望部位における溶湯の冷却速度がさらに確実に安
定制御され、鋳造品の品質の実現がさらに一層確実かつ
容易なものとなる。(3) The casting method according to claim 3 is the casting method according to claim 2, in which the electric resistance is obtained from the voltage applied to both electrodes and the current flowing through a desired portion of the molten metal, and based on the obtained electric resistance. Then, the temperature of the desired portion is obtained, and the voltage applied to both electrodes is feedback-controlled so that the obtained temperature becomes the target temperature. In the casting method of claim 3, since the voltage applied to both electrodes is feedback-controlled so that the temperature of the desired portion of the molten metal reaches the target temperature, the cooling rate of the molten metal at the desired portion of the cast product is more reliably and stably controlled. The realization of the quality of cast products becomes even more reliable and easier.
【0016】また、溶湯の所望部位の温度を検出するた
め、溶湯や鋳型の所望部位にPt−PtRhからなる熱
電対等の検出手段を設けることも考えられる。そして、
鋳型の所望部位に抵抗体等の発熱手段を設け、この発熱
手段を外部制御することも考えられる。しかし、鋳型に
検出手段を設ける場合には、直接に溶湯の温度を検出で
きない。また、鋳型に発熱手段を設ける場合には、直接
に溶湯の温度を制御できない。このため、これらの場合
には外部制御性が損なわれる。また、熱電対では、発熱
量が少なく、プラスの熱量としてほとんど利用すること
ができず、別に発熱手段を必要とし、非効率的である。
これに対し、請求項3の鋳造方法では、溶湯と接触する
電極に印加する電圧と、溶湯を流れる電流とから電気抵
抗を求め、求めた電気抵抗に基づいて所望部位の温度を
求めているため、直接に溶湯の温度を検出することとな
り、直接に溶湯の温度を制御して外部制御性が優れてい
る。また、請求項3の鋳造方法では、溶湯自体に通電し
て得られる電気抵抗による発熱をプラスの熱量として利
用し、別に発熱手段を必要としないため、効率的であ
る。Further, in order to detect the temperature of a desired portion of the molten metal, it is conceivable to provide a detecting means such as a thermocouple made of Pt-PtRh at a desired portion of the molten metal or the mold. And
It is also possible to provide a heat generating means such as a resistor at a desired portion of the mold and externally control this heat generating means. However, when the detecting means is provided in the mold, the temperature of the molten metal cannot be directly detected. Further, when the heat generating means is provided in the mold, the temperature of the molten metal cannot be controlled directly. Therefore, in these cases, the external controllability is impaired. In addition, the thermocouple has a small amount of heat generation and can hardly be used as a positive amount of heat, and a separate heat generating means is required, which is inefficient.
On the other hand, in the casting method of claim 3, the electric resistance is obtained from the voltage applied to the electrode in contact with the molten metal and the current flowing through the molten metal, and the temperature of the desired portion is obtained based on the obtained electric resistance. Since the temperature of the molten metal is directly detected, the temperature of the molten metal is directly controlled, and the external controllability is excellent. Further, in the casting method of the third aspect, the heat generated by the electric resistance obtained by energizing the molten metal itself is used as a positive amount of heat, and a separate heat generating means is not required, which is efficient.
