JPH09201522A - Finely granulating apparatus and finely granulating method - Google Patents

Finely granulating apparatus and finely granulating method

Info

Publication number
JPH09201522A
JPH09201522A JP8013075A JP1307596A JPH09201522A JP H09201522 A JPH09201522 A JP H09201522A JP 8013075 A JP8013075 A JP 8013075A JP 1307596 A JP1307596 A JP 1307596A JP H09201522 A JPH09201522 A JP H09201522A
Authority
JP
Japan
Prior art keywords
fluid
block
flow
groove
holes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8013075A
Other languages
Japanese (ja)
Other versions
JP3167913B2 (en
Inventor
Tadao Onodera
忠男 小野寺
Tsutomu Kaminari
力 神成
Koichi Koyano
晃一 古谷野
Kazutoshi Hasegawa
一利 長谷川
Yoshihiro Furukawa
義博 古川
Fusamitsu Fujishima
総光 藤島
Fumio Yasuda
文夫 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JIINASU KK
Original Assignee
JIINASU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JIINASU KK filed Critical JIINASU KK
Priority to JP01307596A priority Critical patent/JP3167913B2/en
Publication of JPH09201522A publication Critical patent/JPH09201522A/en
Application granted granted Critical
Publication of JP3167913B2 publication Critical patent/JP3167913B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Colloid Chemistry (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To get rid of wear of a part with which a fluid comes into collision in a liner material and provide finely granulating function stably for a long duration. SOLUTION: This apparatus is so composed by arranging a plurality of blocks practically closely, in which through holes 10a, 10b, 11a, 12a, 12b to pass a fluid to be finely granulated are formed, as to set the direction of the through holes along the flow of a fluid. In this case, at least two through holes are formed in a block 10 in the fluid introducing side, one in an intermediate block 11, and at least two in a block 12 in the fluid discharging side. Moreover, groove-like routes 10e, 10f, which are to be communicated with through holes in respectively neighboring blocks, change the flow of a fluid into countercurrent flow, and provide swirling force, are formed in the block surface, which is either the opposing face to the block 10 or the opposing face to the intermediate block 11. Furthermore, groove-like routes 12e, 12f, which are made to communicate with through holes in respectively neighboring blocks, change the flow of a fluid passing the through hole 11a of the intermediate block 11 into the flow along the block surface, and damp the swirling force, are formed in the block surface, which is either the opposing face to the intermediate block 11 or the opposing face to the block 12 in the discharging side.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は各種物質を微粒化す
るための装置及び方法に関し、より詳しくは、素材を懸
濁した液体を超高圧で衝突させることにより、瞬間的に
乳化、分散または微粉砕を行う微粒化装置及び微粒化方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus and method for atomizing various substances, and more specifically, it is capable of instantaneously emulsifying, dispersing or pulverizing by suspending a liquid in which a material is suspended at high pressure. The present invention relates to an atomizing device and an atomizing method for pulverizing.

【0002】[0002]

【従来の技術】従来、この種の微粒化装置としては、例
えば特開平2 −261525号に記載の乳化装置が知られてい
る。この乳化装置は、図7に示すように、混合液流路を
硬質のプレート材からなる2枚のライナー部材50,5
1によって閉塞し、流入側に配置した第1のライナー部
材50には、2つの貫通孔50a,50bを形成すると
ともに各貫通孔出口を連通する第1の溝状通路50cを
形成し、また、その第1のライナー部材50に密着して
下流側に配置した第2のライナー部材51は、第1の溝
状通路50cと直交する方向に第2の溝状通路51cを
配置するとともに、その両端には混合液を排出するため
の貫通孔51a,51bが形成されている。これら第1
及び第2のライナー部材50,51内に高圧の混合液を
通過させることにより、混合液の流れを強制的に対向流
とするとともに加速させ、衝突させて乳化を行うように
なっている。
2. Description of the Related Art Conventionally, as this type of atomizing device, for example, an emulsifying device described in JP-A-2-261525 is known. As shown in FIG. 7, this emulsification device includes two liner members 50, 5 each having a mixed liquid flow path made of a hard plate material.
The first liner member 50, which is closed by 1 and disposed on the inflow side, has two through holes 50a and 50b and a first groove-shaped passage 50c communicating with each through hole outlet, and The second liner member 51 arranged on the downstream side in close contact with the first liner member 50 has the second groove-shaped passage 51c arranged in a direction orthogonal to the first groove-shaped passage 50c and both ends thereof. Through holes 51a and 51b for discharging the mixed liquid are formed therein. These first
By passing the high-pressure mixed liquid through the second liner members 50 and 51, the mixed liquid is forced to flow countercurrently, accelerated, and collided for emulsification.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来の
乳化装置では、ライナー部材に焼結ダイヤ,人工サファ
イヤ等の耐摩耗性材料を使用してはいるものの、混合液
が最大流速で衝突する溝状通路50c,51cの中心部
では摩耗が著しく、連続して使用すると微粒化の性能低
下が避けられない。従って、乳化の性能を維持するため
には、高価なライナー部材を定期的に交換しなければな
らないことから、ライナー部材の長寿命化が要望されて
いる。
However, in the conventional emulsifying apparatus, although the wear resistant material such as the sintered diamond and the artificial sapphire is used for the liner member, the groove shape in which the mixed liquid collides at the maximum flow velocity is used. The central portions of the passages 50c and 51c are significantly worn, and if they are continuously used, a decrease in atomization performance cannot be avoided. Therefore, in order to maintain the emulsification performance, the expensive liner member must be periodically replaced, and therefore the life of the liner member is required to be extended.

【0004】また、この種の乳化装置では、所定の微粒
化効果を得るためには混合液の加圧ポンプ及びその動力
を小さくすることができないため、装置を小型化して省
エネを図ることができないという問題もある。
Further, in this type of emulsifying apparatus, it is not possible to reduce the pressure pump of the mixed liquid and its power in order to obtain a predetermined atomization effect, so that the apparatus cannot be downsized to save energy. There is also a problem.

【0005】本発明は以上のような従来の乳化装置にお
ける課題を考慮してなされたものであり、ライナー部材
における流体衝突部分で発生する摩耗を軽減して、長期
にわたり安定して微粒化作用を発揮することができ、且
つ微粒化効果を高めて省エネを図ることのできる微粒化
装置及び微粒化方法を提供するものである。
The present invention has been made in consideration of the problems in the conventional emulsifying apparatus as described above, and reduces the wear generated in the fluid collision portion of the liner member to stably achieve the atomization operation for a long period of time. (EN) Provided are an atomizing device and an atomizing method which can be exhibited and which can enhance the atomizing effect and save energy.

