JPH09196512A - Liquid coolant feeding device - Google Patents

Liquid coolant feeding device

Info

Publication number
JPH09196512A
JPH09196512A JP2592696A JP2592696A JPH09196512A JP H09196512 A JPH09196512 A JP H09196512A JP 2592696 A JP2592696 A JP 2592696A JP 2592696 A JP2592696 A JP 2592696A JP H09196512 A JPH09196512 A JP H09196512A
Authority
JP
Japan
Prior art keywords
cooling liquid
refrigerant
liquid
plate
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2592696A
Other languages
Japanese (ja)
Other versions
JP2978941B2 (en
Inventor
Masuo Yoshioka
万寿男 吉岡
Koichi Ota
浩一 太田
Tsuyoshi Maruyama
強志 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Orion Machinery Co Ltd
Original Assignee
Orion Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Orion Machinery Co Ltd filed Critical Orion Machinery Co Ltd
Priority to JP8025926A priority Critical patent/JP2978941B2/en
Publication of JPH09196512A publication Critical patent/JPH09196512A/en
Application granted granted Critical
Publication of JP2978941B2 publication Critical patent/JP2978941B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a liquid coolant feeding device which is compact, small in the installation space, and excellent in the cooling efficiency. SOLUTION: A liquid cooler 5 by a refrigerating machine R1 comprises a plate type heat exchanger, and an accumulator 6 is integratedly provided on a side of the liquid cooler 5. The cooler 5 and the accumulator 6 are installed in a liquid coolant storage tank 1, a cooling liquid outlet 5h of the liquid cooler 5 is opened in the storage tank 1, the storage tank 1 is divided by a partitioning wall 2a to demarcate a cooling liquid returning chamber 2 having a communication port 2b with a liquid coolant storage chamber 3 side, the liquid coolant from a cooled device T is received by a returning liquid inlet 2c, a liquid coolant feed port 3a is provided in the storage chamber 3, and a returning liquid outlet 2d is connected to a liquid coolant inlet 5g through a piping 11 in which a pump P1 is interposed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、各種工作機械や電
子装置などへ冷却液を供給する装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device for supplying a cooling liquid to various machine tools, electronic devices and the like.

【0002】[0002]

【従来技術】図5は、従来の冷却液供給装置の一例を示
すもので、該冷却液供給装置は、冷凍機Rと、該冷凍機
Rの冷媒蒸発器64を収納した液体冷却器70と、冷却
液貯留槽Sとを備え、液体冷却器70と冷却液貯留槽S
とは、循環ポンプP1が介設されている流入管81と流
出管82とにより連結されて、冷却液の循環流路が形成
されている。又、貯留槽Sとレーザー加工機のような被
冷却装置Tとは、冷却液供給ポンプP2 が介設されてい
る供給管83と、被冷却装置からの戻り管84とを介し
て、冷却液の循環流路が形成されている。
2. Description of the Related Art FIG. 5 shows an example of a conventional cooling liquid supply device. The cooling liquid supply device includes a refrigerator R and a liquid cooler 70 accommodating a refrigerant evaporator 64 of the refrigerator R. , The cooling liquid storage tank S, and the liquid cooler 70 and the cooling liquid storage tank S.
And are connected by an inflow pipe 81 and an outflow pipe 82, in which a circulation pump P 1 is interposed, to form a circulation passage for the cooling liquid. Further, the storage tank S and the cooled device T such as a laser beam machine are cooled by a supply pipe 83 in which a cooling liquid supply pump P 2 is provided and a return pipe 84 from the cooled device. A liquid circulation channel is formed.

【0003】冷凍機Rは、冷媒圧縮機60、冷媒凝縮器
61、感熱式膨張弁63、冷媒蒸発器64、アキューム
レータ65等を、冷媒配管によって、冷媒循環流路をな
すように、連結したものから成り、液体冷却器70は、
冷媒蒸発器をなす管体が蛇行状若しくはスパイラル状に
配設されている密閉容器中に、邪魔板71等で冷却液の
流路を作り、蒸発器64と冷却液とが熱交換するように
構成されている。
The refrigerator R is formed by connecting a refrigerant compressor 60, a refrigerant condenser 61, a heat-sensitive expansion valve 63, a refrigerant evaporator 64, an accumulator 65 and the like through a refrigerant pipe so as to form a refrigerant circulation flow path. And the liquid cooler 70 comprises
A cooling liquid flow path is formed by a baffle plate 71 or the like in a closed container in which tubes forming a refrigerant evaporator are arranged in a meandering or spiral shape so that the evaporator 64 and the cooling liquid exchange heat. It is configured.

【0004】又、感熱式膨張弁63は、蒸発器64を出
る冷媒ガスの過熱度を一定に保つように、冷媒流量を制
御する。そのためには、蒸発器出口における冷媒温度を
正確に検知することを要する。したがって、その温度を
検知するために、感温筒67を、蒸発器出口とアキュー
ムレータ65とを結ぶ冷媒管66の上側で、且つ、蒸発
器出口64aにできるだけ近い位置に、添設固定して断
熱被覆し、該感温筒67と膨張弁63とをキャピラリチ
ューブ68で連結して、出口64a付近の冷媒温度を検
知し、検知温度に相当する感温筒圧力を膨張弁63のダ
イヤフラム弁に加えて、膨張弁63の開度を定めてい
る。
Further, the thermal expansion valve 63 controls the flow rate of the refrigerant so that the degree of superheat of the refrigerant gas leaving the evaporator 64 is kept constant. For that purpose, it is necessary to accurately detect the refrigerant temperature at the evaporator outlet. Therefore, in order to detect the temperature, the temperature-sensitive cylinder 67 is attached and fixed to the upper side of the refrigerant pipe 66 connecting the evaporator outlet and the accumulator 65 and at a position as close as possible to the evaporator outlet 64a for heat insulation. The temperature sensing cylinder 67 and the expansion valve 63 are covered by a capillary tube 68 to detect the refrigerant temperature in the vicinity of the outlet 64a, and a temperature sensing cylinder pressure corresponding to the detected temperature is applied to the diaphragm valve of the expansion valve 63. Thus, the opening degree of the expansion valve 63 is determined.

