JPH09192789A - Belt type continuous casting method - Google Patents

Belt type continuous casting method

Info

Publication number
JPH09192789A
JPH09192789A JP750296A JP750296A JPH09192789A JP H09192789 A JPH09192789 A JP H09192789A JP 750296 A JP750296 A JP 750296A JP 750296 A JP750296 A JP 750296A JP H09192789 A JPH09192789 A JP H09192789A
Authority
JP
Japan
Prior art keywords
casting
cooling
belt
pair
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP750296A
Other languages
Japanese (ja)
Inventor
Kiyonobu Sakaguchi
清信 坂口
Hitoshi Matsuzaki
均 松崎
Katsuyuki Yoshikawa
克之 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP750296A priority Critical patent/JPH09192789A/en
Publication of JPH09192789A publication Critical patent/JPH09192789A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To restrain deformation of a belt by efficiently preheating the casting belts advanced to a mold zone, in a belt type continuous casting method, continuously producing a thin sheet-like cast slab by supplying molten metal into the mold formed with pair of the casting belts. SOLUTION: The inner part of the mold formed with the pair of casting belts 2 is divided into a cooling zone CZ at the upstream side and a preheating zone PZ at the downstream side. In the cooling zone CZ, the cooling of the casting belts 2 is executed by using cooling water injection nozzles 3 and the fin rolls 4. On the other hand, in the preheating zone PZ, the cooling is not executed and the casting belts 2 are pushed to the cast slab S by using the backup rolls 5 and heated with the heat thereof and the temp. of the pair of the casting belts 2 is raised in the preheating zone PZ in the mold. Therefore, the casting belts advanced to the mold zone are efficiently preheated without adding a special heating mechanism and the energy and therefore, the belt deformation is restrained and the quality of the cast slab can be stabilized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、薄板状の鋳片を連
続鋳造するベルト式連続鋳造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a belt-type continuous casting method for continuously casting thin plate-shaped slabs.

【0002】[0002]

【従来の技術】対の鋳造ベルトで形成された鋳型によっ
て薄スラブ等の薄板状の鋳片を鋳造するベルト式連続鋳
造において、鋳造に際する鋳造ベルトの変形は、鋳片表
面の割れや凹みをはじめとする表面性状の悪化を招くこ
とから、その変形防止は極めて重要な課題となる。ここ
で、鋳造ベルトの変形の内の幾つかのものは、その鋳造
ベルトが回動して鋳型領域に進入した直後に起こる。す
なわち、鋳型領域に進入した鋳造ベルトは裏面側から冷
却水等で強制冷却され、溶融金属との接触面が冷却され
た裏面よりも高温となるために高温側を上部として該ベ
ルトが反り返ったり、ベルト平面内において溶融金属と
接触しない部分が接触した部分の熱膨張を拘束するため
に該ベルトに歪が発生したりする。
2. Description of the Related Art In belt-type continuous casting in which thin plate-shaped slabs such as thin slabs are cast by a mold formed by a pair of casting belts, the casting belt is deformed during casting due to cracks or dents on the slab surface. Since it causes deterioration of the surface properties such as, the prevention of the deformation is an extremely important issue. Here, some of the deformations of the casting belt occur immediately after the casting belt pivots and enters the mold area. That is, the casting belt that has entered the mold region is forcibly cooled from the back side with cooling water or the like, and the contact surface with the molten metal becomes higher in temperature than the cooled back side, so that the belt warps with the high temperature side as the upper part, In the plane of the belt, a portion that does not come into contact with the molten metal restrains thermal expansion of the portion that comes into contact with the molten metal, so that distortion occurs in the belt.

【0003】そのため、これらベルト式連続鋳造におけ
るベルト変形の防止について各方面から検討がなされて
おり、例えば、特公昭57-61502号公報に開示された連続
鋳造方法では、鋳造ベルトが回動して鋳造領域の入口に
達する前に、回動しつつある鋳造ベルトの温度を高める
ことで鋳造領域でのベルト変形を抑制している。〔図
5〕は、上記鋳造方法(特公昭57-61502号)におけるベ
ルト式連続鋳造機の概要構成を模式的に示す正断面面で
ある。この鋳造方法では、〔図A〕に示すように、前後
のプーリー(21)で回動させられる対の鋳造ベルト(22)に
よって形成された鋳型内に、タンディシュ(31)の浸漬ノ
ズル(31a) から溶融金属(M) を供給する一方、それら鋳
造ベルト(22)の裏面側に列設した冷却水噴射ノズル(23)
およびフィンロール(24)によって鋳造領域の各鋳造ベル
ト(22)を冷却することで、溶融金属(M) を移動過程で順
次凝固させて薄板状の鋳片(S) を連続的に作り出す。ま
た、その上流側に位置するプーリー(21)の回りに強力な
赤外線ヒータ(25a)を備えた1ないしは複数のバンク(5
5)を配設し、このバンク(25)によって鋳造領域の入口側
のプーリー(21)前とその回りを移動中の鋳造ベルト(22)
の表面の一定範囲に熱を加えて、各鋳造ベルト(22)が鋳
造領域の溶融金属(M) と接触する前にその温度を上昇さ
せ、これによって鋳造領域でのベルト変形を抑制する。
更に別の方法として、スチーム等の加熱流体を鋳造領域
の入口側のプーリーの、中空部内なしは外周の深い溝内
に送給し、該プーリーの回りを移動中の鋳造ベルトに熱
を加えて、各鋳造ベルトが溶融金属と接触する前にその
温度を上昇させる方法も採用される。
Therefore, prevention of belt deformation in these belt type continuous castings has been studied from various directions. For example, in the continuous casting method disclosed in Japanese Patent Publication No. 57-61502, the casting belt is rotated. Before reaching the entrance of the casting area, the temperature of the rotating casting belt is raised to suppress belt deformation in the casting area. [FIG. 5] is a front cross-sectional view schematically showing a schematic configuration of a belt type continuous casting machine in the above casting method (Japanese Patent Publication No. 57-61502). In this casting method, as shown in [Figure A], the immersion nozzle (31a) of the tundish (31) is placed in a mold formed by a pair of casting belts (22) that are rotated by front and rear pulleys (21). While supplying molten metal (M) from the cooling belt, the cooling water jet nozzles (23) are lined up on the back side of the casting belts (22).
By cooling the casting belts (22) in the casting area with the fin rolls (24), the molten metal (M) is sequentially solidified in the moving process to continuously produce thin plate-shaped slabs (S). Also, one or a plurality of banks (5) equipped with a powerful infrared heater (25a) around the pulley (21) located upstream thereof.
5) is provided, and the casting belt (22) moving in front of and around the pulley (21) on the inlet side of the casting area by this bank (25)
Heat is applied to a certain range of the surface of the casting belt (22) to increase the temperature of each casting belt (22) before it comes into contact with the molten metal (M) in the casting area, thereby suppressing belt deformation in the casting area.
As still another method, heating fluid such as steam is fed into the deep groove of the outer circumference of the pulley on the inlet side of the casting area, without the hollow portion, and heat is applied to the casting belt moving around the pulley. A method of increasing the temperature of each casting belt before it contacts the molten metal is also adopted.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記従
来の鋳造方法では、鋳造ベルトが溶融金属と接触する前
に予熱することで、ベルト平面内において溶融金属と接
触しない部分と接触した部分との温度勾配を低く抑えて
該鋳造ベルトの歪を抑制できるものの、適用するベルト
連続鋳造機の機構が複雑となり、装置製作コストが増大
すると共に、メンテナンスの負荷が増加してランニング
コストが増大すると言う問題がある。
However, in the above conventional casting method, the casting belt is preheated before coming into contact with the molten metal, so that the temperature of the portion in the plane of the belt which does not come into contact with the molten metal and the portion which comes into contact therewith. Although it is possible to suppress the distortion of the casting belt by suppressing the gradient low, there is a problem that the mechanism of the belt continuous casting machine to be applied becomes complicated and the device manufacturing cost increases, and the maintenance load increases and running cost increases. is there.