【0017】[0017]
【発明の実施の形態】以下、各請求項の発明を具体化し
た実施形態1、2を図面を参照しつつ説明する。実施形
態1、2では図1に示す鋳鉄製サスペンションアームを
鋳造する。かかるサスペンションアームを鋳造する場
合、薄肉部nでは大きな冷却速度で自然冷却される一
方、厚肉部kでは小さな冷却速度で自然冷却される。こ
のため、この場合には、サスペンションアームの全体を
目的とする品質にしにくい。また、この場合、薄肉部n
は厚肉部kよりも先に凝固し、溶湯中の不純物や含有ガ
スが厚肉部k近傍に凝集することから、ガス抜きや押し
湯を有効に行い難く、サスペンションアームに引け巣を
生じやすかった。BEST MODE FOR CARRYING OUT THE INVENTION Embodiments 1 and 2 embodying the invention of each claim will be described below with reference to the drawings. In the first and second embodiments, the cast iron suspension arm shown in FIG. 1 is cast. When casting such a suspension arm, the thin portion n is naturally cooled at a high cooling rate, while the thick portion k is naturally cooled at a low cooling rate. For this reason, in this case, it is difficult to achieve the desired quality for the entire suspension arm. In this case, the thin portion n
Is solidified earlier than the thick portion k, and impurities and contained gas in the molten metal are condensed in the vicinity of the thick portion k, so it is difficult to effectively degas and raise the molten metal, and shrinkage cavities are likely to occur in the suspension arm. It was
【0018】(実施形態1)実施形態1では請求項1、
2を具体化している。まず、図2に示すように、サスペ
ンションアーム形状のキャビティCをもつ鋳型としての
砂型1、2を用意する(図2は図1のII−II矢視断
面図である。)。砂型1における薄肉部nを形成する部
位には、キャビティCに注湯すべき溶湯と同一材質の電
極3a、3bを設けている。(Embodiment 1) In Embodiment 1, claim 1
2 is embodied. First, as shown in FIG. 2, sand molds 1 and 2 as a mold having a suspension arm-shaped cavity C are prepared (FIG. 2 is a sectional view taken along the line II-II in FIG. 1). Electrodes 3a and 3b made of the same material as the molten metal to be poured into the cavity C are provided at the site where the thin portion n of the sand mold 1 is formed.
【0019】両電極3a、3bには電源4が接続され、
電源4には定電圧制御回路5が接続されている。定電圧
制御回路5は図3の下図に示す電力パターンPで電源4
が両電極3a、3bに通電するようになっている。この
電力パターンPは、同一砂型1、2と同一溶湯とを用い
た事前テストによって予め求めたものである。すなわ
ち、事前テストにおいて、両電極3a、3bに通電しな
い場合、FCD400からなる1400(℃)の溶湯
は、薄肉部nでは図3の上図に実線で示す曲線A1 によ
り自然冷却され、厚肉部kでは同図に破線で示す曲線A
2 により自然冷却された。なお、同図において1147
(℃)は溶湯の凝固温度である。そして、事前テストで
得られたサスペンションアームは、薄肉部nではパーラ
イトがマトリックスであり、その中に球状黒鉛が散在し
た比較的硬くかつ脆い金属組織になっていたのに対し、
厚肉部kではパーライトとフェライトとが混在してマト
リックスをなし、その中に球状黒鉛が散在した比較的軟
らかくかつ柔軟性に富む金属組織になっていた。かかる
サスペンションアームでは薄肉部nにおいて脆性破壊を
生じやすいため、薄肉部nを厚肉部kと同様の金属組織
又はフェライトがマトリックスをなす金属組織にする必
要がある。このためには、溶湯が薄肉部nにおいて同図
に一点鎖線で示す曲線A3 により冷却される必要があ
る。曲線A3 は250〜450(℃)において等温変態
期間Tを有することに特徴がある。A power source 4 is connected to both electrodes 3a, 3b,
A constant voltage control circuit 5 is connected to the power supply 4. The constant voltage control circuit 5 uses the power pattern P shown in the lower diagram of FIG.
Energizes both electrodes 3a, 3b. The power pattern P is obtained in advance by a preliminary test using the same sand molds 1 and 2 and the same molten metal. That is, in the preliminary test, when the electrodes 3a and 3b are not energized, the molten metal of 1400 (° C.) made of FCD400 is naturally cooled in the thin portion n by the curve A 1 shown by the solid line in the upper diagram of FIG. In part k, the curve A shown by the broken line in the figure
It was naturally cooled by 2 . In addition, in FIG.
(° C) is the solidification temperature of the molten metal. The suspension arm obtained in the preliminary test had a matrix of pearlite in the thin portion n, and had a relatively hard and brittle metallic structure in which spheroidal graphite was scattered.