【0006】[0006]

【課題を解決するための手段】本発明の微粒化装置は、
微粒化すべき流体を通過させることのできる貫通孔を形
成したブロックを、貫通方向が流体の流れ方向に沿うよ
うに複数個実質的に密着配設した微粒化装置において、
流体導入側ブロックに貫通孔を、少なくとも2本、中間
ブロックに1本、流体排出側ブロックに少なくとも2本
それぞれ形成し、導入側ブロックと中間ブロックの対向
面のいずれかのブロック表面に、隣接する各ブロックの
貫通孔と連通され、流体を対向流に変えるとともに旋回
力を付与する溝状通路を形成し、中間ブロックと排出側
ブロックの対向面におけるいずれかのブロック表面に、
隣接する各ブロックの貫通孔と連通され、中間ブロック
の貫通孔を通過した流体の流れをブロック表面に沿う方
向に変えるとともに旋回力を減衰させる溝状通路を形成
したことを要旨とする。
Means for Solving the Problems The atomizing device of the present invention comprises:
In the atomization device, in which a plurality of blocks each having a through hole through which the fluid to be atomized can be formed are disposed in close contact with each other so that the penetration direction is along the flow direction of the fluid,
At least two through holes are formed in the fluid introduction side block, at least one through hole is formed in the intermediate block, and at least two through holes are formed in the fluid discharge side block, and they are adjacent to either block surface of the opposing surfaces of the introduction side block and the intermediate block. Forming a groove-shaped passage that communicates with the through-hole of each block and changes the fluid into an opposing flow and imparts a swirling force, on any one of the opposing surfaces of the intermediate block and the discharge side block,
The gist of the present invention is to form a groove-shaped passage that communicates with the through holes of the adjacent blocks, changes the flow of the fluid passing through the through holes of the intermediate block in the direction along the block surface, and attenuates the swirling force.

【0007】上記微粒化装置において、溝状通路の断面
形状は丸溝またはU字溝に構成することが好ましい。ま
た、上記各ブロックは、セラミックス、超硬合金、ダイ
ヤモンド等の耐摩耗性部材から構成することができる。
本発明における流体とは、液体または粉体からなる素材
を含む液状流体を示し、素材として液体を選択する場合
は乳化が行われ、粉体を選択する場合は分散,微粉砕が
行われる。乳化においては、各種疎水物の水中での微小
液滴化、各種親水物の油中での微小液滴化等が示され、
分散においては微粒子の金属酸化物,その他無機顔料,
有機顔料等の液中での凝集解砕が示され、微粉砕におい
ては金属酸化物,その他無機顔料,有機顔料等の液中で
の単粒子の微小化が示される。また、流体を超高速で衝
突させるには、微粒化装置に導入する流体を例えば高圧
ポンプを用いて100 〜3000kg/cm2に加圧することが好ま
しい。
In the above atomizer, it is preferable that the groove-shaped passage has a cross-sectional shape of a round groove or a U-shaped groove. Further, each of the above blocks can be made of a wear resistant member such as ceramics, cemented carbide or diamond.
The fluid in the present invention refers to a liquid fluid containing a material consisting of liquid or powder, and when liquid is selected as the material, emulsification is performed, and when powder is selected, dispersion and fine pulverization are performed. In emulsification, various droplets of various hydrophobic substances in water, various droplets of various hydrophilic substances in oil, etc. are shown.
For dispersion, fine particle metal oxides, other inorganic pigments,
Agglomeration and disintegration in liquids such as organic pigments are shown, and fine pulverization shows that single particles are made finer in liquids such as metal oxides, other inorganic pigments and organic pigments. Further, in order to collide the fluid at an ultra-high speed, it is preferable to pressurize the fluid to be introduced into the atomizer to 100 to 3000 kg / cm 2 using, for example, a high pressure pump.

【0008】また、上記導入側及び排出側ブロックにお
ける貫通孔は、ブロックに少なくとも2個形成されてい
ればよいが、それ以上であってもよい。なお、貫通孔を
3個以上形成する場合は、ブロックの中心から放射状に
延びる溝状通路で連通させることが好ましい。
Further, at least two through holes in the introduction side block and the discharge side block may be formed in the block, but more holes may be formed. When three or more through holes are formed, it is preferable that the blocks be communicated with each other through a groove-shaped passage extending radially from the center of the block.

【0009】また、上記微粒化装置において導入側ブロ
ックの溝状通路は、例えば、2個の貫通孔の中心部に配
置される有底円筒状凹部と、その有底筒状凹部の縁部か
ら反対向きに湾曲して延設され2個の貫通孔をS字状に
連通する溝状通路とによって構成することができる。ま
た、排出側ブロックの溝状通路については、対向面を基
準として上記溝状通路と対称に配置された溝状通路で構
成することができる。要するに、導入側ブロックと排出
側ブロックにおける溝状通路は、対向流に旋回力を付与
することができ、また、与えた旋回力を減衰させるもの
であれば、任意の形状の通路を利用することができる。
Further, in the above-mentioned atomization device, the groove-shaped passage of the introduction-side block includes, for example, a bottomed cylindrical concave portion arranged at the center of two through holes and an edge portion of the bottomed cylindrical concave portion. It can be configured by a groove-shaped passage that extends in a curved manner in the opposite direction and that communicates the two through holes in an S-shape. Further, the groove-shaped passage of the discharge side block can be configured by a groove-shaped passage that is arranged symmetrically with the groove-shaped passage with respect to the facing surface. In short, the groove-shaped passages in the introduction side block and the discharge side block can use a passage of any shape as long as it can give a swirling force to the counter flow and can damp the given swirling force. You can

【0010】また、本発明の微粒化方法は、微粒化すべ
き流体の流路に沿って貫通孔を有し実質的に密着して配
設された3個のブロックに流体を導入し、高速で衝突さ
せることにより微粒化を行う微粒化方法であって、流体
導入側ブロックの貫通孔から導入した流体を対向流に変
えるとともに旋回力を付与して衝突させ、中間ブロック
の貫通孔にて流体の旋回状態を維持しつつその流れを流
路方向に変え、排出側ブロックにて中間ブロックを通過
した流体の流れを流路と直交する方向に変えつつ旋回力
を減衰させ、貫通孔から排出することを要旨とする。
Further, the atomizing method of the present invention introduces the fluid into three blocks which have through holes along the flow path of the fluid to be atomized and which are disposed substantially in close contact with each other, and at high speed. It is a atomization method that atomizes by colliding, changing the fluid introduced from the through hole of the fluid introduction side block to a counter flow and imparting a swirling force to cause collision, and the fluid in the through hole of the intermediate block While maintaining the swirling state, the flow is changed to the flow path direction, and the flow of the fluid passing through the intermediate block in the discharge side block is changed to the direction orthogonal to the flow path while the swirling force is attenuated and discharged from the through hole. Is the gist.

【0011】本発明に従えば、導入側ブロックと中間ブ
ロックの対向面のいずれかの面に形成された溝状通路内
に案内された流体は、加速されて対向流にされるととも
に旋回力が付与された状態で衝突し、渦巻流が生成され
る。渦巻流となった流体は、上記溝状通路の断面積より
も大きな断面積にて構成されている中間ブロックの貫通
孔に案内されることにより、衝突エネルギーが低減さ
れ、且つその渦巻状態が維持される。次いで排出側ブロ
ックの対向面と衝突して再度微粒化が行われ、さらにそ
の流体は、溝状通路によってその流れが流路と直交する
方向に変えられ、旋回力が減衰されつつ貫通孔から排出
される。このように、本発明は衝突による微粒化に加
え、流体に旋回力を与えて乱流状態を加速し、次に旋回
力を減衰させることにより、さらなる微粒化効果を得る
ものである。
According to the present invention, the fluid guided in the groove-shaped passage formed on either of the facing surfaces of the introduction block and the intermediate block is accelerated into a counterflow and the swirling force is increased. They collide in the applied state, and a swirl flow is generated. The fluid that has become a vortex flow is guided to the through hole of the intermediate block having a cross-sectional area larger than the cross-sectional area of the groove-like passage, thereby reducing collision energy and maintaining the vortex state. To be done. Then, it collides with the facing surface of the discharge side block and atomizes again, and the flow of the fluid is changed by the groove-shaped passage in the direction orthogonal to the flow passage, and the fluid is discharged from the through hole while the swirling force is attenuated. To be done. As described above, in the present invention, in addition to atomization by collision, a swirling force is applied to a fluid to accelerate a turbulent state, and then the swirling force is attenuated to obtain a further atomization effect.