【0005】本発明は、上記従来技術の問題点を解消す
るためのもので、鋳型領域での鋳造後に上流側に回動し
て再び鋳型領域に進入する対の鋳造ベルトを、特別の加
熱機構やエネルギーを付加することなく、効率良く予熱
して溶融金属と接触する際の温度を高めてベルト変形を
抑制でき、よって鋳片の品質の安定化を経済的に達成で
きるベルト式連続鋳造方法の提供を目的とする。
The present invention is intended to solve the above-mentioned problems of the prior art. A pair of casting belts that rotate to the upstream side and re-enter the casting mold area after casting in the casting mold area have a special heating mechanism. A belt-type continuous casting method that can efficiently preheat and increase the temperature at the time of contact with molten metal to suppress belt deformation without adding energy and energy, and thus economically achieve stable slab quality. For the purpose of provision.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明は以下の構成とされている。すなわち、本
発明に係るベルト式連続鋳造方法は、対向して平行に配
され、かつ相互の対向面が同方向に移動するようにエン
ドレスに回動する対の鋳造ベルトと、この対の鋳造ベル
トの対向部両側に配されて該鋳造ベルトと同調して移動
する対のサイドダムとによって形成される鋳型内に、前
記対の鋳造ベルトの移動方向に対する上流側端部から溶
融金属を供給し、移動する対の鋳造ベルトの対向面と接
触させる一方、それら鋳造ベルトを裏面側から冷却し
て、該溶融金属を移動過程で順次凝固させて薄板状の鋳
片を連続的に作り出すベルト式連続鋳造方法において、
前記鋳型内を上流側の冷却領域と下流側の予熱領域とに
分け、その冷却領域では鋳造ベルトの冷却を行う一方、
予熱領域では鋳造ベルトの冷却は行わず、バックアップ
ロールを用いて対の鋳造ベルトそれぞれを鋳片に押し付
けて該鋳片の熱で加熱し、該予熱領域で対の鋳造ベルト
の温度を高めることを特徴とする。
In order to achieve the above object, the present invention has the following arrangement. That is, the belt-type continuous casting method according to the present invention is a pair of casting belts that are arranged parallel to each other and that rotate endlessly so that mutually facing surfaces move in the same direction, and this pair of casting belts. In the mold formed by a pair of side dams arranged on both sides of the facing portion of the pair and moving in synchronization with the casting belt, molten metal is supplied from the upstream end portion in the moving direction of the pair of casting belts and moved. The belt-type continuous casting method in which thin casting slabs are continuously produced by cooling the casting belts from the back surface side while contacting the facing surfaces of the pair of casting belts and continuously solidifying the molten metal in the moving process. At
The mold is divided into an upstream side cooling region and a downstream side preheating region, while cooling the casting belt in the cooling region,
The casting belt is not cooled in the preheating region, and the pair of casting belts are pressed against the slab by using a backup roll to heat the slab by the heat of the slab, thereby increasing the temperature of the pair of casting belts in the preheating region. Characterize.

【0007】また、上記鋳型内の冷却領域と予熱領域と
の間に、該冷却領域とは独立して鋳造ベルトの冷却およ
び冷却停止できる選択冷却領域を設け、その冷却領域で
は鋳造ベルトの冷却を常時行う一方、選択冷却領域では
鋳片の鋳造条件に応じて鋳造ベルトの冷却および冷却停
止を選択的に行うものとしても良い。
Further, between the cooling area and the preheating area in the mold, a selective cooling area for cooling and stopping the cooling of the casting belt is provided independently of the cooling area, and the casting belt is cooled in the cooling area. On the other hand, in the selective cooling region, the cooling of the casting belt and the cooling stop may be selectively performed in the selective cooling region according to the casting conditions of the slab.

【0008】また、上記選択冷却領域と予熱領域との間
に対の鋳造ベルトの温度を計測する温度センサーを配
し、該温度センサーの出力に従って前記選択冷却領域に
おける冷却の0N/0FFを制御するものとされても良い。
Further, a temperature sensor for measuring the temperature of the pair of casting belts is arranged between the selective cooling area and the preheating area, and 0N / 0FF of cooling in the selective cooling area is controlled according to the output of the temperature sensor. It may be treated as something.