【0005】このような従来の装置は、冷凍機Rと冷媒
配管を介して連結して設けられている液体冷却器70
と、冷却液貯留槽Sとを、冷却液の循環流路で連結する
構成をなしているので、装置が、大型化すると共に複雑
化しており、場所を移動する場合などには、夫々の配管
の連結を外して移動する等の面倒があり、又、大きな設
置スペースを必要とする欠点があった。更に、冷却液貯
留槽Sにおいては、液体冷却器70において冷却された
冷却液と被冷却装置Tから戻った温度上昇した冷却液と
が合流するので、貯留槽内の冷却液温度が一定せず、
又、液体冷却器を通過する冷却液温度は、戻り管84か
ら出る冷却液の温度より低くなり、液体冷却器70の能
力を、十分に発揮させ得ない欠点があった。
The conventional device as described above is provided with a liquid cooler 70 connected to the refrigerator R via a refrigerant pipe.
And the cooling liquid storage tank S are connected by a cooling liquid circulation passage, the device becomes large and complicated, and when moving from place to place, each pipe However, there is a problem in that it is disconnected from the vehicle and moved, and a large installation space is required. Further, in the cooling liquid storage tank S, the cooling liquid cooled in the liquid cooler 70 and the cooling liquid whose temperature has risen and returned from the device T to be cooled merge, so that the cooling liquid temperature in the storage tank is not constant. ,
Further, the temperature of the cooling liquid passing through the liquid cooler becomes lower than the temperature of the cooling liquid flowing out from the return pipe 84, and there is a drawback that the capacity of the liquid cooler 70 cannot be fully exhibited.

【0006】冷凍機Rは、液体冷却器70の冷媒出口か
らアキュームレータへの冷媒導管66が、どうしても必
要であり、耐圧容器であるアキュームレータ65に、冷
媒導管66を接続する工程は、手間がかかる上に、全体
として、装置が複雑化して、その分、大型化する欠点が
あった。又、感温筒は、冷媒導管を介して冷媒に接触す
る構成であり、冷媒流量制御にタイムラグが避けられ
ず、又、取付の巧拙により検知量に誤差が生じやすいこ
と、感温筒と冷媒導管との接触部位は、熱がよく伝わる
ように表面を加工すると共に、確実に接触させて取り付
ける必要があり、取り付けに熟練を要すること等の問題
点があった。
In the refrigerator R, the refrigerant conduit 66 from the refrigerant outlet of the liquid cooler 70 to the accumulator is absolutely necessary, and the process of connecting the refrigerant conduit 66 to the accumulator 65, which is a pressure-resistant container, is troublesome. In addition, as a whole, there is a drawback that the device becomes complicated and the size becomes larger accordingly. In addition, the temperature sensing cylinder is in contact with the refrigerant through the refrigerant conduit, so that a time lag is unavoidable in controlling the refrigerant flow rate, and an error in the detection amount is likely to occur due to clever mounting, and the temperature sensing cylinder and the refrigerant The surface of the contact portion with the conduit needs to be processed so that heat can be transferred well, and it is necessary to make sure contact so that the conduit can be mounted.

【0007】[0007]

【解決すべき課題】本発明の第1の目的は、従来の装置
に比べて、大幅に小型化され、設置スペースが小さくて
済む冷却液供給装置を開示することにある。本発明の第
2の目的は、組み立てが容易で熟練を要せず冷却効率が
高い冷却液供給装置を開示することにある。本発明の第
3の目的は、冷媒蒸発器における冷媒温度の検出にタイ
ムラグがなく、正確な冷媒流量制御が可能な冷凍機を備
えた冷却液供給装置を開示することにある。
SUMMARY OF THE INVENTION A first object of the present invention is to disclose a cooling liquid supply device which is much smaller than conventional devices and requires a small installation space. A second object of the present invention is to disclose a cooling liquid supply device which is easy to assemble, requires no skill, and has high cooling efficiency. A third object of the present invention is to disclose a cooling liquid supply device provided with a refrigerator in which there is no time lag in detecting the refrigerant temperature in the refrigerant evaporator and the refrigerant flow rate can be accurately controlled.

【0008】[0008]

【課題の解決手段】本発明の第一の要旨は、冷凍機の冷
媒蒸発器と冷却液流路とが熱交換自在に設けられている
液体冷却器と、該液体冷却器によって冷却された冷却液
の供給口を備えた冷却液貯留槽と、液体圧送手段とを備
えた冷却液供給装置において、前記液体冷却器をプレー
ト式熱交換器によって構成すると共に、前記冷凍機のア
キュームレータを、前記プレート式熱交換器の端面板に
開口する冷媒出口を含み且つ該端面板と一体的に設けら
れた圧力容器によって構成し、前記プレート式熱交換器
と前記アキュームレータとを、前記貯留槽中に設置し
て、前記熱交換器の冷却液出口を貯留槽中に開放したこ
とを特徴とする冷却液供給装置にある。
A first aspect of the present invention is to provide a liquid cooler in which a refrigerant evaporator and a cooling liquid flow path of a refrigerator are heat-exchangeably provided, and a cooling cooled by the liquid cooler. In a cooling liquid supply device including a cooling liquid storage tank having a liquid supply port, and a liquid pressure feeding means, the liquid cooler is constituted by a plate heat exchanger, and the accumulator of the refrigerator is set to the plate. The heat exchanger includes a refrigerant outlet opening to the end face plate of the type heat exchanger and is constituted by a pressure vessel integrally provided with the end face plate, and the plate heat exchanger and the accumulator are installed in the storage tank. The cooling liquid outlet of the heat exchanger is opened in the storage tank.

【0009】プレート式熱交換器としては、ヘリンボー
ンプレートやコルゲートプレート等に代表される熱交換
プレートを、流体流路を囲むように配設されたガスケッ
トを介して、重ね合わせて、これを、前後一対のフレー
ム板(正面板と端面板)の間に挟んで、ボルトナット等
で締付固定するタイプのものや、熱交換プレートをシェ
ルに収納するタイプのもの、或いは、前記ガスケットに
よって、熱交換プレート相互間をシールする代わりに、
接合部をろう付け(ブレージング)により一体接合して
流路を形成するタイプのものなどが、使用できる。
As the plate heat exchanger, heat exchange plates typified by herringbone plates and corrugated plates are superposed on each other via a gasket arranged so as to surround a fluid flow path, and the plates are forward and backward. Heat exchange by sandwiching between a pair of frame plates (front plate and end face plate) and tightening and fixing with bolts and nuts, type that accommodates heat exchange plate in shell, or the above gasket Instead of sealing between the plates,
A type in which the flow path is formed by integrally joining the joints by brazing (brazing) can be used.