【0012】[0012]

【発明の実施の形態】以下、図面に示した実施例に基づ
いて本発明を詳細に説明する。図1は、本発明の微粒化
方法に適用される微粒化装置及びその周辺設備を含む微
粒化システムの概略構成を示したものであり、その構成
は、水系流体と油系流体をそれぞれ別に引き込んで合流
させることにより混合液(微粒化すべき流体)とし、そ
の混合液を高圧ポンプを用いて微粒化装置に圧送し、そ
の微粒化装置内で乳化、分散または微粉砕を行うように
なっている。以下、各部の構成について説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail based on embodiments shown in the drawings. FIG. 1 shows a schematic structure of an atomizing system including an atomizing apparatus and peripheral equipment applied to the atomizing method of the present invention. The configuration is such that an aqueous fluid and an oil fluid are drawn separately. It is made to be a mixed liquid (fluid to be atomized) by merging with, and the mixed liquid is pressure-fed to an atomizer using a high-pressure pump, and emulsification, dispersion or fine pulverization is performed in the atomizer. . The configuration of each unit will be described below.

【0013】同図において、微粒化システム1は水系流
体を貯留するための容器2と油系流体を貯留するための
容器3とを備えており、これらの容器2,3内の各流体
は、弁4,5にてそれぞれ流量が調節され、配管6で合
流され、高圧ポンプ7の吸入口に供給されるようになっ
ている。高圧ポンプ7は、混合液を1000〜1500kg/cm2
加圧して超高速流を形成した後、微粒化装置8に導入す
るようになっている。本発明の特徴部分である微粒化装
置8は、図2に示すように、流体導入側ブロックとして
の円盤状のディスク10及び中間ブロックとしての円盤
状のディスク11及び流体排出側ブロックとしてのディ
スク12を、流路に沿って直列に、且つ上記記載順に円
筒状容器9内に密着させて配置したものである。なお、
同図では、説明を容易にするためディスク10及び11
を離した状態で示し、ディスク12については対向面に
形成した溝状通路の形状が分かるように展開している。
また、以下の説明では、各ディスクにおける上流側の面
を表面、下流側の面を裏面と呼ぶ。
In the figure, the atomization system 1 is provided with a container 2 for storing an aqueous fluid and a container 3 for storing an oil fluid, and each fluid in these containers 2 and 3 is The flow rates are adjusted by the valves 4 and 5, respectively, are joined by the pipe 6, and are supplied to the suction port of the high-pressure pump 7. The high-pressure pump 7 is adapted to pressurize the mixed solution to 1000 to 1500 kg / cm 2 to form an ultra-high-speed flow, and then introduce it into the atomizer 8. As shown in FIG. 2, the atomizing device 8, which is a characteristic part of the present invention, has a disc-shaped disc 10 as a fluid introduction side block, a disc-shaped disc 11 as an intermediate block, and a disc 12 as a fluid discharge side block. Are arranged in series along the flow path and in close contact with each other in the cylindrical container 9 in the order described above. In addition,
In the figure, the disks 10 and 11 are shown for ease of explanation.
Are shown separated from each other, and the disk 12 is developed so that the shape of the groove-like passage formed on the facing surface can be seen.
In the following description, the upstream surface of each disk is called the front surface, and the downstream surface is called the back surface.

【0014】ディスク10は、直径10mm、厚さ3mmか
らなるセラミックス、超硬合金,ダイヤモンド等の耐摩
耗性部材から構成されている。このディスク10には同
心円上の2箇所に直径0.5mmの導入貫通孔10a,1
0bが形成されている。このディスク10の裏面10c
中心部には、深さ0.05mmの有底筒状凹部からなる渦
巻室10dが形成されている。
The disk 10 is composed of a wear resistant member such as ceramics, cemented carbide, diamond, etc., having a diameter of 10 mm and a thickness of 3 mm. This disk 10 has two through holes 10a, 1 having a diameter of 0.5 mm at two concentric circles.
0b is formed. The back surface 10c of this disc 10
A swirl chamber 10d formed of a bottomed cylindrical recess having a depth of 0.05 mm is formed in the central portion.

【0015】上記導入貫通孔10aの出口部10a´と
渦巻室10d及び導入貫通孔10bの出口部10b´
は、幅0.1mm,深さ0.05mmの溝状導入通路10
e,10fによってS字状に連通されている。詳しく
は、溝状導入通路10eは、渦巻室10dの縁部からそ
の接線方向に延びて湾曲するように形成されており、溝
状導入通路10fも同様に、渦巻室10dの上記縁部に
対して直径方向に対向する位置を始点として湾曲して形
成されている。このような構成により、渦巻室10dに
向かって流れる対向流A´,B´が形成される。
The outlet portion 10a 'of the introduction through hole 10a, the spiral chamber 10d, and the outlet portion 10b' of the introduction through hole 10b.
Is a groove-shaped introduction passage 10 having a width of 0.1 mm and a depth of 0.05 mm.
It is connected in an S shape by e and 10f. More specifically, the groove-shaped introduction passage 10e is formed so as to extend in the tangential direction from the edge of the spiral chamber 10d and to be curved, and the groove-shaped introduction passage 10f is similarly formed to the edge of the spiral chamber 10d. And is formed to be curved starting from a position facing each other in the diametrical direction. With such a configuration, countercurrents A ′ and B ′ that flow toward the spiral chamber 10d are formed.

【0016】ディスク11は上記ディスク10と同径、
同じ厚さ、同じ材質からなり、渦巻室10dと対応する
位置に、溝状導入通路10eの断面積より大きい断面積
を有する直径0.14mmの中間貫通孔11aが形成され
ている。
The disk 11 has the same diameter as the disk 10,
An intermediate through hole 11a having the same thickness and the same material and having a cross-sectional area larger than the cross-sectional area of the groove-shaped introduction passage 10e and having a diameter of 0.14 mm is formed at a position corresponding to the spiral chamber 10d.

【0017】ディスク12は、上記ディスク10と同
径、同じ厚さ、同じ材質からなり、同心円上の2箇所に
直径0.6mmの排出貫通孔12a,12bが形成されて
おり、その中心部には有底筒状凹部からなる貯留室12
dが形成されている。これら排出貫通孔12aの入口部
12a´と貯留室12dと排出貫通孔12bの入口部1
2b´は、溝状排出通路12e,12fによってS字状
に連通されている。この溝状排出通路12e,12fは
渦巻方向に対して正方向、すなわち逆S字状(流体下流
側から見て)に形成されており、それにより、渦巻流C
の流れをディスク12の外周に向けて変えるとともに、
旋回力を減衰させるようになっている。
The disk 12 is made of the same diameter, the same thickness, and the same material as the disk 10, and has discharge through holes 12a, 12b having a diameter of 0.6 mm formed at two locations on a concentric circle, and its center portion. Is a storage chamber 12 formed of a bottomed cylindrical recess
d is formed. The inlet portion 12a 'of the discharge through hole 12a, the storage chamber 12d, and the inlet portion 1 of the discharge through hole 12b.
2b 'is communicated in an S-shape by the groove-shaped discharge passages 12e and 12f. The groove-shaped discharge passages 12e, 12f are formed in a forward direction with respect to the spiral direction, that is, in an inverted S shape (as viewed from the fluid downstream side), whereby the spiral flow C is formed.
Change the flow of toward the outer circumference of the disk 12,
It is designed to reduce the turning force.