【0009】上記本発明のベルト式連続鋳造方法では、
平行に配されて互の対向面が同方向に移動するようにエ
ンドレスに回動する対の鋳造ベルトと、この対の鋳造ベ
ルトの対向部両側に配されて同調移動する対のサイドダ
ムとで形成される鋳型内を、上流側の冷却領域と下流側
の予熱領域とに分け、上流側の冷却領域では鋳造ベルト
の冷却を行うので、その上流側端部から該鋳型内に供給
された溶融金属を移動過程で順次凝固させて薄板状の鋳
片を連続的に作り出すことができる。また、その下流側
の予熱領域では、鋳造ベルトの冷却は行わず、対の鋳造
ベルトそれぞれをバックアップロールによって鋳片に押
し付けて該鋳片の熱で加熱し、該予熱領域で対の鋳造ベ
ルトの温度を高めるので、当該鋳型領域での鋳造後に上
流側に回動して再び鋳型領域に進入する対の鋳造ベルト
の温度を、特別の加熱機構やエネルギーを付加すること
なく、効率良く予熱して溶融金属と接触する際の温度を
高めてベルト変形を抑制できる。
In the above belt type continuous casting method of the present invention,
Formed by a pair of casting belts that are arranged in parallel and rotate endlessly so that the opposite surfaces move in the same direction, and a pair of side dams that are arranged on both sides of the facing portions of the pair of casting belts and move in synchronization The casting mold is divided into an upstream cooling area and a downstream preheating area, and the casting belt is cooled in the upstream cooling area, so the molten metal supplied from the upstream end into the casting mold. Can be sequentially solidified in the moving process to continuously produce thin plate-shaped slabs. Further, in the preheating region on the downstream side, the casting belt is not cooled, and each pair of casting belts is pressed against a slab by a backup roll to be heated by the heat of the slab, and the pair of casting belts in the preheating region Since the temperature is increased, the temperature of the pair of casting belts that rotate to the upstream side and enter the mold region again after casting in the mold region is efficiently preheated without adding a special heating mechanism or energy. The belt deformation can be suppressed by increasing the temperature at the time of contact with the molten metal.

【0010】また、上記鋳型内の冷却領域と予熱領域と
の間に、該冷却領域とは独立して鋳造ベルトの冷却およ
び冷却停止できる選択冷却領域を設け、上流側の冷却領
域では鋳造ベルトの冷却を常時行う一方、続く選択冷却
領域では鋳片の鋳造条件に応じて鋳造ベルトの冷却・冷
却停止を選択的に行うことで、鋳造速度や鋳片サイズ等
の鋳造条件の変更に容易に対応して、安定した連続鋳造
を行うことができる。すなわち、該選択冷却領域での鋳
造ベルトの冷却は、鋳造速度や鋳片サイズ等の鋳造条件
によって選択し、つまり鋳造速度を速くしたり大きなサ
イズの鋳片を鋳造したりする場合には冷却を行い、逆に
鋳造速度を遅くしたり小さなサイズの鋳片を鋳造したり
する場合には冷却を停止することで、同一装置構成に
て、それら鋳造条件の変更に容易に対応して、安定した
連続鋳造を行うことができる。
Further, between the cooling area and the preheating area in the mold, there is provided a selective cooling area capable of cooling and stopping the cooling of the casting belt independently of the cooling area. While always cooling, in the subsequent selective cooling area, it is possible to easily respond to changes in casting conditions such as casting speed and slab size by selectively cooling and stopping the casting belt according to the casting conditions of the slab. As a result, stable continuous casting can be performed. That is, the cooling of the casting belt in the selective cooling region is selected according to the casting conditions such as the casting speed and the slab size, that is, the cooling is performed when the casting speed is increased or a large sized slab is cast. On the contrary, in the case of slowing the casting speed or casting a small-sized slab, by stopping the cooling, it is possible to easily respond to changes in the casting conditions with the same device configuration and stabilize the operation. Continuous casting can be performed.

【0011】また、上記選択冷却領域と予熱領域との間
に対の鋳造ベルトの温度を計測する温度センサーを配
し、該温度センサーの出力に従って前記選択冷却領域に
おける冷却の0N/0FFを制御することで、鋳片の冷却状態
の変動に対応して鋳造ベルトの冷却条件を自動的に調整
し、安定した連続鋳造を行うことができ、また、これに
より鋳造速度や鋳片サイズ等の鋳造条件の変更にも容易
に対応できる。
A temperature sensor for measuring the temperature of the pair of casting belts is arranged between the selective cooling area and the preheating area, and 0N / 0FF of cooling in the selective cooling area is controlled according to the output of the temperature sensor. By doing so, it is possible to automatically adjust the cooling conditions of the casting belt in response to fluctuations in the cooling state of the slab, and to perform stable continuous casting.This also enables casting conditions such as casting speed and slab size. Can be easily changed.

【0012】[0012]

【発明の実施の形態】以下、本発明の実施の形態を図面
を参照して説明する。〔図1〕は本発明の第1実施例に
用いた連続鋳造機の概要構成を模式的に示す正断面図で
ある。なお、この連続鋳造機は上方から溶融金属を供給
して下方から鋳片を送り出す縦型の鋳造方式をとるもの
である。
Embodiments of the present invention will be described below with reference to the drawings. [FIG. 1] is a front sectional view schematically showing a schematic configuration of a continuous casting machine used in the first embodiment of the present invention. It should be noted that this continuous casting machine adopts a vertical casting method in which molten metal is supplied from above and slabs are sent from below.