【0010】プレート式熱交換器は、熱交換効率が高い
ので、液体冷却器の小型軽量化が容易に実現でき、これ
に一体形成されたアキュームレータは、両者の大きさの
バランスがとれるので、極めてコンパクトで一体感があ
り、液体冷却器の小型軽量化と省スペース化とが、達成
されると共に、蒸発器とアキュームレータとの一体部品
化が実現できる。更に、プレート式熱交換器として、円
形若しくは略円形をなす熱交換プレートにより形成され
たプレート式熱交換器を採用すれば、該プレート式熱交
換器の円形端面板に冷媒出口を開口させることができ、
この端面板から気、液密を保って円筒形圧力容器を延設
すれば、アキュームレータが、極めて容易に形成でき、
しかも、蒸発器の端面板は、アキュームレータの壁面と
もなるので、更に小型軽量化が可能となる。
Since the plate heat exchanger has a high heat exchange efficiency, the liquid cooler can be easily reduced in size and weight, and the accumulator integrally formed with the liquid cooler can balance the sizes of the two, so it is extremely effective. It is compact and has a sense of unity, and the liquid cooler can be made smaller and lighter and the space can be saved, and the evaporator and the accumulator can be integrally formed. Furthermore, if a plate heat exchanger formed of a circular or substantially circular heat exchange plate is used as the plate heat exchanger, the refrigerant outlet can be opened in the circular end face plate of the plate heat exchanger. You can
If a cylindrical pressure vessel is extended from this end plate while maintaining air and liquid tightness, an accumulator can be formed extremely easily,
Moreover, since the end plate of the evaporator also serves as the wall surface of the accumulator, it is possible to further reduce the size and weight.

【0011】又、液体冷却器の冷媒出口は、アキューム
レータ内に直接開口しているので、従来の蒸発器(液体
冷却器70)とアキュームレータとを結ぶ冷媒導管も不
要となり、小型軽量化に貢献すると共に、構造が簡素化
され、組立も容易になり、製造コスト減につながる。ま
た設置スペースも少なくて済む。更に、従来は、液体冷
却器と冷却液貯留槽とが、並んで設けられていたため
に、両者間を冷却液が循環するための一対の配管が是非
必要であったが、上記冷却液供給装置は、液体冷却器
が、冷却液貯留槽中に収納され、且つ、液体冷却器の冷
却液出口は、直接、冷却液貯留槽内に開口しているの
で、少なくとも、冷却液出口に結合すべき流出管は不要
となる上に、装置全体がコンパクトな構成となり、運
搬、設置等も容易となる。
Further, since the refrigerant outlet of the liquid cooler is directly opened in the accumulator, the refrigerant conduit connecting the conventional evaporator (liquid cooler 70) and the accumulator is not required, which contributes to the reduction in size and weight. At the same time, the structure is simplified, the assembly is facilitated, and the manufacturing cost is reduced. It also requires less installation space. Further, in the past, since the liquid cooler and the cooling liquid storage tank were provided side by side, a pair of pipes for circulating the cooling liquid between them was absolutely necessary. Since the liquid cooler is housed in the cooling liquid storage tank, and the cooling liquid outlet of the liquid cooler is directly opened in the cooling liquid storage tank, it should be connected to at least the cooling liquid outlet. The outflow pipe is unnecessary, and the entire device has a compact structure, which facilitates transportation and installation.

【0012】アキュームレータにおいて、分離された冷
媒液は、従来、適宜な加熱器をアキュームレータ外面に
設けて、蒸発させることも、場合によって必要であった
が、本願冷却液供給装置においては、アキュームレータ
は、直接冷却液に接触しているので、伝熱効率が高く、
加熱器の必要性はなく、アキュームレータ内における冷
媒液の蒸発は、これを囲む冷却液の冷却に貢献する。ア
キュームレータを構成する圧力容器とプレート式熱交換
器とは、部材を共有する場合(圧力容器の壁面の一部が
熱交換器の側面をもなしている場合)もあれば、勿論、
共有しない場合もある。ただし、共有する場合の方が、
部材の節減と軽量化、製造容易化等の点で優れている。
In the accumulator, conventionally, it is necessary to evaporate the separated refrigerant liquid by providing an appropriate heater on the outer surface of the accumulator, but in the cooling liquid supply device of the present application, the accumulator is Since it is in direct contact with the cooling liquid, the heat transfer efficiency is high,
There is no need for a heater and evaporation of the refrigerant liquid in the accumulator contributes to the cooling of the cooling liquid surrounding it. In some cases, the pressure vessel and the plate heat exchanger forming the accumulator share members (in the case where a part of the wall surface of the pressure vessel also constitutes the side surface of the heat exchanger), or, of course,
It may not be shared. However, if you share
It excels in saving members, reducing weight, and facilitating manufacturing.

【0013】本発明の第二の要旨は、上記第一要旨によ
って規定される冷却液供給装置において、冷却液貯留槽
中を仕切壁によって仕切って、プレート式熱交換器を囲
む冷却液貯留室と冷却液戻り室とを形成し、前記仕切壁
には冷却液貯留室との連通部を設けると共に該冷却液戻
り室と熱交換器の冷却液入口とを送液ポンプを介装した
液体流路によって連結せしめたことを特徴とする冷却液
供給装置にある。
A second gist of the present invention is, in the cooling liquid supply apparatus defined by the above first gist, a cooling liquid storage chamber surrounding a plate type heat exchanger by partitioning the inside of the cooling liquid storage tank with a partition wall. A liquid flow path that forms a cooling liquid return chamber, a communication portion with the cooling liquid storage chamber is provided on the partition wall, and the cooling liquid return chamber and the cooling liquid inlet of the heat exchanger are provided with a liquid feeding pump. The cooling liquid supply device is characterized in that they are connected by.