In the thick portion k, pearlite and ferrite were mixed to form a matrix, and a spherically dispersed graphite was dispersed therein to form a relatively soft and flexible metal structure. In such a suspension arm, brittle fracture is likely to occur in the thin portion n, so the thin portion n needs to have the same metallographic structure as the thick part k or a metallographic structure in which ferrite forms a matrix. For this purpose, the molten metal needs to be cooled in the thin portion n by the curve A 3 shown by the chain line in the figure. The curve A 3 is characterized by having an isothermal transformation period T in the range of 250 to 450 (° C).
【0020】このため、曲線A1 と曲線A3 とで囲まれ
る部分の積分値を付与すべき熱量W(cal)として算
出する。この熱量は、薄肉部nを流れる電流をI
(A)、薄肉部nの電気抵抗をR(Ω)、時間をt
(秒)とすれば、 W=0.24I2 Rt でおおよそ示される。かかる熱量Wを電力に換算し、図
3の下図に示す電力パターンPを設定する。Therefore, the integrated value of the portion surrounded by the curves A 1 and A 3 is calculated as the heat quantity W (cal) to be given. This heat quantity causes the current flowing through the thin portion n to be I
(A), electric resistance of thin portion n is R (Ω), time is t
(Seconds) is approximately represented by W = 0.24I 2 Rt. The heat quantity W is converted into electric power, and the electric power pattern P shown in the lower diagram of FIG. 3 is set.
【0021】そして、図3の上図に示すように、砂型
1、2のキャビティC内に同一溶湯を注入する。両電極
3a、3bに溶湯が接触した後、電源4から図3の下図
に示す電力パターンPで両電極3a、3bに通電するこ
とにより、溶湯の薄肉部nを形成する部位にプラスの熱
量Wの付与を行う。こうして、実施形態1の鋳造方法で
は、サスペンションアームを常温程度まで自然冷却しつ
つ、積極的に加熱及び保温を行なうため、常温程度まで
冷却されたサスペンションアームを再加熱することはし
ない。このため、この方法では、エネルギーの無駄な消
費がなく、製造コストが低くなる。Then, as shown in the upper diagram of FIG. 3, the same molten metal is poured into the cavities C of the sand molds 1 and 2. After the molten metal comes into contact with both electrodes 3a, 3b, by energizing both electrodes 3a, 3b from the power source 4 with the power pattern P shown in the lower diagram of FIG. 3, a positive amount of heat W is applied to the portion forming the thin portion n of the molten metal. Is granted. Thus, in the casting method according to the first embodiment, the suspension arm is naturally cooled to about room temperature, and is actively heated and kept warm. Therefore, the suspension arm cooled to about room temperature is not reheated. Therefore, in this method, there is no waste of energy and the manufacturing cost is low.
【0022】また、この方法では、電極3a、3bを設
ける部位を薄肉部nに設定することでガス抜きや押し湯
を有効に行ない、引け巣の発生を防止しているととも
に、薄肉部nを厚肉部kと同様の金属組織又はフェライ
トがマトリックスをなす金属組織にしているため、サス
ペンションアームの全体を目的とする品質にすることが
できる。そして、これらの間、熱量Wを外部制御した電
力パターンPで付与しているため、薄肉部nにおける溶
湯の冷却速度が確実に安定制御され、サスペンションア
ームの品質の実現が確実かつ容易なものとなる。In addition, in this method, the portions where the electrodes 3a and 3b are provided are set to the thin portion n to effectively perform gas venting and hot water to prevent shrinkage cavities and to reduce the thin portion n. Since the metal structure is the same as that of the thick portion k or the metal structure of which ferrite forms a matrix, the quality of the entire suspension arm can be improved. Since the amount of heat W is applied by the externally controlled electric power pattern P during these periods, the cooling rate of the molten metal in the thin portion n is reliably and stably controlled, and the quality of the suspension arm is surely and easily realized. Become.