【0013】〔図1〕に示す本実施例の縦型連続鋳造機
では、対向して垂直方向に平行に配され、かつ相互の対
向面が同垂直下方向に移動するように、上下のプーリー
(1)で回動させられる対の鋳造ベルト(2) と、この対の
鋳造ベルト(2) の対向部両側に配されて該鋳造ベルト
(2) と同調して移動する図示省略の対のサイドダムとに
よって形成された鋳型内に、その上方に配置されたタン
ディシュ(10)の浸漬ノズル(10a) から溶融金属(M) を供
給し、下方に向けて移動する対の鋳造ベルト(2)それぞ
れの対向面と接触させて、該溶融金属(M) を移動過程で
順次凝固させて薄板状の鋳片(S) を連続的に作り出す。
In the vertical continuous casting machine of this embodiment shown in FIG. 1, the upper and lower pulleys are arranged so as to face each other and are parallel to each other in the vertical direction, and the mutually facing surfaces move in the same vertical downward direction.
A pair of casting belts (2) that can be rotated by (1), and the casting belts that are arranged on both sides of the facing portion of the pair of casting belts (2).
In the mold formed by a pair of side dams (not shown) that move in synchronization with (2), the molten metal (M) is supplied from the immersion nozzle (10a) of the tundish (10) arranged above it. The molten metal (M) is sequentially solidified in the moving process by contacting the facing surfaces of the pair of casting belts (2) moving downward, and continuously producing thin plate-shaped slabs (S).

【0014】一方、上記鋳型内は、上流側の冷却領域(C
Z)と下流側の予熱領域(PZ)とに分けており、その冷却領
域(CZ)では、該冷却領域(CZ)での鋳造ベルト(2) の裏面
側に交互に配設した複数の冷却水噴射ノズル(3) および
フィンロール(4) によって、各鋳造ベルト(2) の冷却を
行い、それら鋳造ベルト(2) に接触する溶融金属(M)の
凝固を促進させる。また、続く下流側の予熱領域(PZ)で
は、該予熱領域(PZ)での鋳造ベルト(2) の裏面側に、冷
却水噴射ノズル(3) およびフィンロール(4) に代わっ
て、外周に冷却水の流路を確保するための多数の溝を周
設したバックアップロール(5) を列設し、鋳造ベルト
(2) の冷却は行わず、それらバックアップロール(5) に
よって対の鋳造ベルト(2) それぞれを内方の鋳片(S) に
押し付け、その鋳片(S) の熱によって加熱することで、
該冷却領域(CZ)において、その上流側の冷却領域(CZ)で
冷却された鋳造ベルト(2) の温度を上昇させる。
On the other hand, in the mold, the cooling area (C
Z) and the preheating zone (PZ) on the downstream side, and in the cooling zone (CZ), a plurality of cooling elements alternately arranged on the back surface side of the casting belt (2) in the cooling zone (CZ). The water jet nozzles (3) and the fin rolls (4) cool the casting belts (2) to accelerate the solidification of the molten metal (M) in contact with the casting belts (2). In the subsequent preheating zone (PZ) on the downstream side, on the back side of the casting belt (2) in the preheating zone (PZ), instead of the cooling water jet nozzle (3) and the fin roll (4), the outer periphery is formed. A backup belt (5) with a large number of grooves around it to secure the flow path for cooling water
(2) is not cooled, but the pair of casting belts (2) are pressed against the inner slab (S) by the backup rolls (5) and heated by the heat of the slab (S),
In the cooling zone (CZ), the temperature of the casting belt (2) cooled in the upstream cooling zone (CZ) is raised.

【0015】〔図2〕は、本発明の第1実施例に用いた
別の連続鋳造機の概要構成を模式的に示す正断面図であ
る。なお、この連続鋳造機は1側方から溶融金属を供給
して他の1側方から鋳片を送り出す横型の鋳造方式をと
るもので、その鋳造方向が異なる点を除いて、〔図1〕
に示した縦型連続鋳造機と同じであるので、ここでは
〔図1〕と等価な各部に同符号を付してその説明を省略
し、差異点のみを要約して説明するものとする。
FIG. 2 is a front sectional view schematically showing the schematic construction of another continuous casting machine used in the first embodiment of the present invention. This continuous casting machine adopts a horizontal casting method in which molten metal is supplied from one side and slabs are sent from the other one side, except that the casting direction is different [Fig. 1].
Since it is the same as that of the vertical continuous casting machine shown in FIG. 1, the same parts as those in FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted. Only the differences will be summarized.

【0016】〔図2〕に示す本実施例の横型連続鋳造機
では、鋳型を形成する対の鋳造ベルト(2) が、相互の対
向面を横方向にし、かつ上流側を高位として傾斜して配
されている。そして、その上流側に配置されたタンディ
シュ(11)の側方に突設された射出型の浸漬ノズル(11a)
から上記鋳型内に溶融金属(M) を供給し、該溶融金属
(M) を移動過程で順次凝固させて薄板状の鋳片(S) を連
続的に作り出す。また、前記と同様に、鋳型内の冷却領
域(CZ)では、各鋳造ベルト(2) の冷却を行って溶融金属
(M) の凝固を促進させる一方、続く下流側の予熱領域(P
Z)では、各鋳造ベルト(2) の冷却は行わず、鋳片(S) の
熱によって上流側の冷却領域(CZ)で冷却された鋳造ベル
ト(2) の温度を上昇させる。
In the horizontal continuous casting machine according to the present embodiment shown in FIG. 2, the pair of casting belts (2) forming the mold are inclined so that the surfaces facing each other are in the horizontal direction and the upstream side is in the high position. It is distributed. Then, an injection type immersion nozzle (11a) protruding from the side of the tundish (11) arranged on the upstream side thereof.
The molten metal (M) is supplied from the
(M) is sequentially solidified in the moving process to continuously produce thin plate-shaped slabs (S). Further, in the same manner as described above, in the cooling zone (CZ) in the mold, the molten metal is cooled by cooling each casting belt (2).
(M) promotes solidification while continuing to the downstream preheating region (P
In Z), the casting belts (2) are not cooled, but the temperature of the casting belts (2) cooled in the upstream cooling zone (CZ) is increased by the heat of the slab (S).