【0014】上記第二要旨に係る冷却液供給装置は、冷
却液貯留槽から被冷却装置に送られてから戻って来た戻
り液を、冷却液貯留室と分画された冷却液戻り室に受け
入れることにより、該戻り室に戻り液が流入している際
には、冷却液貯留室側の冷却液と交じることなく、その
まま、液体冷却器に送られるので、従来の場合に比べ
て、冷媒流路と冷却液流路との温度差が大きくなり、冷
凍機の能力を十分に発揮させることができる。連通部
は、冷却液が冷えていない開始時や、冷却負荷のない場
合或いは変動時における、冷却液循環路となる。
In the cooling liquid supply device according to the second aspect, the return liquid sent from the cooling liquid storage tank to the device to be cooled and then returned to the cooling liquid storage chamber is separated into the cooling liquid return chamber. By accepting, when the return liquid is flowing into the return chamber, it is sent to the liquid cooler as it is without being mixed with the cooling liquid on the cooling liquid storage chamber side, so that the refrigerant can be compared with the conventional case. The temperature difference between the flow passage and the cooling liquid flow passage becomes large, and the capacity of the refrigerator can be fully exerted. The communication part serves as a cooling liquid circulation path at the start when the cooling liquid is not cooled, or when there is no cooling load or when there is a change.

【0015】本発明の第三の要旨は、上記第一又は第二
要旨において規定される冷却液供給装置において、冷凍
機の冷媒蒸発器をなすプレート式熱交換器には、プレー
ト式熱交換器の正面板に開口する冷媒入口と、該冷媒入
口に続く冷媒分流流路と、熱交換プレートを介して冷却
液流路と隣接する複数の冷媒流路と、該冷媒流路が合流
する冷媒合流流路と、該冷媒合流流路端部において該プ
レート式熱交換器の端面板に開口する冷媒出口とが形成
されており、冷媒蒸発器への冷媒流量制御手段として、
前記冷媒合流流路に挿入されて設けられた感温筒と、該
感温筒圧力により作動する感熱式膨張弁とが設けられて
いることを特徴とする冷却液供給装置にある。
According to a third aspect of the present invention, in the cooling liquid supply apparatus defined in the first or second aspect, the plate heat exchanger forming the refrigerant evaporator of the refrigerator is a plate heat exchanger. Of the refrigerant, the refrigerant inlet opening to the front plate of the refrigerant, the refrigerant branch flow passage continuing to the refrigerant inlet, the plurality of refrigerant passages adjacent to the cooling liquid passage through the heat exchange plate, and the refrigerant confluence where the refrigerant passages join. A flow path and a refrigerant outlet opening at an end face plate of the plate heat exchanger at the refrigerant merging flow path end are formed, and as a refrigerant flow rate control means to the refrigerant evaporator,
In the cooling liquid supply device, a temperature sensitive tube inserted into the refrigerant merging passage and a thermosensitive expansion valve operated by the pressure of the temperature sensitive tube are provided.

【0016】上記第三要旨にかかる冷却液供給装置は、
感温筒が、熱交換を終了し冷媒出口に向かう冷媒の流路
である冷媒合流流路内に直接挿入されているので、冷媒
導管の温度を冷媒温度として検知していた従来の場合と
異なり、直接、蒸発器出口付近の冷媒に接触して、正確
に、且つ、速やかに、冷媒温度をキャッチし、その検知
量を、膨張弁に伝えることができ、冷却器の温度制御の
精度が一段と向上する。なお、感温筒の設置場所は、熱
交換器の合流流路に限られるものでなく、例えば、感温
筒をアキュームレータ内の冷媒出口開口に臨ましめた状
態で設けてもよい。勿論、その場合は、感温筒と膨張弁
とを結ぶ連結パイプは、アキュームレータを構成する圧
力容器を気、液密に通過させることを要する。
The cooling liquid supply apparatus according to the third aspect is
Since the temperature sensitive tube is inserted directly into the refrigerant confluence channel, which is the channel of the refrigerant that ends heat exchange and goes to the refrigerant outlet, unlike the conventional case where the temperature of the refrigerant conduit is detected as the refrigerant temperature. By directly contacting the refrigerant in the vicinity of the outlet of the evaporator, the refrigerant temperature can be accurately and quickly caught, and the detected amount can be transmitted to the expansion valve, which further improves the temperature control accuracy of the cooler. improves. The location of the temperature-sensitive tube is not limited to the confluent flow path of the heat exchanger, and the temperature-sensitive tube may be provided, for example, in a state of facing the refrigerant outlet opening in the accumulator. Of course, in that case, the connecting pipe connecting the temperature sensing cylinder and the expansion valve needs to pass the pressure vessel constituting the accumulator in a gas- and liquid-tight manner.

【0017】[0017]

【発明の実施形態】図1〜4は、本発明に係る冷却液供
給装置の一実施形態の要部を示すものである。尚、図5
に示した従来装置と同じ機能を有する部材には、同一の
符号を付して、説明を省略する。冷却液貯留槽1は、箱
状容器から成り、この貯留槽1内は、仕切壁2aによっ
て、貯留槽1の前面壁1aの左端下部付近の一隅を囲む
ことにより、冷却液戻り室2が区画形成されると共に、
それ以外の貯留槽内空間から成る冷却液貯留室3が画成
されている。
1 to 4 show the essential parts of one embodiment of a cooling liquid supply apparatus according to the present invention. FIG.
The members having the same functions as those of the conventional device shown in FIG. The cooling liquid storage tank 1 is composed of a box-shaped container, and a partition wall 2a surrounds a corner near the lower left end of the front wall 1a of the storage tank 1 to define a cooling liquid return chamber 2 inside the storage tank 1. As it is formed
A cooling liquid storage chamber 3 including the other storage tank inner space is defined.

【0018】戻り室2の仕切壁2aには、貯留室3との
連通部となる連通口2bが設けられている。又、戻り室
2の前面壁1aには、戻り液入口2cと戻り液出口2d
とが、開口している。一方、冷却液貯留室3には、冷却
液供給口3aが、開口している。この冷却液貯留室3中
に、液体冷却器5と、アキュームレータ6とが収納され
ている。R1は、図5に示すものと同じ圧縮機(6
0)、凝縮器(61)及び感熱式膨張弁(63)を、冷
凍機ケース内に収納した冷凍機本体で、該冷凍機本体R
1は、、冷凍サイクルの蒸発器をなす液体冷却器5の冷
媒入口5cと、アキュームレータ6と冷媒圧縮機とを結
ぶ吸入管8とに、冷媒導管によって連結し、全体として
一連の冷凍サイクルを形成している。
The partition wall 2a of the return chamber 2 is provided with a communication port 2b serving as a communication portion with the storage chamber 3. Further, the return liquid inlet 2c and the return liquid outlet 2d are provided on the front wall 1a of the return chamber 2.
But it is open. On the other hand, a coolant supply port 3a is opened in the coolant storage chamber 3. A liquid cooler 5 and an accumulator 6 are housed in the cooling liquid storage chamber 3. R 1 is the same compressor (6
0), the condenser (61) and the thermal expansion valve (63) are stored in a refrigerator case, and the refrigerator body R is
Reference numeral 1 is connected to a refrigerant inlet 5c of a liquid cooler 5 serving as an evaporator of a refrigeration cycle and a suction pipe 8 connecting an accumulator 6 and a refrigerant compressor by a refrigerant conduit to form a series of refrigeration cycles as a whole. doing.