【0018】また、ディスク11に形成されている中間
貫通孔11aの径を調節すれば、ディスク10における
溝状導入通路10e,10f内を流れる流速を所望の値
に設定することができる。
By adjusting the diameter of the intermediate through hole 11a formed in the disk 11, the flow velocity flowing in the groove-shaped introduction passages 10e, 10f in the disk 10 can be set to a desired value.

【0019】また、図3はディスク12の溝状通路を、
渦巻方向に対して逆方向、すなわちS字状(流体下流側
から見て)に形成したものであり、この構成によれば、
図2に示したディスク12に比べ、旋回力の減衰効果が
高められる。
Further, FIG. 3 shows that the groove-shaped passage of the disk 12 is
It is formed in a direction opposite to the spiral direction, that is, in an S shape (as viewed from the fluid downstream side). According to this configuration,
As compared with the disk 12 shown in FIG. 2, the effect of damping the turning force is enhanced.

【0020】次に、図2を参照して上記構成を有する本
実施例の動作について説明する。高圧ポンプ7によって
加圧され超高速流体とされた流体が微粒化装置8に導入
されると、まず、円筒状容9内にて流れAと流れBに分
岐され、導入貫通孔10aと10bを通過してディスク
11の対向面と衝突した後、溝状導入通路10e,10
f内に案内されディスク10の中心に向けて強制的に方
向が変えられ、対向流となる。次いで流体は加速され、
渦巻室10dに対しその接線方向から対向して渦巻室1
0d内に進入し、それにより流体A´と流体B´は渦巻
室10d内で合流して衝突し、微粒化され、渦巻流Cを
発生する。次いで、渦巻室10d内にて微粒化された流
体は、渦巻状態を維持したまま中間貫通孔11aを通過
してディスク12へ送出される。このとき、貫通孔11
aの断面積は溝状通路10e,10fのそれよりも大き
く形成されているため、衝突エネルギーが貫通孔11a
にて開放され、ディスク10における流体衝突部分、す
なわち渦巻室10dで発生する摩耗は低減される。渦巻
状態にて送出された流体は、さらにディスク12の貯留
室12dに衝突して再度微粒化が行われる。そして溝状
通路12e及び12fに分割され、その流れが流路と直
交する方向に変えられるとともに渦巻状態が減衰され、
排出貫通孔12a,12bから排出される。
Next, the operation of this embodiment having the above configuration will be described with reference to FIG. When the fluid pressurized by the high-pressure pump 7 and made into an ultra-high-speed fluid is introduced into the atomizer 8, first, the fluid is branched into a flow A and a flow B in the cylindrical volume 9, and the introduction through holes 10a and 10b are introduced. After passing through and colliding with the facing surface of the disk 11, the groove-shaped introduction passages 10e, 10
Guided in f, the direction of the disk 10 is forcibly changed toward the center of the disk 10 to form a counterflow. The fluid is then accelerated,
The spiral chamber 1 faces the spiral chamber 10d from the tangential direction thereof.
The fluid A ′ and the fluid B ′ merge in the swirl chamber 10 d to collide with each other, atomize, and generate a swirl flow C. Next, the atomized fluid in the spiral chamber 10d is delivered to the disk 12 while passing through the intermediate through hole 11a while maintaining the spiral state. At this time, the through hole 11
Since the cross-sectional area of a is formed larger than that of the groove-shaped passages 10e and 10f, the collision energy is increased by the through hole 11a.
And the wear generated in the fluid collision portion of the disk 10, that is, in the spiral chamber 10d is reduced. The fluid delivered in the spiral state further collides with the storage chamber 12d of the disk 12 to be atomized again. Then, it is divided into groove-shaped passages 12e and 12f, the flow of which is changed in the direction orthogonal to the flow passage, and the spiral state is attenuated,
It is discharged from the discharge through holes 12a and 12b.

【0021】[0021]

【実施例】次に、本発明の微粒化装置を用いて乳化、分
散、粉砕を行った結果を以下に示す。なお、マイクロ
フルイダイザー社(以下M社と呼ぶ)製装置 M-110Y 及
びナノマイザー社(以下N社と呼ぶ)製装置 LA-33を用
い、同じ条件にて実験した結果を比較例として示す。 測定装置:島津製作所( 株) 製レーザー回折式粒度分布
測定装置 SALD-2000A 評価手順:測定装置の撹拌槽に精製水を200cc 投入し、
循環させる。回折/散乱光強度グラフのピークが40%
になるまで実験サンプルを少量ずつ加える。超音波スイ
ッチをONにして、1分間後に測定開始キーを押下す
る。 評価方法:測定結果の項目のうち、メジアン径の大小で
評価を行う。
EXAMPLES Next, the results of emulsification, dispersion and pulverization using the atomizing apparatus of the present invention are shown below. In addition, micro
The results of experiments under the same conditions using a device M-110Y manufactured by Fluidizer (hereinafter referred to as M company) and a device LA-33 manufactured by Nanomizer (hereinafter referred to as N company) are shown as comparative examples. Measuring device: Shimadzu Corporation laser diffraction particle size distribution measuring device SALD-2000A Evaluation procedure: 200 cc of purified water was put into the stirring tank of the measuring device,
Circulate. The peak of the diffraction / scattered light intensity graph is 40%
Add experimental sample in small amounts until. Turn on the ultrasonic switch and press the measurement start key after 1 minute. Evaluation method: Among the items of the measurement result, the median diameter is evaluated.

【0022】 乳化実験 [試料1] (1) 試料内容:大豆油(純正化学( 株) 化粧品原料 43011-2401 )…20wt% 大豆製レシチン(純正化学( 株) 86015-1201)…1wt% 精製水(純正化学( 株) 91308-2163)…79wt% (2) 前処理:精製水を60℃に加温し、その中に大豆製レシチンを加え る。 上記を卓上型ミキサー(IKA社製:RW20-DZM 回転数:1200 r.p.m) で撹拌し、レシチンを溶解する。 上記に大豆油を加え、上記卓上型ミキサー( 回転数:2000 r.p.m) で3分間撹拌し、予備乳化する。 (3) 投入前メジアン径:20.127μm (4) 実験結果 Emulsification experiment [Sample 1] (1) Content of sample: soybean oil (Junsei Kagaku Co., Ltd. cosmetic raw material 43011-2401) 20 wt% soybean lecithin (Junsei Kagaku 86015-1201) 1 wt% purified water (Junsei Kagaku Co., Ltd. 91308-2163) 79wt% (2) Pretreatment: Heat purified water to 60 ° C and add soybean lecithin to it. The above is stirred with a desktop mixer (RW20-DZM rotation speed: 1200 rpm, manufactured by IKA) to dissolve lecithin. Soybean oil is added to the above, and the mixture is stirred for 3 minutes with the tabletop mixer (rotation speed: 2000 rpm) to preliminarily emulsify. (3) Median diameter before injection: 20.127 μm (4) Experimental results