【0023】さらに、この方法では、溶湯自体に通電し
て得られる電気抵抗による発熱をプラスの熱量Wとして
利用しているため、抵抗体をサスペンションアームにイ
ンモールドすることはなく、サスペンションアームの所
望の品質を損なうこともない。また、この方法では、溶
湯と接触する電極3a、3bが溶湯と同一材質である。
このため、鋳造後の切除が最小限であり、メンテナンス
フリーも実現され、製造コストが低くなる。また、注湯
の際のヒートショック等でクラックを生じにくく、外部
制御性を損なわない。Further, in this method, since the heat generated by the electric resistance obtained by energizing the molten metal itself is utilized as the positive heat quantity W, the resistor is not in-molded on the suspension arm, and the desired suspension arm is obtained. It does not impair the quality of. Further, in this method, the electrodes 3a and 3b that come into contact with the molten metal are made of the same material as the molten metal.
Therefore, cutting after casting is minimized, maintenance-free is realized, and manufacturing cost is reduced. Also, cracks are less likely to occur due to heat shock during pouring, and external controllability is not impaired.
【0024】したがって、この方法を採用すれば、サス
ペンションアームの全体を目的とする品質にすることが
でき、しかもそれが安価であり、確実かつ容易なものと
なる。 (実施形態2)実施形態2では請求項1〜3を具体化し
ている。Therefore, if this method is adopted, the quality of the suspension arm as a whole can be made to be the desired quality, and it is inexpensive, reliable and easy. (Second Embodiment) In the second embodiment, claims 1 to 3 are embodied.
【0025】まず、図4に示すように、電極3a、3b
をもつ砂型1、2を用意する。両電極3a、3bには電
流検出回路6が接続され、電流検出回路6には定電圧制
御回路内蔵の電源7が接続されている。電源7の定電圧
制御回路は直流・交流チョッパ制御を行なうものであ
る。電流検出回路6には比較回路8が接続され、電源7
の定電圧制御回路と比較回路8とにはプログラマブルコ
ントローラ9が接続されている。プログラマブルコント
ローラ9には、種々のプログラムの他、上記図3の曲線
A3 がメモリーされている。他の構成は実施形態1と同
一である。First, as shown in FIG. 4, electrodes 3a and 3b are formed.
Prepare sand molds 1 and 2 with. A current detection circuit 6 is connected to both electrodes 3a and 3b, and a power supply 7 with a built-in constant voltage control circuit is connected to the current detection circuit 6. The constant voltage control circuit of the power supply 7 performs DC / AC chopper control. A comparison circuit 8 is connected to the current detection circuit 6, and a power supply 7
A programmable controller 9 is connected to the constant voltage control circuit and the comparison circuit 8. The programmable controller 9 stores various programs and the curve A 3 of FIG. 3 described above. Other configurations are the same as the first embodiment.
【0026】そして、実施形態1と同様に砂型1、2の
キャビティC内に溶湯を注入し、両電極3a、3bに溶
湯が接触した注入完了後、電源7から両電極3a、3b
に通電するとともに、電流検出回路6により薄肉部nを
流れる電流iを検出する。ここで、両電極3a、3bへ
印加した電圧をE、溶湯の電気抵抗をR1 、内部抵抗を
R2 とすれば、 R1 =E/i−R2 の関係があるため、溶湯の電気抵抗R1 がリアルタイム
に算出される。そして、キャビティCの形状に応じ、算
出された電気抵抗R1 により電気比抵抗ρが算出され
る。これらは事前テストにより明らかにされている。Then, as in the first embodiment, the molten metal is poured into the cavities C of the sand molds 1 and 2, and the molten metal comes into contact with both electrodes 3a and 3b.
And the current i flowing through the thin portion n is detected by the current detection circuit 6. Here, the electrodes 3a, the voltage applied to 3b E, the electric resistance of the molten metal R 1, if the internal resistance R 2, since there is a relation of R 1 = E / i-R 2, the molten metal electrical The resistance R 1 is calculated in real time. Then, according to the shape of the cavity C, the electrical resistivity ρ is calculated from the calculated electrical resistance R 1 . These have been revealed by preliminary tests.