【0019】液体冷却器5は、プレート式熱交換器から
成り、略円形をなす正面板5aと、同形の端面板5bと
の間に、図3に示すような多数の円形の熱交換プレート
50、50、…を介設したものから成る。熱交換プレー
ト50は、多数のヘリンボーン状突起51、51、…を
プレス成形して設けた円形波板の周縁部付近の4カ所に
略楕円形の開口(52〜55)を設けたものから成る。
The liquid cooler 5 comprises a plate type heat exchanger, and a large number of circular heat exchange plates 50 as shown in FIG. 3 are provided between a substantially circular front plate 5a and an end plate 5b of the same shape. , 50, ... The heat exchange plate 50 is formed by press-forming a large number of herringbone-shaped protrusions 51, 51, ... Provided with substantially elliptical openings (52 to 55) at four positions near the peripheral edge of a circular corrugated plate. .

【0020】液体冷却器5は、このような熱交換プレー
ト50が、ヘリンボーン模様の方向を、重なり合う隣同
士で、互い違いになる状態で重接し、硬ろう付け(ブレ
ージング)されることにより、互いに、隣り合う熱交換
プレート間に、熱交換流路が形成される。各熱交換プレ
ートに設けられた開口53は、正面板5aの下部に開口
する冷媒入口5cに連通し、該冷媒入口5cから入った
冷媒が、熱交換プレート50、…間に形成された複数の
冷媒流路に分流するための一連の冷媒分流流路5dを構
成する。冷媒入口5cは、貯留槽1の前面板1aを液密
に貫通して貯留槽外に露出しており、これに、冷凍機本
体R1の感熱膨張弁から延設された低圧冷媒管路が接続
している。
In the liquid cooler 5, such a heat exchange plate 50 is hard brazed (brazing) by contacting the herringbone pattern in a staggered manner with each other next to each other in a staggered manner. A heat exchange flow path is formed between adjacent heat exchange plates. The opening 53 provided in each heat exchange plate communicates with the refrigerant inlet 5c opening at the lower part of the front plate 5a, and the refrigerant introduced from the refrigerant inlet 5c is provided between the heat exchange plates 50 ,. A series of refrigerant diversion flow paths 5d for diversion to the refrigerant flow path is configured. The refrigerant inlet 5c penetrates the front plate 1a of the storage tank 1 in a liquid-tight manner and is exposed to the outside of the storage tank, and a low-pressure refrigerant pipe line extended from the heat-sensitive expansion valve of the refrigerator main body R 1 is provided therein. Connected.

【0021】又、同様に、開口52は、冷凍機冷媒が、
上記分流流路5dから、各冷媒流路に流入して熱交換プ
レートを介して隣接する水などの冷却液と熱交換した後
に再び合流する、冷媒合流流路5eとなる。この冷媒合
流流路の端面板5b側の端部に、該端面板5bに穿設さ
れた冷媒出口5fが開口している。
Similarly, in the opening 52, the refrigerator refrigerant is
A refrigerant merging flow channel 5e is formed, which flows into the respective refrigerant flow channels from the diverting flow channel 5d, exchanges heat with the adjacent cooling liquid such as water via the heat exchange plate, and then merges again. A refrigerant outlet 5f formed in the end face plate 5b is opened at an end portion of the refrigerant confluent passage on the end face plate 5b side.

【0022】一方、図3において、開口52、53と、
熱交換プレート50の垂直な直径に関して対称位置に設
けられている開口55、54は、夫々、同様に、前記し
た各冷媒流路に隣接して形成されている冷却液流路に冷
却液が分流する冷却液分流流路(55)と、該冷却液流
路を経た冷却液の冷却液合流流路(54)を構成する。
この冷却液の分流流路(55)と合流流路(54)と
は、これらの両流路の端部に対応して、正面板5aに設
けた冷却液入口5gと、端面板5bに開口する冷却液出
口5hに、夫々連通する。冷却液入口5gは、冷媒入口
5cと同様に、貯留槽1の前面板1aから液密を保っ
て、槽外部に露出している。又、冷却液出口5hは、端
面板5bの下部において、冷却液貯留室3内に開口して
いる。
On the other hand, in FIG. 3, openings 52 and 53,
The openings 55 and 54, which are provided symmetrically with respect to the vertical diameter of the heat exchange plate 50, respectively, similarly divert the cooling liquid to the cooling liquid passages formed adjacent to the respective refrigerant passages. And a cooling liquid merging flow passage (54) for the cooling liquid that has passed through the cooling liquid flow passage.
The cooling liquid dividing flow channel (55) and the merging flow channel (54) correspond to the ends of both of these flow channels, and the cooling liquid inlet 5g provided in the front plate 5a and the end face plate 5b are opened. The cooling liquid outlets 5h are connected to each other. Like the refrigerant inlet 5c, the cooling liquid inlet 5g is kept liquid-tight from the front plate 1a of the storage tank 1 and is exposed to the outside of the tank. Further, the cooling liquid outlet 5h opens into the cooling liquid storage chamber 3 at the lower part of the end plate 5b.