【0023】[0023]

【表1】 [Table 1]

【0024】 [試料2] (1) 試料内容:流動パラフィン(純正化学( 株) 83640-0430)…25wt% ツイン20(純正化学( 株) 69295-1610)…2wt% 精製水(純正化学( 株) 91308-2163)…73wt% (2) 前処理:精製水にツイン20を加える。 上記を上記卓上型ミキサー( 回転数:1200r.p.m)で撹拌し、 ツイン20を溶解する。 上記に流動パラフィンを加え、上記卓上型ミキサー( 回転数 :1800r.p.m)で3分間撹拌し、予備乳化する。 (3) 投入前メジアン径:32.989μm (4) 実験結果[Sample 2] (1) Sample content: Liquid paraffin (Junsei Kagaku Co., Ltd. 83640-0430)… 25wt% Twin 20 (Junsei Kagaku Co., Ltd. 69295-1610)… 2wt% Purified water (Junsei Kagaku Co., Ltd. ) 91308-2163)… 73wt% (2) Pretreatment: Add Twin 20 to purified water. The above is stirred with the above-mentioned tabletop mixer (rotation speed: 1200 r.p.m) to dissolve the Twin 20. Liquid paraffin is added to the above, and the mixture is stirred for 3 minutes with the above-mentioned tabletop mixer (rotation speed: 1800 r.p.m) to preliminarily emulsify. (3) Median diameter before charging: 32.989 μm (4) Experimental results

【0025】[0025]

【表2】 [Table 2]

【0026】分散実験 [試料1] (1) 試料内容:酸化チタン(純正化学( 株) 53145-0601)…15wt% デモールEP(特殊ポリカルボン酸型高分子界面活性剤:花王 ( 株) 製)…1wt% 精製水(純正化学( 株)91308-2163 )…84wt% (2) 前処理:精製水をデモールEPを加える。 上記を卓上型ミキサー( 回転数:1000r.p.m)で撹拌し、デ モールEPを溶解する。 上記に酸化チタンを加え、上記卓上型ミキサー( 回転数: 2000r.p.m) で1分間撹拌し、予備分散する。 (3) 投入前メジアン径:9.008 μm (4) 実験結果 Dispersion experiment [Sample 1] (1) Content of sample: Titanium oxide (Junsei Kagaku Co., Ltd. 53145-0601) ... 15wt% DEMOL EP (special polycarboxylic acid type polymer surfactant: manufactured by Kao Co., Ltd.) … 1wt% purified water (Junsei Kagaku Co., Ltd. 91308-2163)… 84wt% (2) Pretreatment: Purified water with demolition EP added. The above is stirred with a tabletop mixer (rotation speed: 1000 rpm) to dissolve Demol EP. Titanium oxide is added to the above, and the mixture is preliminarily dispersed by stirring for 1 minute with the tabletop mixer (rotation speed: 2000 rpm). (3) Median diameter before injection: 9.008 μm (4) Experimental results

【0027】[0027]

【表3】 [Table 3]

【0028】 [試料2] (1) 試料内容:フタロシアニンブルー(純正化学( 株) 63280-1610)…25wt % デモールEP(花王( 株) 製)…1wt% 精製水(純正化学( 株) 91308-2163)…74wt% (2) 前処理:精製水にデモールEPを加える。 上記を上記卓上型ミキサー( 回転数:1000r.p.m)で撹拌し、 デモールEPを溶解する。 上記にフタロシアニンブルーを加え、上記卓上型ミキサー (回転数:1500r.p.m)で2分間撹拌し、予備分散する。 (3) 投入前メジアン径:16.229μm (4) 実験結果[Sample 2] (1) Sample content: Phthalocyanine Blue (Junsei Kagaku Co., Ltd. 63280-1610)… 25wt% DEMOL EP (manufactured by Kao Corporation)… 1wt% Purified water (Junsei Kagaku Co., Ltd. 91308- 2163) ... 74wt% (2) Pretreatment: Add demol EP to purified water. The above is stirred with the tabletop mixer (rotation speed: 1000 r.p.m) to dissolve the Demol EP. Phthalocyanine blue is added to the above, and the mixture is preliminarily dispersed by stirring for 2 minutes with the tabletop mixer (rotation speed: 1500 r.p.m). (3) Median diameter before injection: 16.229 μm (4) Experimental results

【0029】[0029]

【表4】 [Table 4]

【0030】微粉砕実験 [試料1] (1) 試料内容:炭酸カルシウム(純正化学( 株) 43260-0301)…25wt% クエン酸3ナトリウム(純正化学( 株) 26080-1201 ) …0.8wt% 精製水(純正化学( 株)91308-2163 )…74.2wt% (2) 前処理:精製水にクエン酸3ナトリウムを加える。 上記を卓上型ミキサー( 回転数:1300r.p.m)で撹拌し、ク エン酸3ナトリウムを溶解する。 上記に炭酸カルシウムを加え、上記卓上型ミキサー( 回転数 :1300r.p.m)で4分間撹拌し、予備分散する。 (3) 投入前メジアン径:20.329μm (4) 実験結果 Fine Grinding Experiment [Sample 1] (1) Sample Content: Calcium Carbonate (Junsei Kagaku Co., Ltd. 43260-0301)… 25wt% Trisodium Citrate (Junsei Kagaku Co., Ltd. 26080-1201)… 0.8wt% Purification Water (Junsei Kagaku Co., Ltd. 91308-2163) 74.2wt% (2) Pretreatment: Add trisodium citrate to purified water. The above is stirred with a tabletop mixer (rotation speed: 1300 rpm) to dissolve trisodium citrate. Calcium carbonate is added to the above, and the mixture is stirred for 4 minutes with the above-mentioned tabletop mixer (rotation speed: 1300 rpm) to perform preliminary dispersion. (3) Median diameter before injection: 20.329 μm (4) Experimental results

【0031】[0031]

【表5】 [Table 5]

【0032】 [試料2] (1) 試料内容:けい酸アルミニウム(純正化学( 株) 29020-1601)…20wt% ヘキサメタリン酸ナトリウム(純正化学( 株) 67115-0401) …1wt% 精製水(純正化学( 株)91308-2163 )…79wt% (2) 前処理:精製水にヘキサメタリン酸ナトリウムを加える。 上記を卓上型ミキサー( 回転数:1500r.p.m)で撹拌し、ヘ キサメタリン酸ナトリウムを溶解する。 上記にけい酸アルミニウムを加え、上記卓上型ミキサー( 回 転数:1800r.p.m)で5分間撹拌し、予備分散する。 (3) 投入前メジアン径:5.127 μm (4) 実験結果[Sample 2] (1) Sample content: Aluminum silicate (Junsei Kagaku Co., Ltd. 29020-1601)… 20wt% Sodium hexametaphosphate (Junsei Kagaku Co., Ltd. 67115-0401)… 1wt% Purified water (Junsei Kagaku) 91308-2163)… 79wt% (2) Pretreatment: Add sodium hexametaphosphate to purified water. The above is stirred with a tabletop mixer (rotation speed: 1500 r.p.m) to dissolve sodium hexametaphosphate. Aluminum silicate is added to the above, and the mixture is preliminarily dispersed by stirring for 5 minutes with the tabletop mixer (rotation number: 1800 r.p.m). (3) Median diameter before injection: 5.127 μm (4) Experimental results