【0017】本実施例では、上記構成の2つの連続鋳造
機を用いてAl合金鋳片の連続鋳造を行った。その鋳造条
件は〔表1〕に示す通りである。ここで、鋳型内におけ
る冷却領域(CZ)と予熱領域(PZ)の長さは伝熱計算により
求めて設定した。また、比較のために鋳型領域全域にわ
たって鋳造ベルトを冷却する従来の縦型および横型連続
鋳造機を用いて同じAl合金薄スラブの連続鋳造を行っ
た。そして、それら鋳造において、鋳造ベルトの変形量
の計測と、鋳型領域に進入する直前の鋳造ベルトの温度
の接触温度計による測定とを行うと共に、得られた鋳片
の表面性状を調べた。それらの結果を〔表2〕に示す。
In the present embodiment, the continuous casting of the Al alloy slab was carried out by using the two continuous casting machines having the above construction. The casting conditions are as shown in [Table 1]. Here, the lengths of the cooling zone (CZ) and the preheating zone (PZ) in the mold were determined by heat transfer calculation and set. For comparison, continuous casting of the same Al alloy thin slab was performed using conventional vertical and horizontal continuous casting machines that cool the casting belt over the entire casting area. Then, in these castings, the amount of deformation of the casting belt and the temperature of the casting belt immediately before entering the mold region were measured with a contact thermometer, and the surface properties of the obtained slab were examined. The results are shown in [Table 2].

【0018】[0018]

【表1】 [Table 1]

【0019】[0019]

【表2】 [Table 2]

【0020】〔表−2〕に示すように、鋳型領域に進入
する直前の鋳造ベルトの温度は、比較例では鋳型領域全
域で冷却するため、鋳造速度等の条件は同じでも、かな
り低温になっており、これに対して、本実施では縦型・
横型両方式とも 110℃程度まで予熱されることが確認さ
れた。また、鋳型内の予熱領域で鋳造ベルトを予熱する
本実施では、予熱を行わない比較例に比べてベルト変形
量は少なく、かつ得られた鋳片の表面性状も良好であっ
た。
As shown in [Table 2], in the comparative example, the temperature of the casting belt immediately before entering the casting mold region was cooled in the entire casting mold region, so that the temperature was considerably low even under the same conditions such as casting speed. In contrast, in this implementation, the vertical type
It was confirmed that both horizontal types were preheated to about 110 ℃. Further, in the present embodiment in which the casting belt was preheated in the preheating region in the mold, the belt deformation amount was smaller than that of the comparative example in which the preheating was not performed, and the surface quality of the obtained slab was good.

【0021】ここで、本発明方法を適用するに当たって
懸念されたのは、鋳型内の予熱領域で鋳片表面が再加熱
されることで起こる、いわゆる発汗による表面性状の悪
化であったが、本実施例で得られた鋳片の表面に発汗は
認められず、これにより、鋳型内での冷却領域と予熱領
域の長さを慎重かつ適切に選べば、該鋳型領域の下流側
で冷却を停止しても発汗は起こらないことが確認され
た。更に、本実施例で得られた鋳片の表面性状は、前述
の鋳型領域への進入直前の鋳造ベルトを赤外線ヒータで
予熱する従来技術によって得られた鋳片と比較しても、
なんら遜色がなく、しかも本実施例の使用冷却水量・消
費電力は、従来通りの冷却方式をとる上記比較例および
赤外線ヒータを用いる前述の従来技術による鋳造で使用
される量よりも格段に少なく済んだ。そして、これら結
果から、鋳型領域の下流側にて鋳片の熱によって鋳造ベ
ルトを予熱することで、特別の加熱機構やエネルギーを
付加することなく、鋳型領域に進入して溶融金属と接触
する際の温度を高めてベルト変形を抑制する本発明の優
れた効果を確認することができた。
Here, what was of concern when applying the method of the present invention was the deterioration of the surface property due to so-called perspiration, which is caused by the reheating of the surface of the slab in the preheating region in the mold. No perspiration was observed on the surface of the slabs obtained in the examples, so that if the lengths of the cooling region and the preheating region in the mold were carefully and appropriately selected, the cooling was stopped on the downstream side of the mold region. It was confirmed that sweating did not occur. Further, the surface texture of the slab obtained in this example, even compared to the slab obtained by the prior art of preheating the casting belt immediately before entering the mold region with an infrared heater,
There is no difference, and the amount of cooling water used and power consumption of this embodiment are much smaller than those used in the above-mentioned comparative example that uses the conventional cooling method and the above-mentioned conventional casting using the infrared heater. It is. Then, from these results, by preheating the casting belt by the heat of the slab on the downstream side of the mold region, without adding a special heating mechanism or energy, when entering the mold region and contacting the molten metal It was possible to confirm the excellent effect of the present invention for suppressing the belt deformation by increasing the temperature.

【0022】なお、上記実施例の連続鋳造機では、予熱
領域のバックアップローラとして、外周に多数の溝を周
設したロールを用いたが、このバックアップローラは溝
のない平ロールとされても良い。また、冷却領域での鋳
造ベルトの冷却手段として、冷却水噴射ノズルおよびフ
ィンロールを用いたが、これは1例であって、その鋳造
ベルトを裏面側から効果的に冷却できるものであれば、
例えば、内部に冷却水路を設けた冷却パットを用いて良
いことは言うまでもない。
In the continuous casting machine of the above embodiment, a roll having a large number of grooves on its outer circumference was used as the backup roller in the preheating region, but this backup roller may be a flat roll without grooves. . Further, as the cooling means for the casting belt in the cooling region, the cooling water jet nozzle and the fin roll are used, but this is an example, and if the casting belt can be effectively cooled from the back surface side,
For example, it goes without saying that a cooling pad having a cooling water channel inside may be used.

【0023】〔図3〕は本発明の第2実施例の縦型連続
鋳造機の概要構成を模式的に示す正断面図である。な
お、本実施例の縦型連続鋳造機は、鋳型内の冷却構成が
1部異なる点を除いて、〔図1〕に示した第1実施例の
縦型連続鋳造機と同じであるので、ここでは〔図1〕と
等価な各部に同符号を付してその説明を省略し、差異点
のみを要約して説明するものとする。
FIG. 3 is a front sectional view schematically showing a schematic configuration of a vertical continuous casting machine according to a second embodiment of the present invention. The vertical continuous casting machine of this embodiment is the same as the vertical continuous casting machine of the first embodiment shown in FIG. 1 except that the cooling structure in the mold is different by 1 part. Here, the same reference numerals are given to the respective parts equivalent to [FIG. 1], the description thereof will be omitted, and only the difference will be summarized and described.

