JPH09196633A - Method and apparatus for measurement of object - Google Patents

Method and apparatus for measurement of object

Info

Publication number
JPH09196633A
JPH09196633A JP510196A JP510196A JPH09196633A JP H09196633 A JPH09196633 A JP H09196633A JP 510196 A JP510196 A JP 510196A JP 510196 A JP510196 A JP 510196A JP H09196633 A JPH09196633 A JP H09196633A
Authority
JP
Japan
Prior art keywords
measured
light
measuring
dimensional
laser light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP510196A
Other languages
Japanese (ja)
Inventor
Akihiko Hashimoto
秋彦 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP510196A priority Critical patent/JPH09196633A/en
Publication of JPH09196633A publication Critical patent/JPH09196633A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To measure a distance with high resolution regardless of the problem of occlusion. SOLUTION: An object 12 to be measured is irradiated with beamlike laser light from a laser oscillator 1. Diffused light which is reflected from the object 12 to be measured is collected on an identical line segment 17 by mirrors 13, 14 and semitransparent mirrors 15, 16. At this time, the diffused light is passed through two optical routes, i.e., a route indicated by a solid line and a route indicated by a broken line, intensity fringes of light are generated on the line segment 17 by the interference of the light which is passed through the two optical routes, and the fringes are detected by a one-dimensional photodetector 18 which is arranged in the position of the line segment 17. Then, when the interval between the fringes or a spatial frequency is measured, the distance Z to the object 12 to be measured is computed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、距離計測,工業計
測,3次元デザインCAD (Computer Aided Design)
等に用いられる物体計測方法および装置に関するもので
ある。
TECHNICAL FIELD The present invention relates to distance measurement, industrial measurement, and three-dimensional design CAD (Computer Aided Design).
The present invention relates to an object measuring method and device used for the above.

【0002】[0002]

【従来の技術】[Prior art]

(1)物体までの距離を非接触に計測する技術は様々な
産業分野で求められる基本的な技術である。非接触計測
方法には音,電波,光等を用いる方法があるが、精度,
汎用性,信頼性の点で光を用いる方法が一番優れてい
る。この光を用いる方法は、計測原理の違いにより、三
角測量を用いる方法,光の往復時間を直接計測する方
法,変調光を用いて光の往復時間を間接的に計測する方
法,照射光と反射光の位相差を計測する干渉法に分けら
れる。
(1) The technology for measuring the distance to an object in a non-contact manner is a basic technology required in various industrial fields. Non-contact measurement methods include methods that use sound, radio waves, light, etc.
The method using light is the best in terms of versatility and reliability. The method of using this light is a method of using triangulation, a method of directly measuring the round-trip time of light, a method of indirectly measuring the round-trip time of light using modulated light, an irradiation light and a reflection, depending on the measurement principle. It can be divided into interferometry that measures the phase difference of light.

【0003】(2)ところで、物体表面のある一点の距
離が計測可能であるならば、物体表面全体にわたって非
常に多くの点を計測することによって物体の3次元形状
が計測できることは言うまでもない。従来、この考えに
基づき三角測量法を用いた計測装置があった。このよう
な計測装置を用いた方法では、走査範囲を変えることに
よりX,Y方向の測定範囲を任意に設定できる点、走査
速度を変えることによりX,Y方向の測定分解能を任意
に設定できる点、走査に平行移動機構を用いることによ
り常に同じ角度から計測が可能となってX,Y方向の計
測時の角度に依存する分解能の変化がない等の点で優れ
ている。
(2) By the way, if the distance of a certain point on the surface of the object can be measured, it goes without saying that the three-dimensional shape of the object can be measured by measuring a large number of points on the entire surface of the object. Conventionally, there has been a measuring device using the triangulation method based on this idea. In the method using such a measuring device, the measurement range in the X and Y directions can be arbitrarily set by changing the scanning range, and the measurement resolution in the X and Y directions can be arbitrarily set by changing the scanning speed. By using the parallel movement mechanism for scanning, it is possible to always perform measurement from the same angle, which is advantageous in that there is no change in resolution depending on the angle when measuring in the X and Y directions.

【0004】(3)一方、3次元情報を取り扱う技術は
マルチメディアやバーチャルリアリティ等のニューメデ
ィアを支える重要な技術である。しかしながら、3次元
情報の処理や表示の技術が目覚ましい発達を遂げたのに
対して、3次元情報入力の分野における技術の発達は不
十分であった。さらに、これらの用途では3次元物体の
単なる形状入力ばかりでなく色情報も入力が要求され
る。これに対して、最近、3次元形状計測装置とTV
(テレビ)カメラを連動させて物体の形状と色を同時に
計測することが試みられている。
(3) On the other hand, the technology for handling three-dimensional information is an important technology that supports new media such as multimedia and virtual reality. However, while the technology of processing and displaying three-dimensional information has made remarkable progress, the technology in the field of three-dimensional information input has not been sufficiently developed. Furthermore, in these applications, not only simple shape input of a three-dimensional object but also color information is required to be input. On the other hand, recently, a three-dimensional shape measuring device and a TV
(Television) It has been attempted to measure the shape and color of an object simultaneously by linking a camera.

【0005】[0005]

【発明が解決しようとする課題】[Problems to be Solved by the Invention]

(a)ところで、上記(1)の方法には様々な問題があ
る。まず、三角測量法は一番バランスの取れた手法で現
在の計測法の主流をなすが、計測範囲に対する相対的な
分解能が粗く、しかも、分解能そのものが計測距離に依
存して変化してしまう欠点がある。また、三角測量法は
照射光と反射光の光路が異なるために、どちらか一方の
光路が遮られると計測不能になる「オクルージョン」と
呼ばれる問題もある。しかも、分解能とオクルージョン
の問題は排他的な関係にあり、オクルージョンの問題を
軽減しようとして光の往路と復路のなす角を小さくする
と分解能は粗くなり、距離に依存する分解能の変化も大
きくなってしまう。一方、分解能の性能向上を図ると、
光の往路と復路のなす角を大きくしなければならないの
でオクルージョンの問題は悪化する。これは三角測量法
の原理に根ざす問題なので解決できない。
(A) By the way, the above method (1) has various problems. First, the triangulation method is the most balanced method and forms the mainstream of the current measurement method, but the relative resolution relative to the measurement range is coarse, and the resolution itself changes depending on the measurement distance. There is. Further, the triangulation method has a problem called "occlusion" in which measurement is impossible when either one of the optical paths is blocked because the optical paths of the irradiation light and the reflected light are different. Moreover, the problem of resolution and occlusion is in an exclusive relationship, and if the angle formed by the forward and return paths of light is reduced in order to reduce the problem of occlusion, the resolution becomes coarse and the change in resolution depending on the distance also increases. . On the other hand, when improving the resolution performance,
The problem of occlusion is exacerbated because the angle between the forward and return paths of light must be increased. This is a problem rooted in the principle of triangulation and cannot be solved.

【0006】一方、三角測量法の原理に基づかない他の
方法はこうした問題はないものの、例えば、時間差計測
法では光の速度が極めて速いために時間差が非常に小さ
く正確な計測が不可能であったり、干渉法では一定の距
離毎に同じ縞が現れるので絶対的な距離を求めることが
できない,微少な距離(数nmから数μm)しか計測で
きない等の欠点がある。これらの欠点の解決については
電子工学の進歩により今後の期待は望めるものの、現状
ではまだまだ三角測量法に劣る面が多く特殊な条件下で
しか使われていない。
On the other hand, other methods that are not based on the principle of triangulation do not have such problems, but, for example, in the time difference measurement method, since the speed of light is extremely high, the time difference is very small and accurate measurement is impossible. In the interferometry, the same fringes appear at constant distances, so that the absolute distance cannot be obtained and only a minute distance (several nm to several μm) can be measured. As for the solution of these shortcomings, future expectations can be expected due to the progress of electronics, but at present, there are many aspects that are inferior to triangulation method and it is used only under special conditions.

【0007】(b)上記(2)で説明した計測装置にあ
っては、一点の距離計測時において上記(a)で説明し
た問題があったため、3次元形状を求める場合において
もこの種の装置は同様の欠点を抱えていた。また、計測
に要する時間について言うと、上述したような計測方法
では2次元の走査を必要とするために、例えば一点の計
測に映像信号の1フィールド時間(1/60秒)しかか
からないとしても、X,Y方向500点ずつ計測すると
全点の計測に約69分の時間を要してしまう。
(B) The measuring device described in (2) above has the problem described in (a) above when measuring the distance at one point, so that this type of device is also used when a three-dimensional shape is obtained. Had similar shortcomings. Regarding the time required for measurement, since the above-described measurement method requires two-dimensional scanning, for example, even if it takes only one field time (1/60 seconds) of a video signal to measure one point, When 500 points are measured in each of the X and Y directions, it takes about 69 minutes to measure all the points.

【0008】そこで、速度を向上させるためにX方向又
はY方向のうちの一方の1次元方向については並列して
同時に距離を計測し、残る1次元方向は走査しながら逐
次計測を行えば同条件においても動作時間は8.3秒で
済み計測時間が大幅に短縮できる。この方法に基づく三
角測量法の計測装置もあるが、三角測量法を測定原理と
する方法は原理的に上記(a)で述べたような問題があ
る。
Therefore, in order to improve the speed, the distance is measured in parallel in one one-dimensional direction of the X direction or the Y direction at the same time, and the remaining one-dimensional direction is successively measured while scanning. Also, the operation time is 8.3 seconds, and the measurement time can be greatly reduced. There is a triangulation measuring device based on this method, but the method using the triangulation method as a principle of measurement has the problem as described in (a) above in principle.

【0009】他方、格子縞を用いたモアレ法に代表され
るような2次元距離情報を一度に計測する計測方法もあ
る。この方法は計測時間の点では優れているものの、X
方向又はY方向の分解能が格子縞の間隔で制限されてい
るため、該方向の分解能が非常に悪い,直接計測してい
るのは面の傾きであって距離情報は該計測値を積分して
求めているために測定面の距離が不連続に変化すると計
測できない等の問題があった。
On the other hand, there is also a measuring method for measuring two-dimensional distance information at once, as represented by the moire method using lattice fringes. Although this method is excellent in terms of measurement time, X
Since the resolution in the direction or the Y direction is limited by the interval of the lattice stripes, the resolution in that direction is very poor. What is directly measured is the inclination of the surface, and distance information is obtained by integrating the measured values. Therefore, there is a problem that measurement cannot be performed if the distance of the measurement surface changes discontinuously.

【0010】(c)上記(3)で説明したような3次元
形状計測装置とTVカメラの組み合わせによる形状,色
の同時計測方法においては、これらを単純に組み合わせ
ただけでは距離情報と色情報の計測点のずれが発生して
しまう。例えば、スリット状レーザを用いた距離計測装
置とTVカメラを組み合わせて被計測物体に現れるレー
ザ光の筋の近傍の色を計測位置の色とする装置がある
が、距離の計測位置そのものにおける色情報ではなく、
また、正確さを増すために該近傍の距離を小さくすると
物体の色とレーザ光の色が混じる問題があった。
(C) In the simultaneous shape and color measuring method using the combination of the three-dimensional shape measuring apparatus and the TV camera as described in (3) above, the distance information and the color information can be obtained by simply combining them. Misalignment of measurement points will occur. For example, there is a device that combines a distance measuring device using a slit-shaped laser and a TV camera to set the color near the stripe of the laser light appearing on the measured object as the color of the measurement position, but color information at the distance measurement position itself. not,
Further, there is a problem that the color of the object and the color of the laser light are mixed when the distance in the vicinity is reduced to increase the accuracy.

【0011】また、時分割で距離計測装置とTVカメラ
を交互に動かす装置も考案されている。この方法による
とレーザ光の影響を全く受けずに色情報を計測すること
が可能である。しかしながら、走査が一定速度で行われ
ている場合、測定時刻が異なるのでやはり計測位置がず
れてしまう。これは、距離計測に引き続く色計測の間だ
け走査を中断すれば問題は解決できるが、1秒間に数十
回もの走査の停止,再開を繰り返すのは機構上非常に無
理があるばかりでなく、走査精度の悪化も招いてしま
う。
A device has also been devised in which a distance measuring device and a TV camera are alternately moved in a time division manner. According to this method, it is possible to measure color information without being affected by laser light. However, when the scanning is performed at a constant speed, the measurement time is different and the measurement position also shifts. The problem can be solved by interrupting the scanning only during the color measurement subsequent to the distance measurement, but it is not very mechanically impossible to repeatedly stop and restart the scanning several tens of times per second. The scanning accuracy is also deteriorated.