【0027】この間、溶湯は温度降下に従って電気比抵
抗ρが低下することがわかっている。ここで、温度tと
電気比抵抗ρとの関係は、溶湯として融点が1536
(℃)の純鉄を採用する場合には図5の一点鎖線の曲線
Dとなる。曲線Dは、 ρ=−2.4+3.65×10-2t+0.65×10-6
t3 で表される。そして、合金の溶湯の電気比抵抗ρは、純
金属の比抵抗をρ0 、百分率当たりの残留抵抗をα、不
純物の重量%をcとすれば、 ρ=ρ0 +αc で求められる。このため、用いた溶湯は、図5の実線で
示す曲線Bのように、温度降下に従って電気比抵抗ρが
低下することがわかる。なお、図5の破線で示す曲線B
1 、B2 は鋳鉄の組成範囲内における温度と電気比抵抗
ρとの関係を示す。また、溶湯として純アルミニウムを
採用する場合には図5の二点鎖線の曲線Eとなる。During this period, it has been known that the electrical resistivity ρ of the molten metal decreases as the temperature drops. Here, the relationship between the temperature t and the electrical resistivity ρ is that the melting point of the molten metal is 1536.
When pure iron of (° C.) is adopted, the chain line D in FIG. 5 is obtained. The curve D is ρ = −2.4 + 3.65 × 10 −2 t + 0.65 × 10 −6
It is represented by t 3 . The electrical resistivity ρ of the molten alloy is determined by ρ = ρ 0 + α c, where ρ 0 is the resistivity of pure metal, α is the residual resistance per percentage, and c is the weight% of impurities. Therefore, it can be seen that the electric resistance ρ of the molten metal used decreases as the temperature drops, as indicated by the curve B shown by the solid line in FIG. The curve B shown by the broken line in FIG.
1 and B 2 represent the relationship between the temperature and the electrical resistivity ρ within the composition range of cast iron. Further, when pure aluminum is used as the molten metal, the curve E of the two-dot chain line in FIG. 5 is obtained.
【0028】このため、算出された電気比抵抗ρに基づ
いて薄肉部nの温度が把握される。そして、把握された
温度が図3の曲線A3 上の目標温度になるように両電極
3a、3bへの印加電圧Eをフィードバック制御する。
こうして、実施形態2の鋳造方法では、サスペンション
アームの薄肉部nにおける溶湯の冷却速度が確実に安定
制御され、鋳造品の品質の実現が確実かつ容易なものと
なる。Therefore, the temperature of the thin portion n can be grasped based on the calculated electrical resistivity ρ. Then, the applied voltage E to both electrodes 3a and 3b is feedback-controlled so that the grasped temperature becomes the target temperature on the curve A 3 in FIG.
Thus, according to the casting method of the second embodiment, the cooling rate of the molten metal in the thin portion n of the suspension arm is reliably and stably controlled, and the quality of the cast product is surely and easily realized.
【0029】また、この方法では、溶湯と接触する電極
3a、3bに印加する電圧Eと、溶湯を流れる電流iと
から電気抵抗R1 を求め、求めた電気抵抗R1 に基づい
て薄肉部nの温度を求めているため、直接に溶湯の温度
を検出することとなり、直接に溶湯の温度を制御して外
部制御性が優れている。さらに、この方法では、溶湯自
体に通電して得られる電気抵抗R1 による発熱をプラス
の熱量として利用し、別に発熱手段を必要としないた
め、効率的である。Further, in this method, the electric resistance R 1 is obtained from the voltage E applied to the electrodes 3a, 3b in contact with the molten metal and the current i flowing through the molten metal, and the thin portion n is calculated based on the obtained electric resistance R 1. Since the temperature of the molten metal is obtained, the temperature of the molten metal is directly detected, and the temperature of the molten metal is directly controlled, and the external controllability is excellent. Furthermore, this method is efficient because the heat generated by the electric resistance R 1 obtained by energizing the molten metal itself is used as a positive amount of heat and no additional heat generating means is required.