【0024】〔図3〕に示す本実施例の横型連続鋳造機
では、鋳型内の冷却領域(CZ)と予熱領域(PZ)の間に選択
冷却領域(SZ)を設け、更に、この選択冷却領域(SZ)と予
熱領域(PZ)の間に鋳造ベルト(2) の温度を計測する温度
センサー(6) を配している。そして、鋳型内の上流側の
冷却領域(CZ)には、内部に冷却水路を設けた冷却パット
(7) を複数配しており、それら冷却パット(7) によって
該冷却領域(CZ)での鋳造ベルト(2) を裏面側から適宜時
点で冷却するものとされている。一方、その冷却領域(C
Z)に続く選択冷却領域(SZ)には、該冷却領域(CZ)の冷却
パット(7) とは独立した図示省略の制御系のもとで冷却
水の供給を受ける冷却パット(7')を複数配しており、そ
れら冷却パット(7')によって該選択冷却領域(SZ)での鋳
造ベルト(2) を裏面側から任意時点で冷却するものとさ
れている。更に、この選択冷却領域(SZ)の冷却パット
(7')の制御系は、温度センサー(6)に接続されており、
その温度センサー(6) の出力に従って該選択冷却領域(S
Z)の冷却パット(7')への冷却水供給の0N/0FFを制御する
ものとされている。
In the horizontal continuous casting machine of this embodiment shown in FIG. 3, a selective cooling zone (SZ) is provided between the cooling zone (CZ) and the preheating zone (PZ) in the mold, and this selective cooling is further conducted. A temperature sensor (6) for measuring the temperature of the casting belt (2) is arranged between the zone (SZ) and the preheating zone (PZ). Then, in the cooling zone (CZ) on the upstream side in the mold, a cooling pad having a cooling water passage inside is provided.
A plurality of (7) are arranged, and the casting pad (2) in the cooling zone (CZ) is cooled from the back surface side at an appropriate time by the cooling pads (7). On the other hand, its cooling area (C
In the selective cooling zone (SZ) following Z), the cooling pad (7 ') which receives the supply of the cooling water under the control system (not shown) independent of the cooling pad (7) of the cooling zone (CZ). Are arranged, and the casting belt (2) in the selective cooling area (SZ) is cooled from the back surface side at an arbitrary time by the cooling pads (7 ′). Furthermore, the cooling pad of this selective cooling area (SZ)
The control system of (7 ') is connected to the temperature sensor (6),
According to the output of the temperature sensor (6), the selective cooling area (S
It is supposed to control 0N / 0FF of the cooling water supply to the cooling pad (7 ') of Z).

【0025】〔図4〕は本発明の第3実施例の横型連続
鋳造機の概要構成を模式的に示す正断面図である。な
お、本実施例の縦型連続鋳造機は、鋳型内の冷却構成が
1部異なる点を除いて、〔図2〕示した第1実施例の横
型連続鋳造機と同じであるので、ここでは〔図1〕と等
価な各部に同符号を付してその説明を省略し、差異点の
みを要約して説明するものとする。
FIG. 4 is a front sectional view schematically showing a schematic configuration of a horizontal continuous casting machine according to a third embodiment of the present invention. The vertical continuous casting machine of this embodiment is the same as the horizontal continuous casting machine of the first embodiment shown in FIG. 2 except that the cooling structure in the mold is partly different. The same reference numerals are given to the respective parts equivalent to those in FIG. 1, and the description thereof will be omitted. Only the differences will be summarized and described.

【0026】〔図4〕に示す本実施例の横型連続鋳造機
では、鋳型内の冷却領域(CZ)と予熱領域(PZ)の間に選択
冷却領域(SZ)を設け、更に、この選択冷却領域(SZ)と予
熱領域(PZ)の間に鋳造ベルト(2) の温度を計測する温度
センサー(6) を配している。そして、上記第3実施例の
縦型連続鋳造機と同様に、鋳型内の上流側の冷却領域(C
Z)では、該冷却領域(CZ)での鋳造ベルト(2) を、その裏
面側に複数配した冷却パット(7) よって、常時冷却する
一方、続く選択冷却領域(SZ)では、その裏面側に複数配
され、かつ温度センサーの出力に従って冷却水供給の0N
/0FFを制御される冷却パット(7')によって任意時点で冷
却できるようにされている。
In the horizontal continuous casting machine of this embodiment shown in FIG. 4, a selective cooling zone (SZ) is provided between the cooling zone (CZ) and the preheating zone (PZ) in the mold, and further this selective cooling is performed. A temperature sensor (6) for measuring the temperature of the casting belt (2) is arranged between the zone (SZ) and the preheating zone (PZ). Then, as in the vertical continuous casting machine of the third embodiment, the upstream cooling region (C
In Z), the casting belt (2) in the cooling zone (CZ) is constantly cooled by a plurality of cooling pads (7) arranged on the back surface side, while in the subsequent selective cooling zone (SZ), the back surface side. 0N of cooling water supply according to the output of the temperature sensor
/ 0FF can be cooled at any time by a controlled cooling pad (7 ').