【0012】本発明は上記の点に鑑みてなされたもので
あり、その第1の目的は、オクルージョンの問題を無視
でき、高分解能な距離の計測が可能な物体計測方法およ
び装置を提供することにある。また、第2の目的は、当
該距離計測手法を用いることで、物体の3次元形状の計
測方法および装置であって、オクルージョンが極めて小
さく、斜面計測時においても分解能に優れ、光ノイズに
強い物体計測方法および装置を提供することにある。ま
た、第3の目的は、当該距離計測手法を用いることで、
計測位置にずれを生じることなく距離情報と色情報を同
時に計測可能な物体計測方法および装置を提供すること
にある。
The present invention has been made in view of the above points, and a first object thereof is to provide an object measuring method and apparatus capable of ignoring the problem of occlusion and capable of measuring distance with high resolution. It is in. A second object is a method and apparatus for measuring a three-dimensional shape of an object by using the distance measuring method, which has extremely small occlusion, excellent resolution even in slope measurement, and strong against optical noise. It is to provide a measuring method and apparatus. The third purpose is to use the distance measuring method,
An object of the present invention is to provide an object measuring method and apparatus capable of measuring distance information and color information at the same time without causing a shift in the measurement position.

【0013】[0013]

【発明の詳細な説明】Detailed Description of the Invention

【課題を解決するための手段】以上の課題を解決するた
めに、請求項1記載の発明は、被計測物体までの距離を
計測する物体計測装置において、前記被計測物体にビー
ム状レーザ光を照射する照射手段と、前記被計測物体か
ら反射された前記ビーム状レーザ光の拡散光を、同一線
分上の両端において前記被計測物体上の反射点からの光
学的距離の差が異なるような2種類の光学経路を用いて
該線分上に集光する集光手段と、前記2種類の光学経路
から到来する反射光同士の干渉により発生する干渉縞を
1次元の濃淡の縞パターンに変換する1次元受光素子
と、前記縞パターンの間隔又は空間周波数を計測し、該
計測値をもとに前記被計測物体までの距離を算出する計
測手段とを有することを特徴としている。
In order to solve the above problems, the invention according to claim 1 is an object measuring device for measuring a distance to an object to be measured, wherein a beam-shaped laser beam is applied to the object to be measured. Irradiation means for irradiating and the diffused light of the beam-shaped laser light reflected from the measured object have different optical distances from reflection points on the measured object at both ends on the same line segment. Converging means for condensing on the line segment by using two kinds of optical paths and interference fringes generated by interference between reflected lights coming from the two kinds of optical paths are converted into a one-dimensional light and shade stripe pattern. And a measuring means for measuring the distance or the spatial frequency of the stripe pattern and calculating the distance to the object to be measured based on the measured value.

【0014】また、請求項2記載の発明は、被計測物体
までの距離を計測する物体計測方法において、前記被計
測物体にビーム状レーザ光を照射し、前記被計測物体か
ら反射された前記ビーム状レーザ光の拡散光を、同一線
分上の両端において前記被計測物体上の反射点からの光
学的距離の差が異なるような2種類の光学経路を用いて
該線分上に集光し、前記2種類の光学経路から到来する
反射光同士の干渉により発生する干渉縞を受光素子によ
って1次元の濃淡の縞パターンに変換し、前記縞パター
ンの間隔又は空間周波数を計測し、該計測値をもとに前
記被計測物体までの距離を求めることを特徴としてい
る。
According to a second aspect of the present invention, in an object measuring method for measuring a distance to a measured object, the measured object is irradiated with a beam laser beam, and the beam reflected from the measured object is measured. The diffused light of the circular laser light is condensed on the line segment using two types of optical paths having different optical distances from the reflection points on the object to be measured at both ends on the same line segment. , The interference fringes generated by the interference between the reflected lights coming from the two types of optical paths are converted into a one-dimensional light and shade stripe pattern by a light receiving element, and the interval or spatial frequency of the stripe pattern is measured, and the measured value It is characterized in that the distance to the measured object is obtained based on

【0015】また、請求項3記載の発明は、請求項1記
載の発明において、指定された走査の変位角又は変位長
に基づいて前記ビーム状レーザ光を2次元方向に走査す
る走査手段を有し、前記計測手段は、前記走査の変位角
又は変位長を変化させて前記ビーム状レーザ光を前記被
計測物体を含む所定範囲で2次元方向に走査し、各走査
の変位角又は変位長について、前記被計測物体上のビー
ム照射点までの距離を計測して得られる距離情報と該距
離計測時における前記走査の変位角又は変位長とから該
ビーム照射点における3次元位置情報を算出して前記被
計測物体の形状を求めることを特徴としている。
According to a third aspect of the present invention, in the first aspect of the invention, there is provided scanning means for scanning the beam-shaped laser light in a two-dimensional direction based on a designated scanning displacement angle or displacement length. Then, the measuring means scans the beam-shaped laser light in a two-dimensional direction within a predetermined range including the object to be measured by changing the displacement angle or displacement length of the scan, and regarding the displacement angle or displacement length of each scan. Calculating three-dimensional position information at the beam irradiation point from the distance information obtained by measuring the distance to the beam irradiation point on the measured object and the displacement angle or displacement length of the scanning at the time of measuring the distance. It is characterized in that the shape of the measured object is obtained.

【0016】また、請求項4記載の発明は、被計測物体
の3次元形状を計測する物体計測装置において、前記被
計測物体に垂直(又は水平)なスリット状レーザ光を照
射する照射手段と、前記被計測物体から反射された前記
スリット状レーザ光の拡散光を透過させる水平(または
垂直)なスリットと、前記スリットを透過した拡散光
を、同一平面の水平(又は垂直)断面の両端において前
記被測定物体上の反射点からの光学的距離の差が異なる
ような2種類の光学経路を用いて該同一平面上に集光す
る集光手段と、前記2種類の光学経路から到来する光同
士の干渉により発生する干渉縞を2次元の濃淡の縞パタ
ーンに変換する2次元受光素子と、前記縞パターンの間
隔又は空間周波数を計測することで前記スリット状レー
ザ光の照射部分の3次元位置情報を算出する計測手段と
を有することを特徴としている。
[0016] According to a fourth aspect of the present invention, in an object measuring device for measuring a three-dimensional shape of an object to be measured, irradiation means for irradiating the object to be measured with vertical (or horizontal) slit-shaped laser light, A horizontal (or vertical) slit that transmits diffused light of the slit-shaped laser light reflected from the measured object and diffused light that has passed through the slit are provided at both ends of a horizontal (or vertical) cross section on the same plane. Condensing means for condensing on the same plane by using two kinds of optical paths having different optical distances from the reflection point on the object to be measured, and lights coming from the two kinds of optical paths. Of the slit-shaped laser light by measuring the interval or the spatial frequency of the two-dimensional light receiving element for converting the interference fringes generated by the interference of the two into a two-dimensional light and shade fringe pattern. It is characterized by having a measuring means for calculating the source location information.

【0017】また、請求項5記載の発明は、請求項4記
載の発明において、指定された走査の変位角又は変位長
に基づいて前記スリット状レーザ光を水平(又は垂直)
方向に走査する走査手段と、前記走査手段が行った走査
の変位角又は変位長を求める変位検出手段を有し、前記
計測手段は、前記変位検出手段が検出した走査の変位角
又は変位長を用いて前記3次元位置情報を算出すること
を特徴としている。
According to a fifth aspect of the invention, in the fourth aspect of the invention, the slit laser beam is horizontally (or vertically) based on a designated scan displacement angle or displacement length.
Scanning means for scanning in the direction, and displacement detecting means for determining a displacement angle or displacement length of the scanning performed by the scanning means, and the measuring means measures the displacement angle or displacement length of the scanning detected by the displacement detecting means. It is characterized in that the three-dimensional position information is calculated by using the three-dimensional position information.

【0018】また、請求項6記載の発明は、被計測物体
の3次元形状を計測する物体計測方法において、前記被
計測物体に垂直(または水平)なスリット状レーザ光を
照射し、前記被計測物体から反射された前記スリット状
レーザ光の拡散光を水平(または垂直)なスリットで透
過し、前記スリットを透過した拡散光を、同一平面の水
平(又は垂直)断面の両端において前記被測定物体上の
反射点からの光学的距離の差が異なるような2種類の光
学経路を用いて該同一平面上に集光し、前記2種類の光
学経路から到来する光同士の干渉により発生する干渉縞
を受光素子によって2次元の濃淡の縞パターンに変換
し、前記縞パターンの間隔又は空間周波数を計測するこ
とで前記スリット状レーザ光が照射される垂直(または
水平)部分の距離を同時に計測し、前記スリット状レー
ザ光を水平(または垂直)に走査しながら前記計測を繰
り返し行い、得られる距離情報と該距離計測時における
走査の変位角又は変位長とから前記照射部分の3次元位
置情報を算出して前記被計測物体の形状を求めることを
特徴としている。
According to a sixth aspect of the present invention, in the object measuring method for measuring a three-dimensional shape of an object to be measured, the object to be measured is irradiated with a vertical (or horizontal) slit-shaped laser beam, and the object to be measured is measured. The diffused light of the slit-shaped laser light reflected from the object is transmitted through a horizontal (or vertical) slit, and the diffused light transmitted through the slit is measured at both ends of a horizontal (or vertical) cross section on the same plane. Interference fringes generated by interference of lights coming from the two types of optical paths, which are condensed on the same plane by using two types of optical paths having different optical distances from the upper reflection point. Is converted into a two-dimensional light and shade stripe pattern by a light receiving element, and the distance of the vertical (or horizontal) portion irradiated with the slit laser light is measured by measuring the interval or spatial frequency of the stripe pattern. 3D of the irradiated portion based on the obtained distance information and the displacement angle or displacement length of the scan when the distance is measured. It is characterized in that position information is calculated to obtain the shape of the measured object.

【0019】また、請求項7記載の発明は、被計測物体
の3次元形状及び色を計測する物体計測装置において、
前記被計測物体にレーザ光を照射する第1の照射手段
と、前記被計測物体に前記レーザ光の波長成分が除去さ
れた白色光を照射する第2の照射手段と、前記被計測物
体を撮影する第1の撮影手段と、前記第1の撮影手段と
幾何光学的に等価で、前記レーザ光の波長成分を除去す
るフィルタを介して前記被計測物体を撮影する第2の撮
影手段と、前記被計測物体の3次元形状を計測する形状
計測手段と、前記第1の撮影手段及び前記第2の撮影手
段によって撮影された2つの画像の差分から、前記被計
測物体に照射されている前記レーザ光の画像上での位置
を求め、該位置における前記被計測物体の色を前記第2
の撮影手段が撮影した画像上の同位置の画素値から求め
る色計測手段とを有することを特徴としている。
According to a seventh aspect of the invention, in an object measuring device for measuring the three-dimensional shape and color of an object to be measured,
A first irradiation unit that irradiates the measured object with laser light, a second irradiation unit that irradiates the measured object with white light from which the wavelength component of the laser light has been removed, and an image of the measured object. A first photographing means for photographing the object to be measured through a filter that is geometrically and optically equivalent to the first photographing means and that filters the wavelength component of the laser light; The laser irradiating the object to be measured from the difference between the shape measuring means for measuring the three-dimensional shape of the object to be measured and the two images taken by the first photographing means and the second photographing means. The position of the light on the image is obtained, and the color of the measured object at the position is determined by the second
And a color measuring unit that obtains the pixel value at the same position on the image captured by the image capturing unit.