【0030】したがって、この方法を採用すれば、サス
ペンションアームの全体を目的とする品質にすることが
でき、しかもそれが実施形態1と比較してより安価であ
り、確実かつ容易なものとなる。なお、上記実施形態
1、2において、変態後の金属組織をベーナイトにする
ことも可能である。また、鋳造品の一部を目的とする品
質にする場合にも適用可能であることは上述の通りであ
る。この場合、電極3a、3bに流す電流として高周波
電流を採用すれば、高周波電流の表皮効果により、通電
する鋳造品の表面のみを加熱することができるため、鋳
造品の表面の機械的性質のみを改質することもできる。
そして、各請求項の発明はサスペンションアームの鋳造
方法に限られないことはいうまでもない。Therefore, if this method is adopted, the quality of the suspension arm as a whole can be made to be the desired quality, and it is cheaper, more reliable and easier than in the first embodiment. In Embodiments 1 and 2 above, the metal structure after transformation can be bainite. Further, as described above, the present invention can be applied to a case where a part of a cast product has a desired quality. In this case, if a high-frequency current is adopted as the current to be passed through the electrodes 3a and 3b, only the surface of the cast product that is energized can be heated due to the skin effect of the high-frequency current, so that only the mechanical properties of the surface of the cast product are maintained. It can also be modified.
Needless to say, the invention of each claim is not limited to the method of casting the suspension arm.
【0031】[0031]
【発明の効果】以上詳述したように、各請求項記載の鋳
造方法を採用すれば、鋳造品の全体又は一部を目的とす
る品質にすることができ、しかもそれが安価であり、確
実かつ容易なものとなる。As described in detail above, by adopting the casting method described in each claim, the whole or a part of the cast product can be made to have a desired quality, and it is inexpensive and reliable. And it will be easy.
【図1】実施形態1、2に係る鋳鉄製サスペンションア
ームの斜視図である。FIG. 1 is a perspective view of a cast iron suspension arm according to first and second embodiments.
【図2】実施形態1に係り、図1のII−II矢視断面
図及び装置の構成図である。FIG. 2 is a cross-sectional view taken along the line II-II of FIG. 1 and a configuration diagram of an apparatus according to the first embodiment.
【図3】実施形態1に係り、時間と温度及び電力との関
係を示すグラフである。FIG. 3 is a graph showing a relationship between time, temperature, and electric power according to the first embodiment.
【図4】実施形態2に係り、図1のIV−IV矢視断面
図及び装置の構成図である。FIG. 4 is a sectional view taken along the line IV-IV in FIG. 1 and a configuration diagram of the apparatus according to the second embodiment.
【図5】実施形態2に係り、温度と電気比抵抗との関係
を示すグラフである。FIG. 5 is a graph showing a relationship between temperature and electrical resistivity according to the second embodiment.
1、2…砂型(鋳型) C…キャビティ n…薄肉部 3a、3b…電極 1, 2 ... Sand mold (mold) C ... Cavity n ... Thin portion 3a, 3b ... Electrode
Claims (3)
湯の所望部位に外部制御可能な熱量を付与することによ
り、該所望部位における該溶湯の冷却速度を制御するこ
とを特徴とする鋳造方法。1. A casting characterized by controlling the cooling rate of the molten metal in the desired portion by injecting the molten metal into the cavity of the mold and then applying an externally controllable amount of heat to the desired portion of the molten metal. Method.
該電極へ通電することによりプラスの熱量の付与を行う
ことを特徴とする請求項1記載の鋳造方法。2. The casting method according to claim 1, wherein a pair of electrodes is brought into contact with the molten metal at a desired portion and a positive amount of heat is applied by energizing both electrodes.