【0033】[0033]

【表6】 [Table 6]

【0034】以上の実験結果より、本発明の微粒化装置
によれば、乳化、分散、微粉砕実験のいずれにおいても
従来装置より微粒化効果を高めることができることが確
認された。また、乳化実験については連続して乳化を行
い、所定時間経過後に微粒化装置を分解して各ディスク
における摩耗を検査したが、いずれのディスクについて
も顕著な摩耗は検出されず、従って微粒化を安定して実
施することができることが確認された。
From the above experimental results, it was confirmed that the atomizing device of the present invention can enhance the atomizing effect compared to the conventional device in any of the emulsification, dispersion, and pulverization experiments. In addition, in the emulsification experiment, emulsification was performed continuously, and after a predetermined time elapsed, the atomization device was disassembled and the wear on each disk was inspected. It was confirmed that it can be carried out stably.

【0035】また、図4及び図5は、微粒化装置の他の
実施例を示したものである。なお、図2と同じ構成要素
については同一符号を付してその説明を省略する。図4
に示すディスク13は、同心円周上2箇所に貫通孔13
a,13bを有し、その裏面13cには、有底筒状凹部
からなる渦巻室13dが形成されている。この渦巻室1
3dからは、互いに逆向きで接線方向に延びる溝状直線
通路13e,13fが形成され、各貫通孔13a及び1
3bの出口部と連通している。このような構成において
も前述した実施例と同様に渦巻流を形成することができ
る。なお、ディスク11の下流側に配設されるディスク
14は排出貫通孔14a,14bを有し、図2に示した
ディスク12と同様に、溝状直線通路13e,13fと
対称の位置に、溝状直線通路14e,14fが形成され
ている。なお、図中の符号14dは貯留室である。
4 and 5 show another embodiment of the atomizer. The same components as those in FIG. 2 are denoted by the same reference numerals, and description thereof will be omitted. FIG.
The disk 13 shown in FIG. 2 has through holes 13 at two locations on the concentric circumference.
a and 13b, and a back surface 13c thereof is formed with a bottomed cylindrical recess 13d. This swirl chamber 1
From 3d, groove-shaped linear passages 13e and 13f extending in the tangential direction in opposite directions are formed, and the through holes 13a and 1 are formed.
It communicates with the outlet of 3b. Even with such a structure, a spiral flow can be formed as in the above-described embodiment. Incidentally, the disc 14 arranged on the downstream side of the disc 11 has discharge through holes 14a and 14b, and like the disc 12 shown in FIG. 2, the disc 14 is formed at a position symmetrical to the groove-shaped linear passages 13e and 13f. Linear passages 14e and 14f are formed. Reference numeral 14d in the figure is a storage chamber.

【0036】また、図5は、図4に示したディスク14
の溝状通路を、渦巻方向に対して逆方向に形成したもの
であり、この構成によれば、図4に示したディスク14
に比べ、旋回力の減衰効果が高められる。なお、本実施
例ではブロックを円盤状のディスクで構成したが、ブロ
ックの形状はこれに限らず、四角,六角等の多角形で構
成することもできる。
FIG. 5 shows the disk 14 shown in FIG.
The groove-shaped passage of FIG. 4 is formed in the direction opposite to the spiral direction. According to this configuration, the disk 14 shown in FIG.
Compared with, the damping effect of the turning force is enhanced. In this embodiment, the block is formed of a disc-shaped disk, but the shape of the block is not limited to this and may be formed of a polygon such as a square or a hexagon.

【0037】また、上述した実施例において、ディスク
10,12,13,14に形成される溝状通路の断面形
状は、図6(a)に示すように、溝の隅部をR加工する
か、または同図(b)に示すように、溝を半円状に加工
することが好ましい。このような断面形状の溝状通路に
よれば、流量係数を大きくすることができる。
Further, in the above-mentioned embodiment, the cross-sectional shape of the groove-like passages formed in the disks 10, 12, 13 and 14 is as shown in FIG. Alternatively, it is preferable to process the groove into a semicircular shape as shown in FIG. According to the groove-shaped passage having such a cross-sectional shape, the flow coefficient can be increased.

【0038】また、本実施例では各ディスク10〜12
の厚さを同じに構成したが、これに限らず、例えばディ
スク11の厚さを増減させて、すなわち、中間貫通孔の
長さを調節して微粒化効果を調節することもできる。ま
た、本実施例では、ディスク10の裏面とディスク12
の表面にそれぞれ溝状通路を形成したが、これに限ら
ず、ディスク11の表面に溝状通路及び渦巻室を形成
し、その裏面に溝状通路及び貯留室を形成することもで
きる。
Further, in this embodiment, each of the disks 10 to 12 is
However, the present invention is not limited to this. For example, the thickness of the disk 11 may be increased or decreased, that is, the length of the intermediate through hole may be adjusted to adjust the atomization effect. Further, in this embodiment, the back surface of the disk 10 and the disk 12 are
Although the groove-shaped passages are formed on the respective surfaces, the present invention is not limited to this, and the groove-shaped passages and the spiral chambers may be formed on the surface of the disk 11, and the groove-shaped passages and the storage chambers may be formed on the back surface thereof.

【0039】本発明は、乳脂肪の微粒化,香料の分散等
を行う食品分野に、脂肪乳剤の調整,細胞破砕等を行う
医薬品分野に、乳液の調整,顔料の分散等を行う化粧品
分野に、各種乳化重合製品の製造,有機顔料の粉砕等を
行う化学品分野、或いはその他の新素材開発研究分野に
それぞれ適用することができる。
INDUSTRIAL APPLICABILITY The present invention is applied to the field of foods such as atomization of milk fat and dispersion of flavors, to the field of pharmaceuticals such as preparation of fat emulsion and cell crushing, and to the field of cosmetics such as preparation of emulsion and dispersion of pigments. , The production of various emulsion-polymerized products, the field of chemicals for crushing organic pigments, and other fields of research and development of new materials.

【0040】[0040]

【発明の効果】以上説明したことから明らかなように、
本発明によれば、ライナー部材における流体衝突部分の
摩耗を解消して、長期にわたり安定した微粒化作用を発
揮することができ、且つ微粒化効果が高められるという
長所を有する。また、微粒化効果が高められる分、高圧
ポンプ及びその動力を小さくすることができ、それによ
り省エネを図ることができる。
As is apparent from the above description,
According to the present invention, it is possible to eliminate wear of the fluid collision portion of the liner member, to exhibit a stable atomization action for a long period of time, and to enhance the atomization effect. Further, since the atomization effect is enhanced, the high pressure pump and its power can be reduced, thereby saving energy.