【0020】また、請求項8記載の発明は、請求項7記
載の発明において、前記形状計測手段は前記レーザ光の
波長成分だけを透過する透過手段を具備することを特徴
としている。また、請求項9記載の発明は、被計測物体
の3次元形状及び色を計測する物体計測方法において、
レーザ光と該レーザ光の波長成分が除去された白色光と
を前記被計測物体に同時に照射し、前記被計測物体の3
次元形状を計測すると同時に、前記被計測物体を撮影し
た第1の画像と、前記レーザ光の波長成分を除去するフ
ィルタを介して前記被計測物体を撮影した第2の画像と
を取り込み、前記両画像の差分から前記被計測物体に照
射されている前記レーザ光の画像上での位置を求め、該
位置における前記被計測物体の色を、前記第2の画像の
同位置の画素値から算出して前記被計測物体の3次元形
状と色を同時に求めることを特徴としている。
The invention according to claim 8 is characterized in that, in the invention according to claim 7, the shape measuring means comprises a transmitting means for transmitting only a wavelength component of the laser light. The invention according to claim 9 is an object measuring method for measuring a three-dimensional shape and a color of an object to be measured,
The laser light and the white light from which the wavelength component of the laser light is removed are simultaneously irradiated to the object to be measured, and 3
At the same time as measuring the dimensional shape, a first image obtained by photographing the measured object and a second image obtained by photographing the measured object via a filter that removes the wavelength component of the laser light are taken in, The position on the image of the laser beam applied to the measured object is obtained from the difference between the images, and the color of the measured object at the position is calculated from the pixel value at the same position of the second image. It is characterized in that the three-dimensional shape and the color of the object to be measured are obtained at the same time.

【0021】[0021]

【発明の実施の形態】以下、図面を参照して本発明の実
施形態について説明する。 〔動作原理〕まず初めに、本発明による距離計測の原理
について説明する。図1に示すようにレーザ発振器11
からビーム状レーザ光を被計測物体12に照射する。被
計測物体12から反射される拡散光はミラー13,ミラ
ー14とハーフミラー15,ハーフミラー16を用いて
同一線分17に集光される。この時、図1において、該
拡散光は実線で示したハーフミラー16→ミラー14→
ハーフミラー15の経路と、破線で示したハーフミラー
16→ミラー13→ハーフミラー15の経路の2通りの
光学経路がある。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. [Principle of Operation] First, the principle of distance measurement according to the present invention will be described. As shown in FIG.
The beam-shaped laser light is applied to the measured object 12. The diffused light reflected from the measured object 12 is condensed on the same line segment 17 by using the mirrors 13, 14 and half mirrors 15, 16. At this time, in FIG. 1, the diffused light is the half mirror 16 → mirror 14 → represented by the solid line.
There are two optical paths, that is, the path of the half mirror 15 and the path of the half mirror 16 → the mirror 13 → the half mirror 15 shown by a broken line.

【0022】ここで、線分17の両端をそれぞれA点,
B点とし、被計測物体12の反射点からA点およびB点
までの光学的距離の差を実線の経路についてはd1 ,破
線の経路についてはd2 とする。すると、線分17上の
同一地点に届く光路が、ハーフミラー16の通過点にお
いて両経路で異なる位置であるならば、d1 の値とd2
の値は異なる。そして、線分17上に照射されるレーザ
光の波長をλとすると、線分17の両端間では各々の経
路についてd1/λ,d2/λ回だけレーザ光の位相が変
化する。
Here, at both ends of the line segment 17, points A and
At point B, the difference in optical distance from the reflection point of the measured object 12 to points A and B is d 1 for the solid line route and d 2 for the broken line route. Then, if the optical paths reaching the same point on the line segment 17 are at different positions on both paths at the passage point of the half mirror 16, the value of d 1 and the value of d 2
Are different. When the wavelength of the laser light with which the line segment 17 is irradiated is λ, the phase of the laser light changes between the ends of the line segment 17 by d 1 / λ and d 2 / λ times for each path.

【0023】ところで、レーザ光のようなコヒーレント
な光は、同位相では光の強度が2倍になる一方、逆位相
では打ち消し合って光の強度が0になるので、線分17
上には |d1/λ−d2/λ| 本の光の強度縞ができ
る。この強度縞は線分17の位置に1次元受光素子18
を置くことで検出される。
By the way, in coherent light such as laser light, the light intensity doubles in the same phase, but cancels each other in the opposite phase and the light intensity becomes 0.
There are | d 1 / λ−d 2 / λ | light intensity stripes on the top. This intensity fringe is located at the position of the line segment 17 in the one-dimensional light receiving element 18
Is detected by placing.

【0024】ここで、レーザ発振器11から被計測物体
12上の反射点までの距離をZ,レーザ発振器11から
A点までの距離をL,AB間の長さをlAB,ハーフミラ
ー16上で同一点を通る光の線分17上におけるずれ
(即ち、図1の実線と一点鎖線のずれ)をdlABとする
と、誤差10-3までの範囲で以下の近似式が成立する。 |d1/λ−d2/λ|= (1/λ)[lABdlAB/Z−{3LlABdlAB(L+lAB)/(2Z3)}] … (1) したがって、縞の間隔又は空間周波数から、被計測物体
12までの距離Zが求められる。
Here, the distance from the laser oscillator 11 to the reflection point on the measured object 12 is Z, the distance from the laser oscillator 11 to the point A is L, the length between AB is l AB , and on the half mirror 16. Letting dl AB be the shift of the light passing through the same point on the line segment 17 (that is, the shift between the solid line and the alternate long and short dash line in FIG. 1), the following approximate expression is established within an error range of 10 −3 . │d 1 / λ-d 2 / λ│ = (1 / λ) [l AB dl AB / Z- {3Ll AB dl AB (L + l AB ) / (2Z 3 )}] (1) Therefore, the interval between stripes Alternatively, the distance Z to the measured object 12 is obtained from the spatial frequency.

【0025】以上のような原理に則った計測方法による
と、同じ分解能の受光素子を用いた三角測量法に比べて
非常に高分解能な距離計測が可能となる。以下この点に
つき詳述する。まず三角測量法では、図2(a)に示す
ように、1次元受光素子が捉えたピーク点の位置から距
離を求める。したがって、図2(a)から距離がわずか
に変わると1次元受光素子の検出信号は図2(b)のよ
うになり、このために、限界分解能は図2(a)に示す
位置と図2(b)に示す位置とのわずかな差をどれだけ
求めうるかに帰着され、1次元受光素子の分解能をnと
すると、三角測量法では高々n分解能しか得られない。
According to the measuring method based on the above principle, it is possible to measure the distance with a very high resolution as compared with the triangulation method using the light receiving element with the same resolution. This point will be described in detail below. First, in the triangulation method, as shown in FIG. 2A, the distance is obtained from the position of the peak point captured by the one-dimensional light receiving element. Therefore, when the distance slightly changes from that of FIG. 2A, the detection signal of the one-dimensional light receiving element becomes as shown in FIG. 2B, and therefore, the limit resolution is the same as the position shown in FIG. It comes down to how small a difference from the position shown in (b) can be obtained, and if the resolution of the one-dimensional light receiving element is n, then at most n resolution can be obtained by the triangulation method.

【0026】これに対し、本発明によれば図3(a)の
ような検出信号が得られ、測定可能な空間周波数は、上
記のものと同分解能の1次元受光素子18を用いるとす
ると、ナイキストの定理より「0〜n/2」までの範囲
である。しかしながら、本発明では図3(b)に示すよ
うに1周波数増えた時はもちろんのこと、例えば図3
(c)のように半周波数増えた場合でも波形が明瞭に変
化する。このため、限界分解能は1周波数より高く、1
次元受光素子18の1画素の濃淡の分解能に依存する。
On the other hand, according to the present invention, when the detection signal as shown in FIG. 3A is obtained and the one-dimensional light receiving element 18 having the same resolution as the above is used as the measurable spatial frequency, According to Nyquist's theorem, the range is "0 to n / 2". However, according to the present invention, not only when the frequency is increased by 1 as shown in FIG.
Even when the half frequency is increased as in (c), the waveform changes clearly. Therefore, the limit resolution is higher than 1 frequency and 1
It depends on the grayscale resolution of one pixel of the three-dimensional light receiving element 18.

【0027】1次元受光素子18の右端又は左端の検出
値は、空間周波数が「1」変わる度に「最大強度の光
量」と「光量0」の状態を経て元の検出値に戻ることか
ら、例えば1次元受光素子18の1画素の光量の分解能
が256階調であるとすれば、最大で1空間周波数の5
12分の1の分解能で計測可能である。したがって、上
記と同分解能の1次元受光素子18を用いても 512
×(n/2)=256nとなり、三角測量法の256倍
の分解能が得られる。
The detection value at the right end or the left end of the one-dimensional light receiving element 18 returns to the original detection value after passing through the states of "maximum intensity light quantity" and "light quantity 0" each time the spatial frequency changes by "1". For example, if the resolution of the light amount of one pixel of the one-dimensional light receiving element 18 is 256 gradations, the maximum of 5 of one spatial frequency is 5.
It is possible to measure with a resolution of 1/12. Therefore, even if the one-dimensional light receiving element 18 having the same resolution as above is used, 512
X (n / 2) = 256n, which is 256 times the resolution of the triangulation method.

【0028】この非常に高い分解能は次のような利点を
生む。例えば、被計測物体12に対する照射光と反射光
のなす角を非常に小さくすることによりオクルージョン
の問題を解決できる。前述したように、これら光のなす
角を非常に小さくすると分解能は大幅に悪化するが、元
々の分解能が先に示したように非常に高いので計測精度
に与える影響は無視できる。また、「距離に応じて分解
能が変化する」という三角測量法が有しているような問
題も、分解能が十分高いために計測精度に与える影響が
ほとんどない。さらに、三角測量法を含む従来の計測手
法の大半は斜面の計測時に分解能が落ちるという問題が
あるが、本発明のように高分解能であるとこうした場合
にも有効である。
This very high resolution has the following advantages. For example, the problem of occlusion can be solved by making the angle between the irradiation light and the reflected light with respect to the measured object 12 extremely small. As described above, if the angle formed by these lights is made very small, the resolution is significantly deteriorated, but the original resolution is very high as described above, so the influence on the measurement accuracy can be ignored. In addition, the problem that the triangulation method "changes resolution depending on distance" has little influence on measurement accuracy because the resolution is sufficiently high. Further, although most of the conventional measurement methods including the triangulation method have a problem that the resolution is lowered when measuring the slope, the high resolution as in the present invention is also effective in such a case.

【0029】さらに、以上のような手法は光ノイズに対
する耐性の点でも優れている。例えば、図4(a)に示
すように、三角測量法では受光素子のピーク点aの位置
から距離を求めるので、図4(b)のようにピーク点a
の光量以上の光ノイズbが混入するとこれをピーク点と
誤検出してしまう。これに対し、本発明の方法は縞の間
隔又は空間周波数を計測することから、図5(a)に示
すように図4(b)と同程度の光ノイズがあっても、図
5(b)のように検出情報をフーリエ変換などで空間周
波数表現に変換してしまえば、ノイズ成分が拡散されて
ピーク点cが明確に検出できる。以上に加えて、本発明
は、構成要素に特殊な精度や形状が要求される光学部品
を必要としないので、現在の技術で十分実現できる点で
も優れている。
Further, the above method is also excellent in terms of resistance to optical noise. For example, as shown in FIG. 4A, since the distance is obtained from the position of the peak point a of the light receiving element in the triangulation method, the peak point a as shown in FIG.
If the optical noise b of more than the amount of light is mixed, this will be erroneously detected as a peak point. On the other hand, since the method of the present invention measures the distance between the stripes or the spatial frequency, even if there is the same level of optical noise as in FIG. 4B as shown in FIG. If the detection information is converted into a spatial frequency expression by Fourier transform or the like as in the above), the noise component is diffused and the peak point c can be clearly detected. In addition to the above, the present invention is excellent in that it can be sufficiently realized by the present technology, because it does not require an optical component in which a component is required to have a special precision or shape.