れる電流とから電気抵抗を求め、求めた電気抵抗に基づ
いて該所望部位の温度を求め、求めた温度が目標温度に
なるように両該電極への印加電圧をフィードバック制御
することを特徴とする請求項2記載の鋳造方法。3. The electric resistance is obtained from the voltage applied to both electrodes and the current flowing through the desired portion of the molten metal, the temperature of the desired portion is obtained based on the obtained electric resistance, and the obtained temperature becomes the target temperature. The casting method according to claim 2, wherein the voltage applied to both electrodes is feedback-controlled.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1022796A JPH09201664A (en) | 1996-01-24 | 1996-01-24 | Casting method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1022796A JPH09201664A (en) | 1996-01-24 | 1996-01-24 | Casting method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH09201664A true JPH09201664A (en) | 1997-08-05 |
Family
ID=11744403
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1022796A Pending JPH09201664A (en) | 1996-01-24 | 1996-01-24 | Casting method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH09201664A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2485848A (en) * | 2010-11-29 | 2012-05-30 | Halliburton Energy Serv Inc | Making moulds by 3d printing and making bodies in moulds |
US9790744B2 (en) | 2010-11-29 | 2017-10-17 | Halliburton Energy Services, Inc. | Forming objects by infiltrating a printed matrix |
-
1996
- 1996-01-24 JP JP1022796A patent/JPH09201664A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2485848A (en) * | 2010-11-29 | 2012-05-30 | Halliburton Energy Serv Inc | Making moulds by 3d printing and making bodies in moulds |
EP2646185A2 (en) * | 2010-11-29 | 2013-10-09 | Halliburton Energy Services, Inc. | Improvements in heat flow control for molding downhole equipment |
EP2910322A1 (en) * | 2010-11-29 | 2015-08-26 | Halliburton Energy Services, Inc. | Improvements in heat flow control for molding downhole equipment |
US9790744B2 (en) | 2010-11-29 | 2017-10-17 | Halliburton Energy Services, Inc. | Forming objects by infiltrating a printed matrix |
GB2485848B (en) * | 2010-11-29 | 2018-07-11 | Halliburton Energy Services Inc | Improvements in heat flow control for molding downhole equipment |
US10399258B2 (en) | 2010-11-29 | 2019-09-03 | Halliburton Energy Services, Inc. | Heat flow control for molding downhole equipment |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7617863B2 (en) | Method and apparatus for temperature control in a continuous casting furnace | |
CN107653386A (en) | A kind of preparation method of Cu Cr Nb alloys | |
CN104308123A (en) | Copper and steel bimetallic casting application technology | |
CN113061741B (en) | Electroslag remelting composite device and method for improving temperature distribution of slag bath by external magnetic field | |
CN106424567A (en) | Composite electromagnetic pulse solidification structure treatment device and method for casting of ultralumin | |
JPH09201664A (en) | Casting method | |
JP2009502515A (en) | Method and apparatus for producing a casting containing metal | |
CN104903024B (en) | The continuous casing of the ingot bar being made up of titanium or titanium alloy | |
CN116748478A (en) | High-carbon steel continuous casting equipment and method | |
CN108251717A (en) | A kind of forging and stamping wheel hub aluminium alloy cast ingot | |
US2779073A (en) | Receptacle for molten metal | |
CN109434040B (en) | Preparation method of high-density platinum-rhodium alloy ingot for TFT platinum channel | |
Askeland et al. | Secondary graphite formation in tempered nodular cast iron weldments | |
CN109468523A (en) | The heat treatment process of rare-earth alloy casting iron glass mold material | |
JP2011050976A (en) | Method for manufacturing thin plate-like product of spherical graphite cast iron | |
JP3768778B2 (en) | Method for producing thick spheroidal graphite cast iron product | |
JP5203680B2 (en) | Metal electroslag remelting process and ingot mold used therefor | |
JP2000274951A (en) | Cold crucible induction melting system and tapping method | |
CN114480981B (en) | Nano precipitation phase reinforced iron-chromium-nickel-aluminum alloy and preparation method thereof | |
JPH0452067A (en) | Production of cast ingot | |
Zaitsev et al. | Reliable steel-copper anodes for direct current electric arc furnaces manufactured by electroslag remelting under two circuits diagram | |
CN116814965A (en) | Method and device for improving electroslag remelting production capacity | |
JP2002273561A (en) | Method and apparatus for producing cast body having unidirectional solidified structure | |
KR20010017222A (en) | Large steel ingot casting by hot top heating method | |
JPS6057418B2 (en) | Method and device for producing unidirectionally solidified material |