【0041】本発明の微粒化装置によれば、異なる径の
貫通孔からなる中間ブロックを複数個用意し、いずれか
一つを選択して導入側ブロックと排出側ブロックの間に
配置するだけで衝突に供する対向流の流量を簡単に変更
することができる。本発明の微粒化装置によれば、流体
衝突部分の摩耗を大幅に低減させることができるため、
従来のライナー部材のような高度な耐摩耗性を要求しな
い。従って、微粒化装置の製造コストを大幅に低下させ
ることができる。
According to the atomizing apparatus of the present invention, it suffices to prepare a plurality of intermediate blocks consisting of through holes having different diameters, select any one of them, and dispose them between the introduction side block and the discharge side block. It is possible to easily change the flow rate of the counterflow used for the collision. According to the atomization device of the present invention, it is possible to significantly reduce the wear of the fluid collision portion,
It does not require a high degree of wear resistance like conventional liner members. Therefore, the manufacturing cost of the atomizer can be reduced significantly.

【0042】本発明の微粒化装置によれば、導入側ブロ
ックと排出側ブロックを離間配置させる構成のため、各
ブロック対向面における溝状通路については従来のよう
に密着させ且つ直交させる必要がない。従って、各ブロ
ックを直交する方向に位置決めする手間が省けるととも
に、位置決めのための加工工程を省略することができる
という長所がある。
According to the atomizing device of the present invention, the introduction side block and the discharge side block are arranged so as to be separated from each other, so that it is not necessary for the groove-shaped passages on the surfaces facing each block to be closely contacted and orthogonal to each other as in the conventional case. . Therefore, there is an advantage that the labor for positioning each block in the orthogonal direction can be saved and the processing step for positioning can be omitted.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に係る全体概略構成図である。FIG. 1 is an overall schematic configuration diagram according to an embodiment of the present invention.

【図2】第一の実施例の微粒化装置の構成を示す説明図
である。
FIG. 2 is an explanatory diagram showing a configuration of an atomizing device according to a first embodiment.

【図3】同実施例に係るディスク12の変形例を示す図
2相当図である。
FIG. 3 is a view, corresponding to FIG. 2, showing a modified example of the disk 12 according to the embodiment.

【図4】第二の実施例の構成を示す説明図である。FIG. 4 is an explanatory diagram showing a configuration of a second embodiment.

【図5】同実施例に係るディスク14の変形例を示す図
4相当図である。
5 is a view, corresponding to FIG. 4, showing a modified example of the disk 14 according to the embodiment.

【図6】実施例に係る溝状通路の断面形状を示す説明図
である。
FIG. 6 is an explanatory view showing a cross-sectional shape of the groove-like passage according to the embodiment.

【図7】従来の微粒化装置の構成を示す断面図である。FIG. 7 is a cross-sectional view showing a configuration of a conventional atomizing device.

【符号の説明】[Explanation of symbols]

1 微粒化システム 2,3 容器 4,5 弁 6 配管 7 高圧ポンプ 8 微粒化装置 9 円筒部 10 第1のディスク 10a,10b 貫通孔 10c 密着対向面 10d 渦巻室 10e,10f 溝状通路 11 第2のディスク 11a 貫通孔 12 第3のディスク 12a,12b 貫通孔 12e,12f 溝状通路 12d 貯留室 DESCRIPTION OF SYMBOLS 1 Atomization system 2,3 Container 4,5 Valve 6 Piping 7 High pressure pump 8 Atomization device 9 Cylindrical part 10 1st disk 10a, 10b Through hole 10c Adhesion facing surface 10d Swirl chamber 10e, 10f Groove passage 11 Second Disk 11a through hole 12 third disk 12a, 12b through hole 12e, 12f groove-like passage 12d storage chamber

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 // C01F 11/18 C01F 11/18 G (72)発明者 長谷川 一利 東京都板橋区小豆沢1−7−14 株式会社 ジーナス内 (72)発明者 古川 義博 東京都板橋区小豆沢1−7−14 株式会社 ジーナス内 (72)発明者 藤島 総光 東京都板橋区小豆沢1−7−14 株式会社 ジーナス内 (72)発明者 安田 文夫 東京都板橋区小豆沢1−7−14 株式会社 ジーナス内Continuation of front page (51) Int.Cl. 6 Identification number Reference number within the agency FI technical display location // C01F 11/18 C01F 11/18 G (72) Inventor Kazutoshi Hasegawa 1-7- Shozusawa, Itabashi-ku, Tokyo 14 Genus Inc. (72) Inventor Yoshihiro Furukawa 1-7-14 Shozusawa, Itabashi-ku, Tokyo Genus Inc. (72) Inventor Somitsu Fujishima 1-7-14 Shozusawa, Itabashi-ku, Tokyo Genus Inc. (72) ) Inventor Fumio Yasuda Genus Co., Ltd. 1-7-14 Shozuzawa, Itabashi-ku, Tokyo

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 微粒化すべき流体を通過させることので
きる貫通孔を形成したブロックを、貫通方向が前記流体
の流れ方向に沿うように複数個実質的に密着配設した微
粒化装置において、 流体導入側ブロックに前記貫通孔を、少なくとも2本、
中間ブロックに1本、流体排出側ブロックに少なくとも
2本それぞれ形成し、前記導入側ブロックと前記中間ブ
ロックの対向面のいずれかのブロック表面に、前記隣接
する各ブロックの貫通孔と連通され、前記流体を対向流
に変えるとともに旋回力を付与する溝状通路を形成し、
前記中間ブロックと前記排出側ブロックの対向面におけ
るいずれかのブロック表面に、隣接する各ブロックの貫
通孔と連通され、前記中間ブロックの貫通孔を通過した
流体の流れを前記ブロック表面に沿う方向に変えるとと
もに前記旋回力を減衰させる溝状通路を形成したことを
特徴とする微粒化装置。
1. A atomization apparatus in which a plurality of blocks, each having a through hole through which a fluid to be atomized is formed, are disposed substantially in close contact with each other so that the penetrating direction is along the flow direction of the fluid. At least two through holes in the introduction side block,
One is formed in the intermediate block, and at least two are formed in the fluid discharge side block. The block surface of any of the facing surfaces of the introduction side block and the intermediate block is communicated with the through holes of the adjacent blocks. Forming a groove-shaped passage that gives a swirling force while changing the fluid to the counter flow,
Any one of the block surfaces on the facing surface of the intermediate block and the discharge side block is in communication with the through hole of each adjacent block, and the flow of the fluid passing through the through hole of the intermediate block is directed along the block surface. An atomization device, characterized in that a groove-shaped passage is formed to change and attenuate the swirling force.
【請求項2】 前記溝状通路の断面形状が丸溝またはU
字溝である請求項1に記載の微粒化装置。
2. The groove-shaped passage has a circular groove or U-shaped cross section.
The atomization device according to claim 1, which is a groove.
【請求項3】 微粒化すべき流体の流路に沿って貫通孔
を有し実質的に密着して配設された3個のブロックに流
体を導入し、高速で衝突させることにより微粒化を行う
微粒化方法であって、 流体導入側ブロックの前記貫通孔から導入した前記流体
を対向流に変えるとともに旋回力を付与して衝突させ、 中間ブロックの前記貫通孔にて前記流体の旋回状態を維
持しつつその流れを前記流路方向に変え、 排出側ブロックにて前記中間ブロックを通過した前記流
体の流れを前記流路と直交する方向に変えつつ旋回力を
減衰させ、前記貫通孔から排出することを特徴とする微
粒化方法。
3. Atomization is performed by introducing the fluid into three blocks which have through holes along the flow path of the fluid to be atomized and which are disposed substantially in close contact with each other and collide at high speed. A method of atomizing, in which the fluid introduced from the through hole of the fluid introduction side block is changed into a counterflow and a swirl force is applied to cause collision, and the swirl state of the fluid is maintained in the through hole of the intermediate block. While changing the flow in the flow path direction and changing the flow of the fluid passing through the intermediate block in the discharge side block in the direction orthogonal to the flow path, the swirling force is attenuated and the fluid is discharged from the through hole. An atomization method characterized by the above.
JP01307596A 1996-01-29 1996-01-29 Atomization device and atomization method Expired - Fee Related JP3167913B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01307596A JP3167913B2 (en) 1996-01-29 1996-01-29 Atomization device and atomization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01307596A JP3167913B2 (en) 1996-01-29 1996-01-29 Atomization device and atomization method