【0030】〔第1実施形態〕図6(a)は、本実施形
態による距離計測装置の構成を示す図である。この図に
おいて、符号40は測定部、41はビーム状の光を出す
レーザ発振器、42は被計測物体である。また、43は
光学素子であって、底辺の形状が同じで高さの異なる台
形柱状プリズム2個の片方の底辺にクロムコート等を施
してハーフミラー化した後に、これら台形柱状プリズム
の底辺同士を張り合わせたものである。この光学素子4
3を構成する二つの台形柱状プリズムの高さを異ならせ
ることによって、CCD47(図1の線分17)の両端
における反射点からの光学的距離の差が異なるような2
種類の光学経路を用いた拡散光の集光が実現される。さ
らに、44,45は反射面、46はハーフミラー面、4
7は1次元の受光素子であるCCD、48は計算機、4
9は光学素子43,CCD47などやレーザ発振器41
を固定し、外光を遮断する筐体である。
[First Embodiment] FIG. 6A is a view showing the arrangement of a distance measuring apparatus according to this embodiment. In this figure, reference numeral 40 is a measuring unit, 41 is a laser oscillator that emits a beam of light, and 42 is an object to be measured. Reference numeral 43 denotes an optical element, which has two bases of the trapezoidal columnar prisms having the same bottom shape and different heights, which are half-mirrored by applying a chrome coat or the like to the bottoms of the two trapezoidal columnar prisms. It is a pasting. This optical element 4
By making the heights of the two trapezoidal prisms that form part 3 different, the difference in the optical distance from the reflection points at both ends of the CCD 47 (line segment 17 in FIG. 1) becomes different.
Focusing of diffused light using different types of optical paths is achieved. Further, 44 and 45 are reflecting surfaces, 46 is a half mirror surface, 4
7 is a CCD which is a one-dimensional light receiving element, 48 is a calculator, 4
Reference numeral 9 denotes an optical element 43, a CCD 47, etc., and a laser oscillator 41.
Is a housing that fixes the light and blocks external light.

【0031】次に、上記構成による距離計測装置の動作
を説明する。レーザ発振器41から照射されたレーザ光
は被計測物体42に当たり、拡散光として照射点から四
方に反射する。この反射光の一部が光学素子43内に入
ると、ハーフミラー面46によって図6の破線で示した
反射光と同図の実線で示した透過光に2分される。透過
光は反射面44で反射され、反射光は反射面45で反射
された後に、ハーフミラー面46で一つの光に合成さ
れ、その後にCCD47に照射される。すなわち、光学
素子43のハーフミラー面46は図1におけるハーフミ
ラー15とハーフミラー16に対応し、反射面45はミ
ラー13に反射面44はミラー14にそれぞれ対応す
る。
Next, the operation of the distance measuring device having the above structure will be described. The laser light emitted from the laser oscillator 41 hits the measured object 42 and is reflected as diffused light in all directions from the irradiation point. When a part of this reflected light enters the optical element 43, it is divided into two by the half mirror surface 46 into the reflected light shown by the broken line in FIG. 6 and the transmitted light shown by the solid line in FIG. The transmitted light is reflected by the reflecting surface 44, the reflected light is reflected by the reflecting surface 45, and then is combined into one light by the half mirror surface 46, and thereafter, the CCD 47 is irradiated with the combined light. That is, the half mirror surface 46 of the optical element 43 corresponds to the half mirror 15 and the half mirror 16 in FIG. 1, the reflecting surface 45 corresponds to the mirror 13, and the reflecting surface 44 corresponds to the mirror 14.

【0032】次に、CCD47は両光学経路から到来し
たレーザ光同士が干渉して起こる干渉縞を1次元の濃淡
画像に変換して計算機48に送る。計算機48は該干渉
縞の間隔又は空間周波数を求めて被計測物体42までの
距離Zを(1)式により算出する。なお、本実施形態で
用いた光学系は、「被計測物体から反射したレーザ光の
拡散光を同一線分上に集光し、かつ、線分の両端におけ
る反射点からの光学的距離の差が異なるような2種類の
光学経路」を実現するための一形態であって、この条件
を満たすような光学系であるならば以上説明したものに
は限定されない。
Next, the CCD 47 converts the interference fringes produced by the interference of the laser beams coming from both optical paths into a one-dimensional gray image and sends it to the computer 48. The calculator 48 calculates the distance Z or the spatial frequency of the interference fringes and calculates the distance Z to the object 42 to be measured by the equation (1). In addition, the optical system used in the present embodiment, "diffused light of the laser light reflected from the measured object is condensed on the same line segment, and the difference in the optical distance from the reflection point at both ends of the line segment. However, the optical system is not limited to the one described above as long as the optical system satisfies one of the two types of optical paths.

【0033】〔第2実施形態〕本実施形態で説明する3
次元形状計測装置は、ビーム状レーザ光を2次元方向に
走査して被計測物体上のビーム照射点の距離を第1実施
形態の距離計測装置で計測し、得られた距離情報と計測
時の走査の変位角又は変位長から被計測点の3次元位置
情報を求める。そして、走査の変位角又は変位長を次々
に更新していきながら3次元位置情報を次々に求めてい
くことによって被計測物体の3次元形状を求めるもので
ある。
[Second Embodiment] 3 described in the present embodiment
The three-dimensional shape measuring apparatus scans the beam-shaped laser light in a two-dimensional direction to measure the distance of the beam irradiation point on the measured object by the distance measuring apparatus of the first embodiment, and obtains the obtained distance information and the measured distance information. Three-dimensional position information of the measured point is obtained from the scan displacement angle or displacement length. Then, the three-dimensional shape of the object to be measured is obtained by successively obtaining the three-dimensional position information while successively updating the displacement angle or displacement length of scanning.

【0034】図7は、本実施形態に係る3次元形状計測
装置の構成を示す図であり、図6と同一の部品について
は同一の符号を付してあり、その説明を省略する。この
図において、52は被計測物体、53はX方向回転器、
54はY方向回転器、55はX方向変位角度検出器、5
6はY方向変位角度検出器、57は計算機である。
FIG. 7 is a view showing the arrangement of the three-dimensional shape measuring apparatus according to this embodiment. The same parts as those in FIG. 6 are designated by the same reference numerals, and the description thereof will be omitted. In this figure, 52 is an object to be measured, 53 is an X-direction rotator,
54 is a Y direction rotator, 55 is an X direction displacement angle detector, 5
6 is a Y-direction displacement angle detector, and 57 is a calculator.

【0035】次に、上記構成による3次元形状計測装置
の動作を説明する。初めに、計算機57はX方向回転器
53とY方向回転器54に対して測定部40の向きを指
示する。すると、X方向回転器53とY方向回転器54
はこの指令に応じて測定部40の向きを制御する。一
方、X方向変位角度検出器55とY方向変位角度検出器
56は、それぞれ測定部40の正確な変位角ΘX,ΘY
検出して計算機57へ送出する。
Next, the operation of the three-dimensional shape measuring apparatus having the above structure will be described. First, the computer 57 instructs the X-direction rotator 53 and the Y-direction rotator 54 about the orientation of the measuring unit 40. Then, the X-direction rotator 53 and the Y-direction rotator 54
Controls the orientation of the measuring unit 40 according to this command. On the other hand, the X-direction displacement angle detector 55 and the Y-direction displacement angle detector 56 detect the accurate displacement angles Θ X and Θ Y of the measuring unit 40 and send them to the computer 57.

【0036】次に、測定部40によって第1実施形態で
説明したのと同様の動作が行われ、距離Zが求められて
計算機57に送られる。次いで、レーザ発振器41のレ
ーザ発振部を原点にした計測点の位置座標をPX,PY
Z とした場合に、計算機57はこれらの値を PX = ZsinΘX …(2) PY = ZsinΘY …(3) PZ = ZcosΘX・cosΘY …(4) と計算して計測点の位置座標を求める。
Next, the measuring unit 40 performs the same operation as that described in the first embodiment, obtains the distance Z, and sends it to the computer 57. Next, the position coordinates of the measurement point with the laser oscillation portion of the laser oscillator 41 as the origin are P X , P Y ,
When P Z is set, the calculator 57 calculates these values as P X = Zsin Θ X (2) P Y = Zsin Θ Y (3) P Z = Z cos Θ X · cos Θ Y (4) Find the position coordinates of.

【0037】そして計算終了後、計算機57はX方向回
転器53またはY方向回転器54により測定部40の向
きをわずかに変えさせることにより走査を行って、被計
測物体52の異なる位置について計測する。このように
して、被計測物体52の表面を十分な密度で計測するま
で、該走査及び該計測を繰り返して被計測物体52の3
次元形状を求める。
After completion of the calculation, the computer 57 performs scanning by slightly changing the direction of the measuring section 40 by the X-direction rotator 53 or the Y-direction rotator 54, and measures at different positions of the measured object 52. . In this way, the scanning and the measurement are repeated until the surface of the object to be measured 52 is measured with sufficient density, and the 3 of the object to be measured 52 is measured.
Find the dimensional shape.

【0038】なお、本実施形態では、測定部40を該装
置内のレーザ発振器41のレーザ発振部を回転の中心と
して回転させているが、位置座標の計算式を変えれば回
転の中心位置を任意に設定できる。また、測定部40を
XY方向に平行移動する機構を設けて該測定部40を平
行に移動するようにしても良い。このようにすると、求
めた距離情報ZがそのままPz となり、Px,Pyは移動
機構のX,Y方向の変位量に対応することになる。ま
た、X方向回転器53とY方向回転器54が測定精度に
影響を与えない程の十分な機械精度を有しているなら、
X方向変位角度検出器55とY方向変位角度検出器56
を省略し、計算機57の指令値をそのまま変位量として
も良い。
In the present embodiment, the measuring unit 40 is rotated about the laser oscillation unit of the laser oscillator 41 in the apparatus, but the rotation center position can be set arbitrarily by changing the position coordinate calculation formula. Can be set to. Further, a mechanism for moving the measuring unit 40 in parallel in the XY directions may be provided to move the measuring unit 40 in parallel. By doing so, the obtained distance information Z becomes P z as it is, and P x and P y correspond to the displacement amounts of the moving mechanism in the X and Y directions. Further, if the X-direction rotator 53 and the Y-direction rotator 54 have sufficient mechanical accuracy that does not affect the measurement accuracy,
X-direction displacement angle detector 55 and Y-direction displacement angle detector 56
May be omitted and the command value of the computer 57 may be used as the displacement amount as it is.

【0039】以上のように、本実施形態による3次元形
状計測装置は第1実施形態に示した距離計測手法の長所
がそのまま反映されることから、従来の三角測量の原理
を用いた3次元形状計測装置に対して以下のような長所
を有する。 分解能に優れる オクルージョンが極めて小さい 斜面計測時に起こる分解能劣化が問題にならない 計測光に含まれる光ノイズに強い
As described above, the advantages of the distance measuring method shown in the first embodiment are reflected as they are in the three-dimensional shape measuring apparatus according to this embodiment. Therefore, the three-dimensional shape measuring method using the conventional triangulation principle is used. It has the following advantages over the measuring device. Excellent in resolution Extremely low occlusion Degradation in resolution that occurs when measuring slopes is not a problem Strong against optical noise contained in measurement light

【0040】〔第3実施形態〕まず、本実施形態と後述
する第4実施形態で用いている3次元形状計測の原理に
ついて説明する。図8に示すように、スリット状レーザ
発振器61で被計測物体62に垂直にスリット状レーザ
光を照射する。被計測物体62で反射したレーザ光の拡
散光は水平スリット63を透過した後で、ハーフミラー
64に入射する。同図に実線で示した透過光はミラー6
6で反射させ、同図に破線で示した反射光はミラー67
で反射させた後にハーフミラー65で集光して受光素子
68上に照射する。
[Third Embodiment] First, the principle of three-dimensional shape measurement used in this embodiment and a fourth embodiment described later will be described. As shown in FIG. 8, the slit laser oscillator 61 vertically irradiates the measured object 62 with the slit laser light. The diffused light of the laser light reflected by the measured object 62 passes through the horizontal slit 63 and then enters the half mirror 64. The transmitted light shown by the solid line in the figure is the mirror 6
The reflected light reflected by the mirror 6 and shown by the broken line in FIG.
After being reflected by, the light is condensed by the half mirror 65 and irradiated onto the light receiving element 68.

【0041】この時、ハーフミラー64,ハーフミラー
65,ミラー66,ミラー67の位置関係が図1のもの
と同じであれば、第1実施形態と同様の作用により受光
素子68上に干渉縞が生じる。ここで被計測物体62上
の反射点Cに着目すると、反射点Cから反射したレーザ
光の拡散光は水平スリット63を通過するために、受光
素子68上では水平線C’上にのみ到達する。一方、反
射点Dに着目すると、反射点Dから反射したレーザ光の
拡散光も水平スリット63を通過するために受光素子6
8上では水平線D’にのみ到達する。
At this time, if the positional relationship among the half mirror 64, the half mirror 65, the mirror 66, and the mirror 67 is the same as that in FIG. 1, an interference fringe is formed on the light receiving element 68 by the same operation as in the first embodiment. Occurs. Focusing on the reflection point C on the measured object 62, the diffused light of the laser light reflected from the reflection point C passes through the horizontal slit 63, and therefore reaches only the horizontal line C ′ on the light receiving element 68. On the other hand, focusing on the reflection point D, since the diffused light of the laser light reflected from the reflection point D also passes through the horizontal slit 63, the light receiving element 6
On 8 only the horizon D'is reached.