【0027】上記第2および第3実施例の縦型および横
型連続鋳造機では、前記第1実施例での連続鋳造と同様
に、下流側の予熱領域において鋳片の熱で鋳造ベルトを
予熱し、鋳型領域に進入して溶融金属と接触する際の該
鋳造ベルトの温度を高めてベルト変形を抑制できる。更
に、上流側の冷却領域では鋳造ベルトの冷却を常時行う
一方、続く選択冷却領域では鋳片の鋳造条件に応じて鋳
造ベルトの冷却・冷却停止を選択的に行うことで、すな
わち、鋳造速度を速めた時や大きなサイズの鋳片を鋳造
するときには冷却を行い、逆に鋳造速度を遅くした時や
小さなサイズの鋳片を鋳造するときには冷却を停止する
ことで、同一装置構成にて、それら鋳造条件の変更に容
易に対応して、安定した連続鋳造を行うことができる。
また、下流側の予熱領域に向かう鋳造ベルトの温度を計
測し、その測定値に基づいて選択冷却領域における冷却
の0N/0FFを制御することで、鋳片の冷却状態の変動に対
応して鋳造ベルトの冷却条件を自動的に調整し、より安
定した連続鋳造を行うことができ、また、これにより鋳
造速度や鋳片サイズ等の鋳造条件の変更にも容易に対応
できる。
In the vertical and horizontal continuous casting machines of the second and third embodiments, the casting belt is preheated by the heat of the slab in the downstream preheating region as in the continuous casting of the first embodiment. It is possible to suppress belt deformation by increasing the temperature of the casting belt when entering the mold region and coming into contact with the molten metal. Further, while the casting belt is always cooled in the upstream cooling area, the casting belt is cooled / stopped selectively in the subsequent selective cooling area according to the casting conditions of the slab, that is, the casting speed is increased. Cooling is performed when speeding up or casting a large size slab, and conversely, when cooling the casting speed slower or when casting a small size slab, the cooling is stopped. Stable continuous casting can be performed by easily adapting to changing conditions.
In addition, by measuring the temperature of the casting belt toward the preheating region on the downstream side and controlling 0N / 0FF of cooling in the selective cooling region based on the measured value, casting in response to fluctuations in the cooling state of the slab It is possible to automatically adjust the belt cooling conditions to perform more stable continuous casting, and to easily change casting conditions such as casting speed and slab size.

【0028】なお、上記第3および第4実施例の縦型お
よび横型連続鋳造機では、冷却領域および選択冷却領域
での鋳造ベルトの冷却手段として、内部に冷却水路を設
けた冷却パットを用いたが、これは1例であって、その
鋳造ベルトを裏面側から効果的に冷却できるものであれ
ば、例えば、前記第1実施例例での縦型および横型連続
鋳造機と同様の冷却水噴射ノズルおよびフィンロールを
用いて良いことは言うまでもない。
In the vertical and horizontal continuous casting machines of the third and fourth embodiments, a cooling pad having a cooling water passage therein is used as a cooling means for the casting belt in the cooling area and the selective cooling area. However, this is an example, and if the casting belt can be effectively cooled from the back surface side, for example, cooling water injection similar to that of the vertical and horizontal continuous casting machines in the first embodiment can be performed. It goes without saying that nozzles and fin rolls may be used.

【0029】[0029]

【発明の効果】以上に述べたように、本発明に係るベル
ト式連続鋳造方法によれば、鋳型領域での鋳造後に上流
側に回動して再び鋳型領域に進入する対の鋳造ベルト
を、特別の加熱機構やエネルギーを付加することなく、
効率良く予熱して溶融金属と接触する際の温度を高めて
ベルト変形を抑制でき、よって鋳片の品質の安定化を経
済的に達成できる。
As described above, according to the belt type continuous casting method according to the present invention, a pair of casting belts that rotate to the upstream side after casting in the casting mold region and enter the casting mold region again, Without adding special heating mechanism or energy,
It is possible to suppress the belt deformation by efficiently preheating and increasing the temperature at the time of contact with the molten metal, so that the quality of the cast piece can be stabilized economically.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施例に用いた縦型連続鋳造機の
概要構成を模式的に示す正断面図である。
FIG. 1 is a front sectional view schematically showing a schematic configuration of a vertical continuous casting machine used in a first embodiment of the present invention.

【図2】本発明の第1実施例に用いた別の横型連続鋳造
機の概要構成を模式的に示す正断面図である。
FIG. 2 is a front sectional view schematically showing a schematic configuration of another horizontal continuous casting machine used in the first embodiment of the present invention.

【図3】本発明の第2実施例の縦型連続鋳造機の概要構
成を模式的に示す正断面図である。
FIG. 3 is a front sectional view schematically showing a schematic configuration of a vertical continuous casting machine according to a second embodiment of the present invention.

【図4】本発明の第3実施例の横型連続鋳造機の概要構
成を模式的に示す正断面図である。
FIG. 4 is a front sectional view schematically showing a schematic configuration of a horizontal continuous casting machine according to a third embodiment of the present invention.

【図5】従来のベルト式連続鋳造機の概要構成を模式的
に示す正断面面である。
FIG. 5 is a front sectional view schematically showing a schematic configuration of a conventional belt type continuous casting machine.

【符号の説明】[Explanation of symbols]

(1) --プーリー、(2) --鋳造ベルト、(3) --冷却水噴射
ノズル、(4) --フィンロール、(5) --バックアップロー
ル、(6) --温度センサー、(7) --冷却パット、(7')--冷
却パット、(10)--タンディシュ、(10a) --浸漬ノズル、
(11)--タンディシュ、(11a) --浸漬ノズル、(CZ)--冷却
領域、(PZ)--予熱領域、(SZ)--選択冷却領域、(M) --溶
融金属、(S) --鋳片。
(1) --Pulley, (2) --Casting belt, (3) --Cooling water injection nozzle, (4) --Fin roll, (5) --Backup roll, (6) --Temperature sensor, ( 7)-Cooling pad, (7 ')-Cooling pad, (10)-Tundish, (10a)-Immersion nozzle,
(11)-Tundish, (11a)-immersion nozzle, (CZ)-cooling zone, (PZ)-preheat zone, (SZ)-selective cooling zone, (M)-molten metal, (S ) --Slab.