【0023】7は、感温筒で、冷媒合流流路5e内に挿
入されて設けられている。該感温筒7は、正面板上部及
び貯留槽の前面板1aを気、液密を保って貫通し、貯留
槽の前面壁1a外に突出させて設けた接続部5kから冷
媒合流流路外に突出するチューブ7aを通して、冷凍機
本体R1に含まれる感熱式膨張弁(図示せず)のダイヤ
フラム上側空間に連通している。
Reference numeral 7 is a temperature-sensitive tube, which is provided by being inserted into the refrigerant merging passage 5e. The temperature-sensitive cylinder 7 penetrates the upper part of the front plate and the front plate 1a of the storage tank in a gas- and liquid-tight manner, and extends outside the front wall 1a of the storage tank from a connecting portion 5k provided outside the refrigerant merging flow path. The tube 7a protruding to the upper side communicates with the upper space of the diaphragm of the thermosensitive expansion valve (not shown) included in the refrigerator main body R 1 .

【0024】このような液体冷却器5の端面板5bに開
口する冷媒出口5fを囲んで、該端面板から一体的に、
鏡板部6aによって一側が閉塞されている円筒部6b
が、延設されることにより、端面板5bと共に圧力容器
を構成するアキュームレータ6が、液体冷却器5の側面
に、一体的に設けられている。このアキュームレータ6
内の上部空間に、吸入管8の一端8aが開口し、該吸入
管8は、圧力容器を気、液密に貫通(6c)して、圧力
容器外に突出し、その他端が、冷凍機本体R1の圧縮機
吸入口に、接続している。6dは、アキュームレータ6
を貯留槽1内底部に固定する支持板である。
Surrounding the refrigerant outlet 5f opening in the end face plate 5b of the liquid cooler 5 as described above, integrally from the end face plate,
Cylindrical portion 6b whose one side is closed by the end plate portion 6a
However, by being extended, the accumulator 6 that constitutes the pressure vessel together with the end face plate 5b is integrally provided on the side surface of the liquid cooler 5. This accumulator 6
One end 8a of the suction pipe 8 is opened in the upper space inside, and the suction pipe 8 penetrates the pressure container in a gas- and liquid-tight manner (6c) and projects to the outside of the pressure container, and the other end is connected to the refrigerator body. It is connected to the compressor inlet of R 1 . 6d is an accumulator 6
Is a support plate for fixing the above to the inner bottom of the storage tank 1.

【0025】液体冷却器5の冷却液入口5gは、循環ポ
ンプP1が介設されている冷却液導管11により、冷却
液戻り室2に開口する戻り液出口に接続している。又、
冷却液貯留室3には、冷却液供給口3aが、開口してお
り、この供給口3aは、供給ポンプP2が介設されてい
る冷却液の供給管12により、被冷却装置Tに接続す
る。供給管12を通して被冷却装置Tに供給された冷却
液は、被冷却装置Tと戻り液入口2cとを結ぶ冷却液の
戻り管13を通って、冷却液戻り室2に戻る。14は、
水位検知フロートで、冷却液貯留室3内の水位が、一定
レベル以下になると、自動給水する。
The cooling liquid inlet 5g of the liquid cooler 5 is connected to a return liquid outlet opening to the cooling liquid return chamber 2 by a cooling liquid conduit 11 in which a circulation pump P 1 is provided. or,
A cooling liquid supply port 3a is opened in the cooling liquid storage chamber 3, and the supply port 3a is connected to the cooled device T by a cooling liquid supply pipe 12 in which a supply pump P 2 is provided. To do. The cooling liquid supplied to the cooled device T through the supply pipe 12 returns to the cooling liquid return chamber 2 through the cooling liquid return pipe 13 that connects the cooled device T and the returning liquid inlet 2c. 14 is
When the water level in the coolant storage chamber 3 falls below a certain level by the water level detection float, water is automatically supplied.

【0026】[0026]

【作用】上記冷却液供給装置は、冷凍機本体の膨張弁か
ら液体冷却装置5の冷媒分流流路5dに入った冷媒が、
冷媒流路を上昇しつつ熱交換プレート50を介して両側
に隣接する冷却液と熱交換し、冷媒合流流路5eにおい
て、感温筒7の周囲を流れて、冷媒出口5fから、アキ
ュームレータ6内に入る。感温筒7は、熱交換した直後
の気化した冷媒に直接接触するので、冷媒温度を速やか
に検知でき、冷凍機本体側の感熱式膨張弁の作動にタイ
ムラグがなくなり、冷媒流量の制御精度も一段と向上す
る。
In the cooling liquid supply device, the refrigerant flowing from the expansion valve of the refrigerator body into the refrigerant distribution flow path 5d of the liquid cooling device 5 is
While exchanging heat with the cooling liquid adjacent to both sides through the heat exchange plate 50 while rising in the refrigerant flow path, the refrigerant merging flow path 5e flows around the temperature-sensing cylinder 7, and from the refrigerant outlet 5f to the inside of the accumulator 6. to go into. Since the temperature-sensitive cylinder 7 directly contacts the vaporized refrigerant immediately after the heat exchange, the temperature of the refrigerant can be detected promptly, there is no time lag in the operation of the thermal expansion valve on the refrigerator body side, and the control accuracy of the refrigerant flow rate is also improved. Improve further.

【0027】冷却液入口5gから液体冷却装置に入った
冷却液は、冷媒と向流状態で熱交換しつつ下降し、冷却
液出口5hから、直接、冷却液貯留室3内に入る。液体
冷却器として、円形の熱交換プレートを有するプレート
式熱交換器を採用した場合は、図3において、開口52
〜54と熱交換流路とを出入りする冷媒や冷却液等の流
体は、該開口の回りに、流体が停滞しやすい隅角部がな
く、流体は、弧状部52a、53a、54a、55aに
案内されて、開口から八方に流れるので、従来のよう
に、一隅において流れが停滞して、熱交換プレートの表
面に、汚れが付着堆積し、熱交換の性能を低下させるこ
とを防ぐことができる。
The cooling liquid that has entered the liquid cooling device from the cooling liquid inlet 5g descends while undergoing heat exchange with the refrigerant in a counterflow state, and directly enters the cooling liquid storage chamber 3 from the cooling liquid outlet 5h. When a plate heat exchanger having a circular heat exchange plate is adopted as the liquid cooler, in FIG.
A fluid such as a refrigerant or a cooling fluid that flows in and out of the heat exchangers and the heat exchange passages does not have a corner portion around which the fluid tends to stagnant, and the fluid flows in the arc-shaped portions 52a, 53a, 54a, 55a. Since it is guided and flows in eight directions from the opening, it is possible to prevent the flow from stagnating at one corner and depositing and depositing dirt on the surface of the heat exchange plate, which deteriorates the heat exchange performance as in the conventional case. .