【0042】つまり、受光素子68上のある水平線に発
生する干渉縞は被計測物体62のある反射点の距離を表
わしており、各水平線毎に独立して干渉縞の間隔又は空
間周波数を求めて距離を計算すれば、被計測物体62上
のスリット光の当たった垂直線部の距離が並列に求めら
れる。したがって、被計測物体62上の垂直線部を水平
方向に走査しながら計測を繰り返せば、被計測物体62
の3次元形状を求めることができる。なお、上記の説明
においては、「水平」と「垂直」の言葉を入れ替えても
全く同様である。
That is, the interference fringes generated on a certain horizontal line on the light receiving element 68 represent the distance of a certain reflection point of the measured object 62, and the interval or the spatial frequency of the interference fringes is independently calculated for each horizontal line. If the distance is calculated, the distance of the vertical line portion on the measured object 62 on which the slit light hits is obtained in parallel. Therefore, if the measurement is repeated while scanning the vertical line portion on the measured object 62 in the horizontal direction, the measured object 62
Can be obtained. In the above description, even if the terms "horizontal" and "vertical" are interchanged, the same is true.

【0043】次に、本実施形態による3次元形状計測装
置の構成を説明する。図9は同装置の構成を示す図であ
る。この図において、71は垂直方向にスリット状の光
を出すレーザ発振器、72は被計測物体、73は水平方
向のスリット、74,75はハーフミラー、76,77
は平面ミラー、78は2次元の受光素子であるCCD、
79は計算機、80は水平方向回転器、81は水平方向
変位角度検出器、82は遮光も兼ねた筐体である。
Next, the structure of the three-dimensional shape measuring apparatus according to the present embodiment will be explained. FIG. 9 is a diagram showing the configuration of the device. In this figure, 71 is a laser oscillator that emits slit-shaped light in the vertical direction, 72 is an object to be measured, 73 is a horizontal slit, 74 and 75 are half mirrors, and 76 and 77.
Is a plane mirror, 78 is a CCD which is a two-dimensional light receiving element,
Reference numeral 79 is a calculator, 80 is a horizontal rotator, 81 is a horizontal displacement angle detector, and 82 is a housing that also serves as a light shield.

【0044】ここで、CCD78の両端における被計測
点からの距離差が同図に示す実線の経路と破線の経路で
は異なるようにしなければならない。本実施形態ではハ
ーフミラー74,ハーフミラー75,平面ミラー77を
互いに平行な向きでなおかつ長方形の3頂点にあたる位
置に配置し、平面ミラー76のみを向きはこれらのミラ
ーと同じにしたまま当該長方形の残りの1頂点からずら
した位置に配置することにより、この条件を満たしてい
る。
Here, the distance difference from the measured point at both ends of the CCD 78 must be different between the solid line route and the broken line route shown in FIG. In this embodiment, the half mirror 74, the half mirror 75, and the plane mirror 77 are arranged in parallel to each other and at the positions corresponding to the three vertices of the rectangle, and only the plane mirror 76 is oriented in the same direction as these mirrors. This condition is satisfied by arranging at a position shifted from the remaining one vertex.

【0045】なお、平面ミラー76の位置が上述したよ
うにずれているために、同図の実線の光路長と破線の光
路長はわずかに異なり、そのために同じ計測点から来た
光もCCD78上ではわずかに高さがずれる。しかしな
がら、平面ミラー76のずれは被計測物体72,スリッ
ト73間の長さに比べて極めて小さいためにこの差は通
常無視できる。さらに、CCD78の垂直分解能が極め
て高くこの差が無視できないとしても、スリット73に
焦点を結ぶシリンドリカルレンズをスリット73とハー
フミラー74の間に挿入して垂直方向だけを平行光化す
れば、ずれはなくなる。
Since the position of the plane mirror 76 is displaced as described above, the optical path length of the solid line and the optical path length of the broken line in the figure are slightly different, and therefore light coming from the same measurement point is also on the CCD 78. Then, the height shifts slightly. However, since the displacement of the plane mirror 76 is extremely small compared to the length between the measured object 72 and the slit 73, this difference can usually be ignored. Further, even if the vertical resolution of the CCD 78 is extremely high and this difference cannot be ignored, if a cylindrical lens focusing on the slit 73 is inserted between the slit 73 and the half mirror 74 to make parallel light only in the vertical direction, the deviation will occur. Disappear.

【0046】次に、上記構成による3次元形状計測装置
の動作を説明する。初めに、計算機79は水平方向回転
器80に測定部40の向きを指示し、水平方向回転器8
0はこの指令に応じて測定部40の向きを制御する。一
方、水平方向変位角度検出器81は測定部40の正確な
変位角ΘX を検出し計算機79に送る。
Next, the operation of the three-dimensional shape measuring apparatus having the above structure will be described. First, the computer 79 instructs the horizontal rotator 80 to orient the measuring unit 40, and the horizontal rotator 8
0 controls the orientation of the measuring unit 40 according to this command. On the other hand, the horizontal displacement angle detector 81 detects the accurate displacement angle Θ X of the measuring section 40 and sends it to the computer 79.

【0047】次に、レーザ発振器71から照射されたス
リット状レーザ光は被計測物体72に当たり、照射線部
から四方に拡散光として反射する。この反射光はスリッ
ト73のスリットを通過してハーフミラー74に届き、
ハーフミラー74により、光は破線で示した反射光と実
線で示した透過光に2分される。そして、透過光は平面
ミラー76で反射され、反射光は平面ミラー77で反射
された後にハーフミラー75で一つの光に合成されてC
CD78に照射される。
Next, the slit-shaped laser light emitted from the laser oscillator 71 hits the measured object 72 and is reflected as diffused light in all directions from the irradiation line portion. This reflected light passes through the slit of the slit 73 and reaches the half mirror 74,
The half mirror 74 divides the light into two, a reflected light shown by a broken line and a transmitted light shown by a solid line. Then, the transmitted light is reflected by the plane mirror 76, the reflected light is reflected by the plane mirror 77, and then is combined into one light by the half mirror 75 to form C.
The CD78 is irradiated.

【0048】次に、CCD78は、実線部の光と破線部
の光によって発生する干渉縞を2次元の濃淡画像に変換
して計算機79に送る。計算機79は各水平ライン毎に
縞の間隔又は空間周波数を求めて距離Zを算出する。次
いで、レーザ発振器71のレーザ発振部を原点にした反
射点の位置座標をPX,PY,PZ とした場合に、計算機
79は該距離Z,変位角ΘX ,CCD78のある水平ラ
インとスリット73を含む平面と水平面とのなす角ΘY
より、以下の式によってこれら3つの位置座標を求め
る。 PX =ZsinΘX …(5) PY =ZsinΘY …(6) PZ =ZcosΘX・cosΘY …(7)
Next, the CCD 78 converts the interference fringes generated by the light of the solid line part and the light of the broken line part into a two-dimensional gray image and sends it to the computer 79. The calculator 79 calculates the distance Z by obtaining the stripe interval or the spatial frequency for each horizontal line. Next, when the position coordinates of the reflection point with the laser oscillation portion of the laser oscillator 71 as the origin are P X , P Y , and P Z , the computer 79 determines the distance Z, the displacement angle Θ X , and the horizontal line with the CCD 78. Angle Θ Y formed by the plane including the slit 73 and the horizontal plane
From these, these three position coordinates are obtained by the following equations. P X = Z sin θ X (5) P Y = Z sin θ Y (6) P Z = Z cos θ X · cos θ Y (7)

【0049】そして、この処理をCCD78上の全水平
ラインについて行うことにより、被計測物体72内のレ
ーザ光照射部を基準とした3次元位置情報が求められ
る。計算終了後、計算機79は水平方向回転器80に対
して測定部40の向きをわずかに変えさせ、被計測物体
72の異なる位置について計測を行う。このようにし
て,被計測物体72の表面を十分な密度で計測するまで
該走査と該計測を繰り返すことにより、被計測物体72
の3次元形状を求める。
By performing this processing for all the horizontal lines on the CCD 78, three-dimensional position information with respect to the laser light irradiation portion in the measured object 72 is obtained. After the calculation is completed, the calculator 79 causes the horizontal rotator 80 to slightly change the direction of the measuring unit 40, and measures the different positions of the measured object 72. In this way, by repeating the scanning and the measurement until the surface of the measured object 72 is measured with a sufficient density, the measured object 72 is measured.
The three-dimensional shape of is calculated.

【0050】なお、水平方向回転器80が測定精度に影
響を与えない程の十分な機械精度を有しているなら、水
平方向変位角度検出器81を省略して水平方向回転器8
0への指令値をそのまま変位量としても良い。また、本
実施形態ではレーザ発振部を回転の中心として水平方向
回転器80で回転させたが、位置座標の計算式を変える
ことにより回転の中心は任意である。
If the horizontal rotator 80 has sufficient mechanical accuracy that does not affect the measurement accuracy, the horizontal displacement angle detector 81 is omitted and the horizontal rotator 8 is omitted.
The command value to 0 may be used as the displacement amount as it is. Further, in the present embodiment, the laser oscillating unit is rotated by the horizontal rotator 80 as the center of rotation, but the center of rotation may be arbitrary by changing the calculation formula of the position coordinates.

【0051】また、水平方向回転器80の代わりに水平
方向に平行移動する移動機構を設けて、測定部40等を
平行に移動しても良い。この場合、求めた距離情報Zよ
り、 PX =移動機構の変位量 … (8) PY =ZsinΘY … (9) PZ =ZcosΘY …(10) として3次元位置情報を計算する。また、上記で説明し
たものは光学系の一例であって、本実施形態の条件を満
たすような光学系はこれだけに限られない。
Further, instead of the horizontal rotator 80, a moving mechanism for moving in parallel in the horizontal direction may be provided to move the measuring section 40 and the like in parallel. In this case, than the distance calculated information Z, calculates the displacement amount ... (8) P Y = ZsinΘ Y ... (9) P Z = ZcosΘ Y ... 3 -dimensional position information as (10) of P X = movement mechanism. The above-described one is an example of an optical system, and an optical system that satisfies the conditions of the present embodiment is not limited to this.

【0052】以上説明したように、本実施形態の3次元
形状計測装置を用いれば、1次元方向については並列し
て同時に計測するので計測時間が十分短い。また、第1
実施形態で説明した距離計測手法の長所がそのまま反映
されるので、従来の三角測量の原理を用いた3次元形状
計測装置に対して以下のような長所を有している。 分解能に優れる オクルージョンが極めて小さい 斜面計測時に起こる分解能劣化が問題にならない 計測光に含まれるノイズに強い
As described above, if the three-dimensional shape measuring apparatus of this embodiment is used, the one-dimensional direction is measured in parallel at the same time, so the measurement time is sufficiently short. Also, the first
Since the advantages of the distance measuring method described in the embodiment are reflected as they are, they have the following advantages over the conventional three-dimensional shape measuring apparatus using the principle of triangulation. Excellent resolution Highly low occlusion Resolution degradation that occurs when measuring slopes is not a problem Strong against noise contained in measurement light

【0053】一方、格子縞を用いたモアレ法に代表され
る2次元距離情報を一度に計測する方法に対しては、計
測時間の点では劣るものの、並列計測方向の分解能が受
光素子の分解能で決まるので、以下の点において優れて
いる。 格子縞よりは分解能がはるかに高い 走査方向の分解能は更に高く、また、分解能や計測範
囲を任意に設定できる 直接、距離情報を計測しているので、距離が不連続に
変わる測定面でも計測できる
On the other hand, the resolution in the parallel measurement direction is determined by the resolution of the light receiving element, although the measurement time is inferior to the method for measuring the two-dimensional distance information at one time, which is represented by the moire method using the lattice fringes. Therefore, it is excellent in the following points. The resolution is much higher than that of lattice fringes. The resolution in the scanning direction is even higher, and the resolution and measurement range can be set arbitrarily. Since distance information is directly measured, it is possible to measure even on a measurement surface where the distance changes discontinuously.

【0054】〔第4実施形態〕まず、本実施形態による
物体計測装置の動作原理を説明しておく。本実施形態で
は、レーザ光と、レーザ光の波長成分だけを除去した白
色光とを同時に被計測物体に照射する。そして、被計測
物体の3次元形状は上記実施形態で説明した計測装置で
行うこととし、これと同時に第1の撮影手段と第2の撮
影手段によって被計測物体を撮影する。この時、第1の
撮影手段と第2の撮影手段は幾何光学的に等価な撮影を
行うようになっており、レーザ光が照射されていなけれ
ば全く同じ画像が得られる。
[Fourth Embodiment] First, the operating principle of the object measuring apparatus according to the present embodiment will be explained. In the present embodiment, the object to be measured is irradiated with the laser light and the white light from which only the wavelength component of the laser light has been removed. Then, the three-dimensional shape of the measured object is determined by the measuring device described in the above embodiment, and at the same time, the measured object is photographed by the first photographing means and the second photographing means. At this time, the first photographing means and the second photographing means are designed to perform geometrically equivalent photographing, and the same image can be obtained unless laser light is irradiated.

【0055】一方、レーザ光が照射されている場合、第
1の撮影手段は点状または線状のレーザ光の当たった部
分が画像に現れ、レーザ光の波長成分だけを除去するフ
ィルタを通した第2の撮影手段ではレーザ光を照射しな
い場合と同じ画像が得られる。したがって、第1の撮影
手段による画像と第2の撮影手段による画像の差分を取
ることによって、画像中におけるレーザ光の照射位置が
求められ。該位置における物体の色を第2の撮影手段に
よる画像の同位置の画素値とすることにより被計測物体
の3次元形状と色が同時に求められる。
On the other hand, when the laser light is irradiated, the first photographing means passes through a filter which removes only the wavelength component of the laser light when the spotted or linear laser light hit portion appears in the image. The second image capturing means can obtain the same image as when the laser light is not emitted. Therefore, the irradiation position of the laser beam in the image is obtained by taking the difference between the image obtained by the first photographing means and the image obtained by the second photographing means. The three-dimensional shape and color of the measured object can be obtained at the same time by setting the color of the object at the position as the pixel value at the same position of the image by the second photographing means.

【0056】次に、本実施形態による物体計測装置の構
成を説明する。図10は同装置の構成を示している。こ
の図において、符号70は第2実施形態または第3実施
形態等の方法を含め、ビーム状又はスリット状レーザ光
を被計測物体に照射して3次元形状を計測する計測装
置、83は通常の蛍光灯,白熱電灯,ハロゲンランプ等
の白色照射光源である。また、84,85はレーザ光の
波長成分だけを除去するフィルタであり、例えば、レー
ザ光が赤外線ならば可視光線だけを通すホットミラー,
レーザ光が可視光内のある波長ならばその波長のみを反
射する多層誘電体薄膜ミラー等である。
Next, the structure of the object measuring apparatus according to the present embodiment will be explained. FIG. 10 shows the configuration of the device. In this figure, reference numeral 70 includes a measuring device for irradiating the object to be measured with beam-shaped or slit-shaped laser light to measure a three-dimensional shape, including the method of the second embodiment or the third embodiment, and 83 is a normal measuring device. It is a white irradiation light source such as a fluorescent lamp, an incandescent lamp, and a halogen lamp. Further, 84 and 85 are filters for removing only the wavelength component of the laser light, for example, if the laser light is infrared, a hot mirror that allows only visible light to pass,
If the laser light has a certain wavelength in the visible light, it is a multilayer dielectric thin film mirror or the like that reflects only that wavelength.

【0057】また、86はレーザ光の波長成分だけを透
過するフィルタであって、例えば、レーザ光が赤外線な
らコールドミラー,可視光内のある波長ならば多層誘電
体薄膜フィルタ等である。このフィルタ86は、計測装
置70がレーザ光以外の波長の光に影響される場合に該
計測装置70の反射光入力部に設けられる。したがっ
て、計測装置70がレーザ光の波長以外の光に影響され
ない場合には、フィルタ86を省略できる。
Further, reference numeral 86 is a filter which transmits only the wavelength component of the laser light, for example, a cold mirror if the laser light is infrared light, or a multilayer dielectric thin film filter if the laser light has a certain wavelength within the visible light. The filter 86 is provided in the reflected light input section of the measuring device 70 when the measuring device 70 is affected by light having a wavelength other than the laser light. Therefore, when the measuring device 70 is not affected by light other than the wavelength of the laser light, the filter 86 can be omitted.

【0058】また、87,88はTVカメラ等のカラー
撮影装置であって、カラー撮影装置87とカラー撮影装
置88は画角,撮影位置,撮影倍率などの幾何光学的条
件が等価もしくは簡単な後処理で等価にできる様に構成
されていなければならない。本実施形態ではハーフミラ
ー90を用いた光学系でこの条件を満足している。この
光学系を用いるとカラー撮影装置87とカラー撮影装置
88は左右が逆になる以外は全く同じ画像を撮影でき、
片側の画像の左右を反転することによって容易に「幾何
光学的に等価な撮影手段」が実現される。さらに、89
は計算機、90はハーフミラー、92は被計測物体であ
る。
Reference numerals 87 and 88 denote color photographing devices such as TV cameras, and the color photographing device 87 and the color photographing device 88 have the same or simple geometrical optical conditions such as an angle of view, a photographing position, and a photographing magnification. It must be configured so that processing can be equivalent. In this embodiment, an optical system using the half mirror 90 satisfies this condition. Using this optical system, the color photographing device 87 and the color photographing device 88 can photograph exactly the same image except that the left and right are reversed,
By reversing the left and right of the image on one side, "a geometrically-optically equivalent photographing means" can be easily realized. In addition, 89
Is a calculator, 90 is a half mirror, and 92 is an object to be measured.

【0059】次に、上記構成による物体計測装置の動作
を説明する。白色照射光源83が放射した白色光は、フ
ィルタ84を通してレーザ光の波長成分だけを除去され
て被計測物体92に照射される。そして計測装置70
は、白色光の照射された被計測物体92の3次元形状を
計測する。一方、計測装置70の計測と同時にカラー撮
影装置87,カラー撮影装置88の2台で被計測物体9
2等を同時に撮影する。
Next, the operation of the object measuring device having the above configuration will be described. The white light emitted by the white irradiation light source 83 is applied to the measured object 92 after removing only the wavelength component of the laser light through the filter 84. And the measuring device 70
Measures the three-dimensional shape of the measured object 92 irradiated with white light. On the other hand, at the same time as the measurement by the measuring device 70, the object to be measured 9 is measured by the color photographing device 87 and the color photographing device 88.
Shoot 2nd magnitude at the same time.

【0060】ここで、カラー撮影装置88の画像入力部
の前にはフィルタ85が設けられているので、図11の
ようにレーザ光が除去された後の画像、即ち、白色光で
照明されただけの被計測物体92を撮影した時と同じ画
像G1 を得る。一方、カラー撮影装置87には白色光と
レーザ光で照射された被計測物体の画像G2 を得る。そ
こで、画像G1と、画像G2の左右反転画像G3 の差分を
取ることにより、計測装置70の距離計測時におけるレ
ーザ光の画像上での照射位置の画像G4 が正確に求めら
れる。
Since the filter 85 is provided in front of the image input section of the color photographing device 88, the image after the laser light is removed as shown in FIG. 11, that is, the image is illuminated with white light. The same image G 1 as when the measured object 92 is captured is obtained. On the other hand, the color photographing device 87 obtains an image G 2 of the measured object irradiated with white light and laser light. Therefore, by obtaining the difference between the image G 1 and the horizontally inverted image G 3 of the image G 2 , the image G 4 of the irradiation position on the image of the laser light at the time of measuring the distance of the measuring device 70 is accurately obtained.

【0061】次に、求められた照射位置と同じ画素座標
の画素値を画像G1 から読みとることによって、該照射
位置における被計測物体92の色が正確に得られる。計
算機89は計測装置70の走査・計測の繰り返しと、こ
れに同期した該色読みとり操作を行うことによって、被
計測物体92の3次元形状と色情報とを同時かつずれる
ことなしに計測する。
Next, by reading the pixel value of the same pixel coordinates as the obtained irradiation position from the image G 1 , the color of the measured object 92 at the irradiation position can be accurately obtained. The computer 89 measures the three-dimensional shape and color information of the measured object 92 at the same time and without deviation by repeating the scanning / measuring of the measuring device 70 and performing the color reading operation in synchronization therewith.

【0062】なお、上述した撮影光学系は本発明の一例
に過ぎず、以上説明したものに限定されるものではな
い。以上説明したように、本実施形態の物体計測装置に
よれば、レーザ光照射位置と全く同じ位置の色情報を求
めているので測定位置がずれない。また、距離情報の計
測と色情報の計測が同時刻に行われるので、走査手段を
用いているにも拘わらず計測時間のずれに起因する計測
位置のずれが生じない。
The above-mentioned taking optical system is merely an example of the present invention, and is not limited to the one described above. As described above, according to the object measuring device of this embodiment, since the color information of the position exactly the same as the laser light irradiation position is obtained, the measurement position does not shift. Further, since the distance information measurement and the color information measurement are performed at the same time, the measurement position does not shift due to the measurement time shift despite the use of the scanning unit.

【0063】[0063]

【発明の効果】以上説明したように、請求項1又は2記
載の発明によれば、被計測物体にビーム状レーザ光を照
射し、反射された拡散光を2種類の光学経路を用いて当
該線分上に集光し、これら光学経路からの反射光の干渉
により発生する干渉縞を1次元の濃淡の縞パターンに変
換し、縞パターンの間隔又は空間周波数を計測して距離
を求めるので、同じ分解能の受光素子を用いた従来の手
法に比べて、非常に高分解能な距離計測が可能になると
いう効果が得られる。またこのことから、照射光と反射
光のなす角を非常に小さくすることでオクルージョンの
問題が解消できるとともに、斜面計測時においても分解
能が劣化するといった問題もなく、光ノイズに対する耐
性の点でも優れ、さらに特殊な精度や形状の光学部品が
不要で現状の技術でも充分実現できるという効果も得ら
れる。
As described above, according to the invention of claim 1 or 2, the object to be measured is irradiated with the beam-shaped laser light, and the reflected diffused light is reflected by using two kinds of optical paths. Since it converges on a line segment and converts the interference fringes generated by the interference of the reflected light from these optical paths into a one-dimensional light and shade fringe pattern, the distance between the fringe patterns or the spatial frequency is measured to obtain the distance. As compared with the conventional method using the light receiving element having the same resolution, it is possible to obtain an effect that the distance measurement can be performed with extremely high resolution. Also, from this, it is possible to solve the problem of occlusion by making the angle between the irradiation light and the reflected light extremely small, there is no problem that the resolution deteriorates even when measuring slopes, and it is also excellent in terms of resistance to optical noise. Further, it is possible to obtain the effect that the current technology can be sufficiently realized without the need for special precision and shape of optical parts.

【0064】また、請求項3記載の発明によれば、ビー
ム状レーザ光を2次元方向に走査させ、被計測物体上の
ビーム照射点までの距離を計測して得た距離情報と走査
の変位角又は変位長とから当該ビーム照射点の3次元位
置情報を算出することで被計測物体の形状を求めるの
で、分解能に優れる,オクルージョンが極めて小さい,
斜面計測時に起こる分解能劣化が問題にならない,計測
光に含まれる光ノイズに強いという効果が得られる。
According to the third aspect of the invention, distance information obtained by scanning the beam-shaped laser light in the two-dimensional direction and measuring the distance to the beam irradiation point on the object to be measured and the scanning displacement. Since the shape of the measured object is obtained by calculating the three-dimensional position information of the beam irradiation point from the angle or displacement length, the resolution is excellent, and the occlusion is extremely small.
The resolution degradation that occurs during slope measurement does not pose a problem, and the effect of being strong against optical noise contained in the measurement light is obtained.

【0065】また、請求項4又は6記載の発明によれ
ば、被計測物体に垂直(水平)なスリット状レーザ光を
照射し、反射された拡散光を水平スリットで透過し、2
種類の光学経路を用いて集光して、これら光学経路から
の光の干渉で発生する干渉縞を2次元の濃淡の縞パター
ンに変換し、当該縞パターンの間隔又は空間周波数を計
測することで3次元位置情報を算出し、スリット状レー
ザ光を水平(垂直)に走査しながら計測を繰り返して被
計測物体の形状を求めるので、1次元方向が並列して同
時計測可能となって計測時間を十分短くすることができ
るという効果が得られる。また、請求項1又は2同様
に、分解能に優れる,オクルージョンが極めて小さい,
斜面計測時に起こる分解能劣化が問題にならない,計測
光に含まれるノイズに強いという効果も得られる。さら
に、格子縞を利用して2次元距離情報を一度に計測する
モアレ法などの方法と比較しても、格子縞より分解能が
遥かに高い,走査方向の分解能はさらに高い,分解能や
計測範囲を任意に設定できる,距離が不連続に変わる測
定面でも計測できるといった優位点も有する。
According to the invention of claim 4 or 6, the object to be measured is irradiated with vertical (horizontal) slit laser light, and the reflected diffused light is transmitted through the horizontal slit.
By condensing light using different types of optical paths, converting interference fringes generated by interference of light from these optical paths into a two-dimensional light and shade stripe pattern, and measuring the interval or spatial frequency of the stripe pattern. Since the three-dimensional position information is calculated and the shape of the object to be measured is obtained by repeating the measurement while scanning the slit-shaped laser light horizontally (vertically), the one-dimensional directions can be measured in parallel and the measurement time can be shortened. The effect that it can be made sufficiently short is obtained. Further, as in claim 1 or 2, the resolution is excellent, the occlusion is extremely small,
The degradation of resolution that occurs during slope measurement does not pose a problem, and it is also effective against noise contained in the measurement light. Furthermore, even when compared with a method such as the moire method which measures two-dimensional distance information at one time by utilizing lattice fringes, the resolution is much higher than that of lattice fringes, the resolution in the scanning direction is even higher, and the resolution and measurement range can be arbitrarily set. It also has the advantage that it can be set and that it can measure even on a measurement surface where the distance changes discontinuously.

【0066】また、請求項5記載の発明によれば、指定
された走査の変位角又は変位長に基づいて走査手段が行
った走査の変位角又は変位長を変位検出手段で検出し、
この検出値に基づいて3次元位置情報を算出するので、
走査手段の機械精度が充分でない場合であっても測定精
度に影響を与えずに計測が可能となるという効果が得ら
れる。
According to the invention of claim 5, the displacement detecting means detects the displacement angle or displacement length of the scanning performed by the scanning means based on the designated displacement angle or displacement length of the scanning,
Since the three-dimensional position information is calculated based on this detected value,
Even if the mechanical accuracy of the scanning means is not sufficient, it is possible to obtain the effect that the measurement can be performed without affecting the measurement accuracy.

【0067】また、請求項7又は9記載の発明によれ
ば、レーザ光と当該レーザ光の波長成分を除去した白色
光を被計測物体に同時に照射し、被計測物体の3次元形
状を計測すると同時に、第1の画像と第2の画像との差
分からレーザ光の画像上での位置を求め、この位置での
被計測物体の色を第2の画像の同位置の画素値から算出
して被計測物体の3次元形状と色を同時に求めるので、
レーザ光の照射位置と全く同じ位置の色が求められ、測
定位置のずれがないという効果が得られる。さらに、形
状計測手段が走査によって被計測物体の形状を求めるよ
うに構成されていても、計測時間のずれに起因する計測
位置のずれが生じないという効果も得られる。
According to the invention described in claim 7 or 9, when the laser light and the white light from which the wavelength component of the laser light is removed are simultaneously irradiated to the object to be measured, the three-dimensional shape of the object to be measured is measured. At the same time, the position of the laser light on the image is obtained from the difference between the first image and the second image, and the color of the measured object at this position is calculated from the pixel value at the same position of the second image. Since the three-dimensional shape and color of the measured object are obtained at the same time,
The color at the exact same position as the irradiation position of the laser light is required, and the effect that there is no deviation of the measurement position is obtained. Further, even if the shape measuring unit is configured to obtain the shape of the measured object by scanning, there is an effect that the deviation of the measurement position due to the deviation of the measurement time does not occur.

【0068】また、請求項8記載の発明によれば、形状
計測手段がレーザ光の波長成分だけを透過する手段を備
えているので、形状計測手段がレーザ光以外の波長の光
に影響される構成となっていても、これに因る計測への
影響を排除できるという効果が得られる。
According to the eighth aspect of the invention, since the shape measuring means includes means for transmitting only the wavelength component of the laser light, the shape measuring means is affected by light having a wavelength other than the laser light. Even with the configuration, the effect that the influence on the measurement due to this can be eliminated can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明による距離計測手法の原理を説明する
ための図である。
FIG. 1 is a diagram for explaining the principle of a distance measuring method according to the present invention.

【図2】 三角測量法における1次元受光部の光強度分
布図であって、同図(a)はある距離についての図、同
図(b)は同図(a)の距離からわずかに距離が変わっ
た場合についての図である。
2A and 2B are light intensity distribution charts of a one-dimensional light receiving unit in the triangulation method, where FIG. 2A shows a certain distance, and FIG. 2B shows a slight distance from the distance shown in FIG. It is a figure about the case where is changed.

【図3】 本発明における1次元受光部の光強度分布図
であり、同図(a)は2周波数の検出信号の場合、同図
(b)は同図(a)より1周波数増えたときのもの、同
図(c)は同図(a)より半周波数増えたときのもので
ある。
FIG. 3 is a light intensity distribution chart of the one-dimensional light receiving portion in the present invention, where FIG. 3A shows a case of a detection signal having two frequencies, and FIG. 3B shows a case where the frequency is increased by one frequency from FIG. 3A. The same figure, (c), is when the half frequency is increased from the same figure (a).

【図4】 三角測量法による1次元受光部の光強度分布
図であって、同図(a)は光ノイズが混入していないと
きのもの、同図(b)は光ノイズbが混入したときのも
のである。
4A and 4B are distribution diagrams of light intensity of a one-dimensional light receiving unit by a triangulation method, in which FIG. 4A shows the case where optical noise is not mixed, and FIG. 4B shows the optical noise b mixed. Time.

【図5】 同図(a)は光ノイズが混入した場合の本発
明による1次元受光部の光強度分布図であり、同図
(b)は検出情報を空間周波数表現に変換した場合の図
である。
5A is a light intensity distribution diagram of the one-dimensional light receiving unit according to the present invention when optical noise is mixed, and FIG. 5B is a diagram when detection information is converted into a spatial frequency representation. Is.

【図6】 同図(a)は本発明の第1実施形態による装
置の構成を示す図であり、同図(b)は光学素子43の
斜視図である。
6A is a diagram showing a configuration of an apparatus according to a first embodiment of the present invention, and FIG. 6B is a perspective view of an optical element 43.

【図7】 本発明の第2実施形態による装置の構成を示
す図である。
FIG. 7 is a diagram showing the structure of an apparatus according to a second embodiment of the present invention.

【図8】 本発明の第3実施形態の装置の動作原理を説
明する図である。
FIG. 8 is a diagram illustrating the operating principle of the device according to the third embodiment of the present invention.

【図9】 本発明の第3実施形態による装置の構成を示
す図である。
FIG. 9 is a diagram showing the configuration of an apparatus according to a third embodiment of the present invention.

【図10】 本発明の第4実施形態による装置の構成を
示す図である。
FIG. 10 is a diagram showing the structure of an apparatus according to a fourth embodiment of the present invention.

【図11】 同実施形態における撮影映像とその処理過
程を説明した図である。
FIG. 11 is a diagram illustrating a captured image and its processing process in the same embodiment.

【符号の説明】[Explanation of symbols]

11,41,61,71,94…レーザ発振器、12,
42,52,62,72,92…被計測物体、13,1
4,66,67…ミラー、15,16,64,65,7
4,75,90…ハーフミラー、18…1次元受光素
子、43…光学素子、44,45…反射面、46…ハー
フミラー面、47,78…CCD、48,57,79,
89…計算機、53…X方向回転器、54…Y方向回転
器、55…X方向変位角度検出器、56…Y方向変位角
度検出器、63…水平スリット、68…受光素子、73
…スリット、76,77…平面ミラー、80…水平方向
回転器、81…水平方向変位角度検出器、83…白色照
明光源、84,85,86…フィルタ、87,88…カ
ラー撮影装置
11, 41, 61, 71, 94 ... Laser oscillator, 12,
42, 52, 62, 72, 92 ... Object to be measured, 13, 1
4, 66, 67 ... Mirror, 15, 16, 64, 65, 7
4, 75, 90 ... Half mirror, 18 ... One-dimensional light receiving element, 43 ... Optical element, 44, 45 ... Reflecting surface, 46 ... Half mirror surface, 47, 78 ... CCD, 48, 57, 79,
89 ... Calculator, 53 ... X-direction rotator, 54 ... Y-direction rotator, 55 ... X-direction displacement angle detector, 56 ... Y-direction displacement angle detector, 63 ... Horizontal slit, 68 ... Light receiving element, 73
... Slits, 76, 77 ... Planar mirrors, 80 ... Horizontal rotator, 81 ... Horizontal displacement angle detector, 83 ... White illumination light source, 84, 85, 86 ... Filter, 87, 88 ... Color imaging device

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 被計測物体までの距離を計測する物体計
測装置において、 前記被計測物体にビーム状レーザ光を照射する照射手段
と、 前記被計測物体から反射された前記ビーム状レーザ光の
拡散光を、同一線分上の両端において前記被計測物体上
の反射点からの光学的距離の差が異なるような2種類の
光学経路を用いて該線分上に集光する集光手段と、 前記2種類の光学経路から到来する反射光同士の干渉に
より発生する干渉縞を1次元の濃淡の縞パターンに変換
する1次元受光素子と、 前記縞パターンの間隔又は空間周波数を計測し、該計測
値をもとに前記被計測物体までの距離を算出する計測手
段とを有することを特徴とする物体計測装置。
1. An object measuring device for measuring a distance to an object to be measured, comprising: irradiation means for irradiating the object to be measured with a beam laser beam; and diffusion of the beam laser beam reflected from the object to be measured. Condensing means for condensing light on the line segment using two kinds of optical paths having different optical distances from the reflection points on the object to be measured at both ends on the same line segment, A one-dimensional light receiving element for converting an interference fringe generated by interference between reflected lights coming from the two types of optical paths into a one-dimensional light and shade fringe pattern, and measuring an interval or a spatial frequency of the fringe pattern and performing the measurement. An object measuring device, comprising: a measuring unit that calculates a distance to the measured object based on a value.
【請求項2】 被計測物体までの距離を計測する物体計
測方法において、 前記被計測物体にビーム状レーザ光を照射し、 前記被計測物体から反射された前記ビーム状レーザ光の
拡散光を、同一線分上の両端において前記被計測物体上
の反射点からの光学的距離の差が異なるような2種類の
光学経路を用いて該線分上に集光し、 前記2種類の光学経路から到来する反射光同士の干渉に
より発生する干渉縞を受光素子によって1次元の濃淡の
縞パターンに変換し、 前記縞パターンの間隔又は空間周波数を計測し、該計測
値をもとに前記被計測物体までの距離を求めることを特
徴とする物体計測方法。
2. An object measuring method for measuring a distance to an object to be measured, wherein the object to be measured is irradiated with beam laser light, and diffused light of the beam laser light reflected from the object to be measured is The light is condensed on the line segment by using two types of optical paths having different optical distances from the reflection points on the measured object at both ends on the same line segment. The interference fringes generated by the interference of the arriving reflected light are converted into a one-dimensional light and shade fringe pattern by a light receiving element, the interval or the spatial frequency of the fringe pattern is measured, and the measured object is based on the measured value. An object measuring method characterized in that the distance to is obtained.
【請求項3】 指定された走査の変位角又は変位長に基
づいて前記ビーム状レーザ光を2次元方向に走査する走
査手段を有し、 前記計測手段は、前記走査の変位角又は変位長を変化さ
せて前記ビーム状レーザ光を前記被計測物体を含む所定
範囲で2次元方向に走査し、各走査の変位角又は変位長
について、前記被計測物体上のビーム照射点までの距離
を計測して得られる距離情報と該距離計測時における前
記走査の変位角又は変位長とから該ビーム照射点におけ
る3次元位置情報を算出して前記被計測物体の形状を求
めることを特徴とする請求項1記載の物体計測装置。
3. A scanning unit that scans the beam-shaped laser light in a two-dimensional direction based on a designated displacement angle or displacement length of the scan, wherein the measuring unit measures the displacement angle or displacement length of the scan. The beam-shaped laser light is changed and scanned in a two-dimensional direction within a predetermined range including the object to be measured, and the distance to the beam irradiation point on the object to be measured is measured for the displacement angle or displacement length of each scan. 3. The shape of the measured object is obtained by calculating three-dimensional position information at the beam irradiation point from the distance information obtained as a result and the displacement angle or displacement length of the scan at the time of measuring the distance. The object measuring device described.
【請求項4】 被計測物体の3次元形状を計測する物体
計測装置において、 前記被計測物体に垂直(又は水平)なスリット状レーザ
光を照射する照射手段と、 前記被計測物体から反射された前記スリット状レーザ光
の拡散光を透過させる水平(または垂直)なスリット
と、 前記スリットを透過した拡散光を、同一平面の水平(又
は垂直)断面の両端において前記被測定物体上の反射点
からの光学的距離の差が異なるような2種類の光学経路
を用いて該同一平面上に集光する集光手段と、 前記2種類の光学経路から到来する光同士の干渉により
発生する干渉縞を2次元の濃淡の縞パターンに変換する
2次元受光素子と、 前記縞パターンの間隔又は空間周波数を計測することで
前記スリット状レーザ光の照射部分の3次元位置情報を
算出する計測手段とを有することを特徴とする物体計測
装置。
4. An object measuring device for measuring a three-dimensional shape of an object to be measured, comprising: irradiation means for irradiating the object to be measured with vertical (or horizontal) slit laser light; and the object reflected by the object to be measured. A horizontal (or vertical) slit that transmits diffused light of the slit-shaped laser light, and diffused light that has passed through the slit are reflected from the reflection points on the measured object at both ends of a horizontal (or vertical) cross section on the same plane. Light condensing means for condensing on the same plane by using two types of optical paths having different optical distances, and interference fringes generated by interference between lights coming from the two types of optical paths. A two-dimensional light receiving element for converting into a two-dimensional light and shade stripe pattern, and a meter for calculating three-dimensional position information of the slit laser light irradiation portion by measuring an interval or a spatial frequency of the stripe pattern. Object measuring apparatus characterized by having means.
【請求項5】 指定された走査の変位角又は変位長に基
づいて前記スリット状レーザ光を水平(又は垂直)方向
に走査する走査手段と、 前記走査手段が行った走査の変位角又は変位長を求める
変位検出手段を有し、 前記計測手段は、前記変位検出手段が検出した走査の変
位角又は変位長を用いて前記3次元位置情報を算出する
ことを特徴とする請求項4記載の物体計測装置。
5. A scanning unit for scanning the slit laser beam in a horizontal (or vertical) direction based on a designated displacement angle or displacement length of the scanning, and a displacement angle or displacement length of the scanning performed by the scanning unit. 5. The object according to claim 4, further comprising a displacement detecting unit that obtains the three-dimensional position information, wherein the measuring unit calculates the three-dimensional position information using a displacement angle or a displacement length of scanning detected by the displacement detecting unit. Measuring device.
【請求項6】 被計測物体の3次元形状を計測する物体
計測方法において、 前記被計測物体に垂直(または水平)なスリット状レー
ザ光を照射し、 前記被計測物体から反射された前記スリット状レーザ光
の拡散光を水平(または垂直)なスリットで透過し、 前記スリットを透過した拡散光を、同一平面の水平(又
は垂直)断面の両端において前記被測定物体上の反射点
からの光学的距離の差が異なるような2種類の光学経路
を用いて該同一平面上に集光し、 前記2種類の光学経路から到来する光同士の干渉により
発生する干渉縞を受光素子によって2次元の濃淡の縞パ
ターンに変換し、 前記縞パターンの間隔又は空間周波数を計測することで
前記スリット状レーザ光が照射される垂直(または水
平)部分の距離を同時に計測し、 前記スリット状レーザ光を水平(または垂直)に走査し
ながら前記計測を繰り返し行い、得られる距離情報と該
距離計測時における走査の変位角又は変位長とから前記
照射部分の3次元位置情報を算出して前記被計測物体の
形状を求めることを特徴とする物体計測方法。
6. An object measuring method for measuring a three-dimensional shape of a measured object, comprising irradiating the measured object with vertical (or horizontal) slit-shaped laser light, and reflecting the slit-shaped object with the slit shape. The diffused light of the laser light is transmitted through a horizontal (or vertical) slit, and the diffused light transmitted through the slit is optically reflected from a reflection point on the measured object at both ends of a horizontal (or vertical) cross section on the same plane. Two types of optical paths having different distances are used to condense on the same plane, and interference fringes generated by the interference of lights coming from the two types of optical paths are two-dimensionally shaded by a light receiving element. The stripe pattern is converted into a striped pattern, and the distance or the spatial frequency of the striped pattern is measured to simultaneously measure the distance of the vertical (or horizontal) portion irradiated with the slit laser light. The measurement is repeated while scanning the laser beam horizontally (or vertically), and the three-dimensional position information of the irradiated portion is calculated from the obtained distance information and the displacement angle or displacement length of the scan at the time of the distance measurement. An object measuring method, characterized in that the shape of the measured object is obtained.
【請求項7】 被計測物体の3次元形状及び色を計測す
る物体計測装置において、 前記被計測物体にレーザ光を照射する第1の照射手段
と、 前記被計測物体に前記レーザ光の波長成分が除去された
白色光を照射する第2の照射手段と、 前記被計測物体を撮影する第1の撮影手段と、 前記第1の撮影手段と幾何光学的に等価で、前記レーザ
光の波長成分を除去するフィルタを介して前記被計測物
体を撮影する第2の撮影手段と、 前記被計測物体の3次元形状を計測する形状計測手段
と、 前記第1の撮影手段及び前記第2の撮影手段によって撮
影された2つの画像の差分から、前記被計測物体に照射
されている前記レーザ光の画像上での位置を求め、該位
置における前記被計測物体の色を前記第2の撮影手段が
撮影した画像上の同位置の画素値から求める色計測手段
とを有することを特徴とする物体計測装置。
7. An object measuring device for measuring a three-dimensional shape and a color of an object to be measured, comprising: first irradiating means for irradiating the object to be measured with laser light; and wavelength components of the laser light to the object to be measured. Second irradiating means for irradiating the white light from which is removed, first photographic means for photographic the object to be measured, geometrically-optically equivalent to the first photographic means, and a wavelength component of the laser light. Second photographing means for photographing the measured object through a filter for removing the object, shape measuring means for measuring the three-dimensional shape of the measured object, the first photographing means and the second photographing means The position on the image of the laser beam applied to the object to be measured is obtained from the difference between the two images captured by the second image capturing means to capture the color of the object to be measured at the position. Pixel value at the same position on the captured image An object measuring apparatus, comprising:
【請求項8】 前記形状計測手段は前記レーザ光の波長
成分だけを透過する透過手段を具備することを特徴とす
る請求項7記載の物体計測装置。
8. The object measuring device according to claim 7, wherein the shape measuring unit includes a transmitting unit that transmits only the wavelength component of the laser light.
【請求項9】 被計測物体の3次元形状及び色を計測す
る物体計測方法において、 レーザ光と該レーザ光の波長成分が除去された白色光と
を前記被計測物体に同時に照射し、 前記被計測物体の3次元形状を計測すると同時に、前記
被計測物体を撮影した第1の画像と、前記レーザ光の波
長成分を除去するフィルタを介して前記被計測物体を撮
影した第2の画像とを取り込み、 前記両画像の差分から前記被計測物体に照射されている
前記レーザ光の画像上での位置を求め、 該位置における前記被計測物体の色を、前記第2の画像
の同位置の画素値から算出して前記被計測物体の3次元
形状と色を同時に求めることを特徴とする物体計測方
法。
9. An object measuring method for measuring a three-dimensional shape and a color of an object to be measured, wherein the object to be measured is simultaneously irradiated with laser light and white light from which a wavelength component of the laser light is removed, At the same time as measuring the three-dimensional shape of the measurement object, a first image obtained by photographing the measurement object and a second image obtained by photographing the measurement object via a filter that removes the wavelength component of the laser light are displayed. The position of the laser beam irradiated on the object to be measured on the image is obtained from the difference between the two images, and the color of the object to be measured at the position is determined by the pixel at the same position in the second image. An object measuring method characterized in that a three-dimensional shape and a color of the measured object are calculated at the same time by calculating from a value.
JP510196A 1996-01-16 1996-01-16 Method and apparatus for measurement of object Pending JPH09196633A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP510196A JPH09196633A (en) 1996-01-16 1996-01-16 Method and apparatus for measurement of object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP510196A JPH09196633A (en) 1996-01-16 1996-01-16 Method and apparatus for measurement of object

Publications (1)

Publication Number Publication Date
JPH09196633A true JPH09196633A (en) 1997-07-31

Family

ID=11601990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP510196A Pending JPH09196633A (en) 1996-01-16 1996-01-16 Method and apparatus for measurement of object

Country Status (1)

Country Link
JP (1) JPH09196633A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008126647A1 (en) * 2007-04-05 2008-10-23 Nikon Corporation Geometry measurement instrument and method for measuring geometry
CN114234744A (en) * 2021-12-24 2022-03-25 中国电子科技集团公司第四十四研究所 Optical parameter testing device and optical parameter testing method for laser fuse detection front end

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008126647A1 (en) * 2007-04-05 2008-10-23 Nikon Corporation Geometry measurement instrument and method for measuring geometry
US8244023B2 (en) 2007-04-05 2012-08-14 Nikon Corporation Shape measuring device and shape measuring method
CN114234744A (en) * 2021-12-24 2022-03-25 中国电子科技集团公司第四十四研究所 Optical parameter testing device and optical parameter testing method for laser fuse detection front end

Similar Documents

Publication Publication Date Title
Gühring Dense 3D surface acquisition by structured light using off-the-shelf components
US5307151A (en) Method and apparatus for three-dimensional optical measurement of object surfaces
US5175601A (en) High-speed 3-D surface measurement surface inspection and reverse-CAD system
US10812694B2 (en) Real-time inspection guidance of triangulation scanner
US6600168B1 (en) High speed laser three-dimensional imager
USRE39978E1 (en) Scanning phase measuring method and system for an object at a vision station
US6025905A (en) System for obtaining a uniform illumination reflectance image during periodic structured illumination
US6577405B2 (en) Phase profilometry system with telecentric projector
US6549288B1 (en) Structured-light, triangulation-based three-dimensional digitizer
US6252623B1 (en) Three dimensional imaging system
Davis et al. A laser range scanner designed for minimum calibration complexity
US20150015701A1 (en) Triangulation scanner having motorized elements
JP2016106225A (en) Three-dimensional measuring apparatus
CN104583713B (en) The method that the body surface of preferably structuring is imaged and the device for imaging
WO2001025749A2 (en) Optical method and system for measuring three-dimensional surface topography
US6509559B1 (en) Binary optical grating and method for generating a moire pattern for 3D imaging
WO2000033026A1 (en) Apparatus and method to measure three-dimensional data
JPH05203414A (en) Method and apparatus for detecting abso- lute coordinate of object
US7525669B1 (en) High-speed, scanning phase-shifting profilometry using 2D CMOS sensor
JP7280774B2 (en) Three-dimensional shape measuring device, three-dimensional shape measuring method, three-dimensional shape measuring program, computer-readable recording medium, and recorded equipment
US6876458B2 (en) Method and device for determining the absolute coordinates of an object
KR20120087680A (en) The measurement method of PCB bump height by using three dimensional shape detector using optical triangulation method
JP3511097B2 (en) Shape measuring method and shape measuring device using optical interference
CN114502912A (en) Hybrid 3D inspection system
JP3781438B2 (en) 3D surface shape measuring device