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B22D 11/22 B22D 11/22 A Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location B22D 11/22 B22D 11/22 A

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 対向して平行に配され、かつ相互の対向
面が同方向に移動するようにエンドレスに回動する対の
鋳造ベルトと、この対の鋳造ベルトの対向部両側に配さ
れて該鋳造ベルトと同調して移動する対のサイドダムと
によって形成される鋳型内に、前記対の鋳造ベルトの移
動方向に対する上流側端部から溶融金属を供給し、移動
する対の鋳造ベルトの対向面と接触させる一方、それら
鋳造ベルトを裏面側から冷却して、該溶融金属を移動過
程で順次凝固させて薄板状の鋳片を連続的に作り出すベ
ルト式連続鋳造方法において、前記鋳型内を上流側の冷
却領域と下流側の予熱領域とに分け、その冷却領域では
鋳造ベルトの冷却を行う一方、予熱領域では鋳造ベルト
の冷却は行わず、バックアップロールを用いて対の鋳造
ベルトそれぞれを鋳片に押し付けて該鋳片の熱で加熱
し、該予熱領域で対の鋳造ベルトの温度を高めることを
特徴とするベルト式連続鋳造方法。
1. A pair of casting belts, which are opposed to each other in parallel and rotate endlessly so that mutually opposing surfaces move in the same direction. In the mold formed by the casting belt and a pair of side dams that move in synchronization with each other, molten metal is supplied from an upstream end in the moving direction of the pair of casting belts, and the facing surfaces of the pair of casting belts move. In the belt-type continuous casting method, in which the casting belt is cooled from the back side, and the molten metal is sequentially solidified in the moving process to continuously produce thin plate-shaped slabs while being brought into contact with It is divided into a cooling region and a preheating region on the downstream side, and the casting belt is cooled in the cooling region, while the casting belt is not cooled in the preheating region, and each pair of casting belts is cast using a backup roll. A belt-type continuous casting method, which comprises pressing against a piece to heat it with the heat of the slab to raise the temperature of a pair of casting belts in the preheating region.
【請求項2】 前記鋳型内の冷却領域と予熱領域との間
に、該冷却領域とは独立して鋳造ベルトの冷却および冷
却停止できる選択冷却領域を設け、その冷却領域では鋳
造ベルトの冷却を常時行う一方、選択冷却領域では鋳片
の鋳造条件に応じて鋳造ベルトの冷却および冷却停止を
選択的に行う請求項1記載のベルト式連続鋳造方法。
2. A selective cooling region capable of cooling and stopping the cooling of the casting belt independently of the cooling region is provided between the cooling region and the preheating region in the mold, and the casting belt is cooled in the cooling region. The belt-type continuous casting method according to claim 1, wherein the casting belt is selectively cooled and stopped in accordance with the casting conditions of the slab in the selective cooling region while the cooling is continuously performed.
【請求項3】 前記選択冷却領域と予熱領域との間に対
の鋳造ベルトの温度を計測する温度センサーを配し、該
温度センサーの出力に従って前記選択冷却領域における
冷却の0N/0FFを制御する請求項2記載のベルト式連続鋳
造方法。
3. A temperature sensor for measuring the temperature of a pair of casting belts is arranged between the selective cooling region and the preheating region, and 0N / 0FF of cooling in the selective cooling region is controlled according to the output of the temperature sensor. The belt type continuous casting method according to claim 2.
JP750296A 1996-01-19 1996-01-19 Belt type continuous casting method Withdrawn JPH09192789A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP750296A JPH09192789A (en) 1996-01-19 1996-01-19 Belt type continuous casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP750296A JPH09192789A (en) 1996-01-19 1996-01-19 Belt type continuous casting method

Publications (1)

Publication Number Publication Date
JPH09192789A true JPH09192789A (en) 1997-07-29

Family

ID=11667566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP750296A Withdrawn JPH09192789A (en) 1996-01-19 1996-01-19 Belt type continuous casting method

Country Status (1)

Country Link
JP (1) JPH09192789A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013178478A1 (en) * 2012-06-01 2013-12-05 Sms Siemag Ag Method for operating a conveyor belt of a strip casting system, and strip casting system
JP2014530763A (en) * 2012-03-22 2014-11-20 ノベリス・インコーポレイテッドNovelis Inc. Method and apparatus for casting metal slabs

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014530763A (en) * 2012-03-22 2014-11-20 ノベリス・インコーポレイテッドNovelis Inc. Method and apparatus for casting metal slabs
WO2013178478A1 (en) * 2012-06-01 2013-12-05 Sms Siemag Ag Method for operating a conveyor belt of a strip casting system, and strip casting system

Similar Documents

Publication Publication Date Title
US3937270A (en) Twin-belt continuous casting method providing control of the temperature operating conditions at the casting belts
US4002197A (en) Continuous casting apparatus wherein the temperature of the flexible casting belts in twin-belt machines is controllably elevated prior to contact with the molten metal
KR100357356B1 (en) Twin belt casting method and device
US4062235A (en) Twin-belt continuous casting wherein the belts are sensed by mechanical probes
JP2003062647A (en) Direct rolling method for continuous cast steel piece
JPH09192789A (en) Belt type continuous casting method
KR100406381B1 (en) Apparatus for supplying the shieding gas to cooling roll in twin roll strip casting machine
JPH0839222A (en) Apparatus for uniformizing temperature in width direction of cast slab in twin roll continuous caster
KR102538557B1 (en) Short belt side dam for twin belt casting machine
JP3314036B2 (en) Continuous casting method and continuous casting device
JPS61176448A (en) Method and device for controlling fluctuation of thermal stress of casting mold in continuous casting machine
JPH01104449A (en) Belt type continuous casting method preventing belt deformation
JPH0424139B2 (en)
JPS63192539A (en) Method and apparatus for continuously casting metal strip
JPH01181950A (en) Backup roll for belt in strip continuous caster
JPH05293602A (en) Device and method for continuously casting thin metallic sheet
JPH0515404Y2 (en)
JPS63286249A (en) Belt supporting device in metal strip continuous casting machine
KR20130072700A (en) Method for controlling surface propery of strip in twin roll strip casting process
CA1090528A (en) Cooling apparatus for twin-belt casting machine
JPH03114633A (en) Belt type continuous casting method
JPH07276006A (en) Twin belt type continuous casting method
JPH01237055A (en) Method for continuously casting strip
JPH05261423A (en) Method for quick-cooling hot rolled steel plate
JPH02211946A (en) Apparatus for continuously casting metal strip

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030401