【0028】又、供給ポンプP2により、供給管12を
通して、被冷却装置Tに送られた貯留室3内の冷却液
は、温度上昇して戻り管13を経て、冷却液戻り室2に
入るが、戻り室2と貯留室3とは、供給ポンプP2が停
止している時以外は、実質的に隔絶されており、液体温
度に影響するような冷却液の交流はないので、温度上昇
した戻り液は、そのまま、戻り液出口2dから、液体冷
却器5に送られる。したがって、従来の場合と比べて、
液体冷却器5を通る冷却液温度と冷媒蒸発温度との温度
差が拡大し、液体冷却器の性能が、向上したことにな
る。
Further, the temperature of the cooling liquid in the storage chamber 3 sent to the device to be cooled T through the supply pipe 12 by the supply pump P 2 rises and enters the cooling liquid return chamber 2 via the return pipe 13. However, the return chamber 2 and the storage chamber 3 are substantially isolated from each other except when the supply pump P 2 is stopped, and there is no alternating current of the cooling liquid that affects the liquid temperature. The returned liquid is sent as it is to the liquid cooler 5 from the return liquid outlet 2d. Therefore, compared to the conventional case,
This means that the temperature difference between the cooling liquid temperature passing through the liquid cooler 5 and the refrigerant evaporation temperature is expanded, and the performance of the liquid cooler is improved.

【0029】[0029]

【効果】上記した本願冷却液供給装置は、液体冷却器に
プレート式熱交換器を採用し、更に、冷凍機の蒸発器を
なす液体冷却器とアキュームレータとを、一体構成し
て、両者を結ぶ冷媒導管を省略して、コスト削減と、形
状の小型化、簡素化を達成し、更に、これらの液体冷却
器ユニットを冷却液貯留槽内に収納して、冷却液に浸す
構成により、従来、ケース等により囲まれて、無駄な空
間となっていた部分もすべて、冷却液貯留空間として利
用し、装置の大幅な小型化を実現している。
[Effects] The above-described cooling liquid supply apparatus of the present application employs a plate heat exchanger as a liquid cooler, and further, a liquid cooler and an accumulator forming an evaporator of a refrigerator are integrally configured and connected to each other. By omitting the refrigerant conduit, cost reduction, downsizing and simplification of the shape are achieved, and further, by storing these liquid cooler units in the cooling liquid storage tank and immersing them in the cooling liquid, conventionally, All of the wasted space surrounded by the case etc. is used as a cooling liquid storage space, and the size of the device is greatly reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本願冷却液供給装置の一実施形態の要部を示す
断面説明図である。
FIG. 1 is an explanatory cross-sectional view showing a main part of an embodiment of a cooling liquid supply apparatus of the present application.

【図2】図1に示す冷却液供給装置の全体構成を平面方
向から見た説明図である。
FIG. 2 is an explanatory view of the entire configuration of the cooling liquid supply device shown in FIG. 1 as seen from the plane direction.

【図3】本願装置の液体冷却器を構成する熱交換プレー
トを示す説明図である。
FIG. 3 is an explanatory diagram showing a heat exchange plate that constitutes a liquid cooler of the device of the present application.

【図4】本願装置の冷却液貯留槽を前面から見た部分断
面説明図である。
FIG. 4 is a partial cross-sectional explanatory view of the cooling liquid storage tank of the device of the present application as seen from the front surface.

【図5】従来の冷却液供給装置の一例を示す説明図であ
る。
FIG. 5 is an explanatory diagram showing an example of a conventional cooling liquid supply device.

【符号の説明】[Explanation of symbols]

1 冷却液貯留槽 2 冷却液戻り室 2a 仕切壁 2b 連通口 2c 戻り液入口 2d 戻り液出口 3 冷却液貯留室 5 液体冷却器 5a 正面板 5b 端面板 5c 冷媒入口 5d 冷媒出口 5g 冷却液入口 5h 冷却液出口 6 アキュームレータ 7 感温筒 8 吸入管 R1 冷凍機本体 T 被冷却装置 P1、P2 ポンプ1 Cooling liquid storage tank 2 Cooling liquid return chamber 2a Partition wall 2b Communication port 2c Returning liquid inlet 2d Returning liquid outlet 3 Cooling liquid storage chamber 5 Liquid cooler 5a Front plate 5b End face plate 5c Refrigerant inlet 5d Refrigerant outlet 5g Cooling liquid inlet 5h Coolant outlet 6 Accumulator 7 Temperature sensitive tube 8 Suction pipe R 1 Refrigerator body T Cooled device P 1 , P 2 Pump

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】冷凍機の冷媒蒸発器と冷却液流路とが熱交
換自在に設けられている液体冷却器と、該液体冷却器に
よって冷却された冷却液の供給口を有する冷却液貯留槽
と、液体圧送手段とを備えた冷却液供給装置において、
前記液体冷却器をプレート式熱交換器によって構成する
と共に、前記冷凍機のアキュームレータを、前記プレー
ト式熱交換器の端面板に開口する冷媒出口を含み且つ該
端面板と一体的に設けられた圧力容器によって構成し、
前記プレート式熱交換器と前記アキュームレータとを、
前記貯留槽中に設置して、前記熱交換器の冷却液出口を
貯留槽中に開放したことを特徴とする冷却液供給装置。
1. A cooling liquid storage tank having a liquid cooler in which a refrigerant evaporator and a cooling liquid flow path of a refrigerator are heat-exchangeably provided, and a supply port of the cooling liquid cooled by the liquid cooler. And a cooling liquid supply device including a liquid pressure feeding means,
The liquid cooler is configured by a plate heat exchanger, and the accumulator of the refrigerator includes a refrigerant outlet opening to an end face plate of the plate heat exchanger and a pressure provided integrally with the end face plate. Consisting of a container,
The plate heat exchanger and the accumulator,
A cooling liquid supply apparatus, which is installed in the storage tank, and a cooling liquid outlet of the heat exchanger is opened in the storage tank.
【請求項2】冷却液貯留槽中を仕切壁によって仕切っ
て、プレート式熱交換器を囲む冷却液貯留室と冷却液戻
り室とを形成し、前記冷却液貯留室には冷却液の供給口
を、前記仕切壁には冷却液貯留室との連通部を、夫々設
けると共に、前記冷却液戻り室と熱交換器の冷却液入口
とを送液ポンプを介装した液体流路によって連結せしめ
たことを特徴とする請求項1の冷却液供給装置。
2. A cooling liquid storage chamber is partitioned by a partition wall to form a cooling liquid storage chamber and a cooling liquid return chamber that surround the plate heat exchanger, and the cooling liquid supply port is provided in the cooling liquid storage chamber. The partition wall is provided with a communicating portion with the cooling liquid storage chamber, and the cooling liquid return chamber and the cooling liquid inlet of the heat exchanger are connected by a liquid flow path having a liquid feeding pump interposed therebetween. The cooling liquid supply device according to claim 1, wherein
【請求項3】プレート式熱交換器を構成する熱交換プレ
ートが略円形をなしており、アキュームレータが該プレ
ート式熱交換器の略円形の端面板に開口する冷媒出口を
囲んで該端面板から気、液密を保って延設された円筒形
圧力容器により形成されていることを特徴とする請求項
1又は2の冷却液供給装置。
3. A heat exchange plate constituting a plate heat exchanger has a substantially circular shape, and an accumulator surrounds a refrigerant outlet opening in a substantially circular end face plate of the plate heat exchanger so as to extend from the end face plate. The cooling liquid supply device according to claim 1 or 2, wherein the cooling liquid supply device is formed by a cylindrical pressure vessel that extends in a gas- and liquid-tight manner.
【請求項4】冷凍機の冷媒蒸発器をなすプレート式熱交
換器には、該プレート式熱交換器の正面板に開口する冷
媒入口と、該冷媒入口に続く冷媒分流流路と、熱交換プ
レートを介して冷却液流路と隣接する複数の冷媒流路
と、該冷媒流路が合流する冷媒合流流路と、該冷媒合流
流路端部において該プレート式熱交換器の端面板に開口
する冷媒出口とが形成されており、冷媒蒸発器への冷媒
流量制御手段として、前記冷媒合流流路に挿入されて設
けられた感温筒と、該感温筒圧力により作動する感熱式
膨張弁とが設けられている請求項1〜3の何れかに記載
の冷却液供給装置。
4. A plate-type heat exchanger forming a refrigerant evaporator of a refrigerator, wherein a refrigerant inlet opening to a front plate of the plate-type heat exchanger, a refrigerant diversion flow path continuing to the refrigerant inlet, and a heat exchanger. A plurality of refrigerant channels adjacent to the cooling fluid channel via the plate, a refrigerant merging channel where the refrigerant channels merge, and an opening at the end face plate of the plate heat exchanger at the end of the refrigerant merging channel And a thermosensitive expansion valve that is operated by the pressure of the thermosensitive cylinder, the thermosensitive cylinder being provided by being inserted into the refrigerant confluent channel as a refrigerant flow rate control means to the refrigerant evaporator. The cooling liquid supply apparatus according to any one of claims 1 to 3, further comprising:
JP8025926A 1996-01-19 1996-01-19 Coolant supply device Expired - Lifetime JP2978941B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8025926A JP2978941B2 (en) 1996-01-19 1996-01-19 Coolant supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8025926A JP2978941B2 (en) 1996-01-19 1996-01-19 Coolant supply device

Publications (2)

Publication Number Publication Date
JPH09196512A true JPH09196512A (en) 1997-07-31
JP2978941B2 JP2978941B2 (en) 1999-11-15

Family

ID=12179389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8025926A Expired - Lifetime JP2978941B2 (en) 1996-01-19 1996-01-19 Coolant supply device

Country Status (1)

Country Link
JP (1) JP2978941B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6349552B2 (en) 1999-12-08 2002-02-26 Usui Kokusai Sangyo Kaisha Ltd. Temperature control device for thermal medium fluid
JP2010243064A (en) * 2009-04-06 2010-10-28 Orion Mach Co Ltd Cooling device
JP2010266129A (en) * 2009-05-15 2010-11-25 Orion Mach Co Ltd Cooling device
CN114877574A (en) * 2022-06-07 2022-08-09 浙江欧特立汽车空调有限公司 Liquid storage device for new energy automobile air conditioning system and working method of liquid storage device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6349552B2 (en) 1999-12-08 2002-02-26 Usui Kokusai Sangyo Kaisha Ltd. Temperature control device for thermal medium fluid
JP2010243064A (en) * 2009-04-06 2010-10-28 Orion Mach Co Ltd Cooling device
JP2010266129A (en) * 2009-05-15 2010-11-25 Orion Mach Co Ltd Cooling device
CN114877574A (en) * 2022-06-07 2022-08-09 浙江欧特立汽车空调有限公司 Liquid storage device for new energy automobile air conditioning system and working method of liquid storage device

Also Published As

Publication number Publication date
JP2978941B2 (en) 1999-11-15

Similar Documents

Publication Publication Date Title
JP3479477B2 (en) Heat exchanger for temperature controller
JP4324187B2 (en) Heat storage device
US5909766A (en) Heat exchanger having a structure for detecting fluid leakage
JPH09196512A (en) Liquid coolant feeding device
KR20160039856A (en) Apparatus for controlling temperature of semiconductor equipment
JP3070723B2 (en) Refrigeration equipment
JP6179750B2 (en) Heat pump heat source machine
CN106402356B (en) heat exchange device
CN106402355B (en) Heat exchange device
JP3663667B2 (en) Tank built-in heat exchanger
JPH10170098A (en) Laminated evaporator
CN114562832A (en) Evaporation unit and thermal management system
US6102109A (en) Cooling device boiling and condensing refrigerant
CN219797580U (en) Condenser
EP4092372B1 (en) Water chamber for condenser, condenser having it and chiller system
JPH10170188A (en) Heat exchanger
JP2000111194A (en) Heat utilization system using hydrogen storage alloy
US20230175784A1 (en) Device for use in refrigeration or heat pump system, and refrigeration or heat pump system
CN207778874U (en) Condenser and heat-exchange system
KR200396520Y1 (en) Cooling Unit With Pin Coil-Typed Evaporator
JPH0814703A (en) Refrigerant evaporator
KR20230088799A (en) Heat Exchangers, Heat Exchange Assemblies, and Thermal Management Systems
KR0117025Y1 (en) Heater exchanger
WO1999058908A1 (en) Heat exchanger
JP2001194040A (en) Circulation heating/cooling system