Publications (2)

Publication Number Publication Date
JPH09201522A true JPH09201522A (en) 1997-08-05
JP3167913B2 JP3167913B2 (en) 2001-05-21

Family

ID=11823045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01307596A Expired - Fee Related JP3167913B2 (en) 1996-01-29 1996-01-29 Atomization device and atomization method

Country Status (1)

Country Link
JP (1) JP3167913B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004210957A (en) * 2002-12-27 2004-07-29 Ogawa & Co Ltd Emulsifier composition and emulsified or slightly emulsified beverage containing the same emulsion
JP2006528541A (en) * 2003-07-25 2006-12-21 ウエラ アクチェンゲゼルシャフト Components for stationary micromixers, micromixers constructed from such components, and their use for carrying out mixing, dispersing or chemical reactions
JP2007301508A (en) * 2006-05-12 2007-11-22 Sugino Mach Ltd Atomizing device
JP2009090160A (en) * 2007-10-03 2009-04-30 Fujifilm Corp Manufacturing method of emulsion or dispersion and foodstuff, external preparation for dermal disease and pharmaceutical containing emulsion or dispersion
WO2010074158A1 (en) * 2008-12-24 2010-07-01 ナノマイザー・プライベート・リミテッド Soymilk and method for producing soymilk
JP2010188288A (en) * 2009-02-18 2010-09-02 Aichi Prefecture Biomass crushing method, biomass crusher, and method of manufacturing sugars
JP5826421B1 (en) * 2015-03-30 2015-12-02 株式会社ジェ・スク Gas dissolver and carbonated water generator using the same
CN108412535A (en) * 2018-03-19 2018-08-17 西安科技大学 A kind of retardant solution preparation device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6343633U (en) * 1986-09-03 1988-03-23
US4890771A (en) * 1987-07-31 1990-01-02 Etablissements Morel - Ateliers Electromecaniques De Favieres Cartridge for injecting a mixture of two liquid constituents
JPH05170852A (en) * 1991-12-26 1993-07-09 Dainippon Ink & Chem Inc Preparation of water-base amino resin dispersion
JPH07116487A (en) * 1993-10-28 1995-05-09 Nanomaizaa Kk Device for emulsifying and dispersing substance

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6343633U (en) * 1986-09-03 1988-03-23
US4890771A (en) * 1987-07-31 1990-01-02 Etablissements Morel - Ateliers Electromecaniques De Favieres Cartridge for injecting a mixture of two liquid constituents
JPH05170852A (en) * 1991-12-26 1993-07-09 Dainippon Ink & Chem Inc Preparation of water-base amino resin dispersion
JPH07116487A (en) * 1993-10-28 1995-05-09 Nanomaizaa Kk Device for emulsifying and dispersing substance

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004210957A (en) * 2002-12-27 2004-07-29 Ogawa & Co Ltd Emulsifier composition and emulsified or slightly emulsified beverage containing the same emulsion
JP2006528541A (en) * 2003-07-25 2006-12-21 ウエラ アクチェンゲゼルシャフト Components for stationary micromixers, micromixers constructed from such components, and their use for carrying out mixing, dispersing or chemical reactions
JP4803671B2 (en) * 2003-07-25 2011-10-26 ウエラ アクチェンゲゼルシャフト Static micro mixer
JP2007301508A (en) * 2006-05-12 2007-11-22 Sugino Mach Ltd Atomizing device
JP2009090160A (en) * 2007-10-03 2009-04-30 Fujifilm Corp Manufacturing method of emulsion or dispersion and foodstuff, external preparation for dermal disease and pharmaceutical containing emulsion or dispersion
WO2010074158A1 (en) * 2008-12-24 2010-07-01 ナノマイザー・プライベート・リミテッド Soymilk and method for producing soymilk
JP2010148373A (en) * 2008-12-24 2010-07-08 Nanomaizaa Kk Soymilk and method for producing the same
JP2010188288A (en) * 2009-02-18 2010-09-02 Aichi Prefecture Biomass crushing method, biomass crusher, and method of manufacturing sugars
JP5826421B1 (en) * 2015-03-30 2015-12-02 株式会社ジェ・スク Gas dissolver and carbonated water generator using the same
JP2016187765A (en) * 2015-03-30 2016-11-04 株式会社ジェ・スク Gas dissolver and carbonated water generator using the same
CN108412535A (en) * 2018-03-19 2018-08-17 西安科技大学 A kind of retardant solution preparation device

Also Published As

Publication number Publication date
JP3167913B2 (en) 2001-05-21

Similar Documents

Publication Publication Date Title
JPH09201521A (en) Finely granulating apparatus and finely granulating method
US6443610B1 (en) Processing product components
JP2553287B2 (en) Emulsifier
US5603453A (en) Dual fluid spray nozzle
JPS5658530A (en) Dispersing method
JPH09201522A (en) Finely granulating apparatus and finely granulating method
WO2004004881A1 (en) Liquid mixing apparatus and method of liquid mixing
JPS61130722A (en) Slurry atomizer and nozzle
US20080257411A1 (en) Systems and methods for preparation of emulsions
US4316580A (en) Apparatus for fragmenting fluid fuel to enhance exothermic reactions
JP3149371B2 (en) Atomization method and apparatus
JP2001348581A (en) Apparatus and method for micronizing liquid molecular cluster
JPH10192672A (en) Finely pulverizing and apparatus therefor
JP3930036B1 (en) Atomization method, atomization apparatus and atomization system
US20030098360A1 (en) Twin fluid centrifugal nozzle for spray dryers
JPH1142440A (en) Chlorella crushing method, crushed chlorella, its stabilizing method and stabilized crushed chlorella
EP1501626B1 (en) Device and method of creating hydrodynamic cavitation in fluids
JP3682585B2 (en) Nozzle, nozzle assembly, and diffusion method
TWI270412B (en) Integrated micro-mixing atomization system
JPH01215354A (en) Crushing and coating device
JPH0871390A (en) Dispersion and emulsification of substance
JPS6018454B2 (en) Opposed jet mill
JP2000189830A (en) Production of fine particle dispersion, and fine particle dispersion
JPH10180068A (en) Atomizing method and device therefor
KR20040073116A (en) N-Fluid Energy Mill with Multiple Discharge Outlets and Vortex Generators

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010220

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S201 Request for registration of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314201

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090309

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090309

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100309

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110309

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120309

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120309

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130309

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130309

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140309

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees