JPH09189586A - Orifice-type flow rate-measuring apparatus - Google Patents

Orifice-type flow rate-measuring apparatus

Info

Publication number
JPH09189586A
JPH09189586A JP247496A JP247496A JPH09189586A JP H09189586 A JPH09189586 A JP H09189586A JP 247496 A JP247496 A JP 247496A JP 247496 A JP247496 A JP 247496A JP H09189586 A JPH09189586 A JP H09189586A
Authority
JP
Japan
Prior art keywords
orifice
flow rate
differential pressure
pipe
hole diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP247496A
Other languages
Japanese (ja)
Inventor
Hozumi Akita
穂積 秋田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP247496A priority Critical patent/JPH09189586A/en
Publication of JPH09189586A publication Critical patent/JPH09189586A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To reduce costs and measure a flow rate highly accurately by using a low flow rate orifice of a small diameter and a high flow rate orifice of a large diameter thereby measuring the flow rate in a wide range. SOLUTION: Normally, a differential pressure transmitter 18 measures a flow rate differential pressure by a low flow rate orifice 12 or a high flow rate orifice 13 via either of orifice switch valves 16 and 17. A valve-switching control means 19 suitably selects and connects the orifice 12, 13 to the transmitter 18 in accordance with an output of the transmitter 18. An optimum differential pressure can thus be taken irrespective of whether the flow rate is large or small. The flow rate can be measured highly accurately with the use of one differential pressure transmitter 18. Particularly, orifices 12, 13 are inexpensive in comparison with the differential pressure transmitter 18, and therefore costs can be remarkably reduced if a count of objects to be measured in increased.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、オリフィスを用い
て液体,気体等の流体の流量を測定するオリフィス式流
量測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an orifice type flow rate measuring device for measuring the flow rate of a fluid such as liquid or gas using an orifice.

【0002】[0002]

【従来の技術】オリフィス式流量測定装置は、配管に設
置されるオリフィスの両側からそれぞれ導圧管を介して
差圧計または差圧伝送器に導き、この差圧計または差圧
伝送器で測定される差圧から流量を測定する構成であ
る。
2. Description of the Related Art An orifice type flow rate measuring apparatus introduces a differential pressure gauge or a differential pressure transmitter from both sides of an orifice installed in a pipe through a pressure guiding pipe, and a differential pressure measured by the differential pressure gauge or the differential pressure transmitter. This is a configuration for measuring the flow rate from the pressure.

【0003】ところで、オリフィスを用いて流体の流量
を測定する場合、配管の一部を絞るために乱流が発生
し、そのために測定精度が数%と言われている。その結
果、高精度な測定が要求される場合、利用不可となる
か、或いは特殊な補正演算を施すか、または測定範囲の
異なる2台の差圧伝送器を設置し、配管内の流量状態に
応じて切替えて測定する必要があった。
By the way, when the flow rate of a fluid is measured using an orifice, a turbulent flow occurs because a part of the piping is throttled, and it is said that the measurement accuracy is several percent. As a result, when high-precision measurement is required, it cannot be used, or special correction calculation is performed, or two differential pressure transmitters with different measurement ranges are installed and the flow rate in the pipe is adjusted. It was necessary to switch and measure accordingly.

【0004】図6は従来技術であるスプリットレンジに
よる流量測定法を説明する図である。この測定法は、配
管1の所定箇所にオリフィス2を設置し、このオリフィ
ス2で流体を絞ったとき、ベルヌーイの方程式からオリ
フィス2の両側に次のような差圧が発生する。
FIG. 6 is a diagram for explaining a conventional flow rate measuring method using a split range. In this measuring method, when an orifice 2 is installed at a predetermined position of the pipe 1 and the fluid is throttled by the orifice 2, the following differential pressure is generated on both sides of the orifice 2 from Bernoulli's equation.

【0005】 F=α(△P)1/2 …… (1) 但し、F:流量、△P:オリフィス両側の差圧、α:オ
リフィス定数である。なお、オリフィス定数は、厳密に
は一定でなく、定流量域で増加することが知られてい
る。
F = α (ΔP) 1/2 (1) where F is the flow rate, ΔP is the differential pressure across the orifice, and α is the orifice constant. It is known that the orifice constant is not strictly constant and increases in the constant flow rate region.

【0006】しかしながら、オリフィス両側の差圧を1
台の差圧伝送器で測定したとき、流量測定範囲が非常に
広くなることから、特に低流量の測定時に誤差が増大す
る。そこで、オリフィス2の両側の差圧を測定するため
に、図6に示すように、高流量用差圧伝送器3および低
流量用差圧伝送器4を設置し、常時は切替ロジック5が
高流量用差圧伝送器3の出力から流量状態を判断し、低
流量時には切替スイッチ6を介して低流量用差圧伝送器
4側に切替えて使用している。7は前記オリフィス定数
αを補正するオリフィス補正演算手段、8は開平演算手
段である。
However, the differential pressure on both sides of the orifice is set to 1
When measuring with the differential pressure transmitter of the table, the flow rate measurement range becomes very wide, so that the error increases especially when measuring a low flow rate. Therefore, in order to measure the differential pressure on both sides of the orifice 2, as shown in FIG. 6, a high flow differential pressure transmitter 3 and a low flow differential pressure transmitter 4 are installed, and the switching logic 5 is normally set to high. The flow rate state is judged from the output of the differential pressure transmitter for flow rate 3, and when the flow rate is low, it is switched to the low pressure differential pressure transmitter 4 side through the changeover switch 6 for use. Reference numeral 7 is an orifice correction calculation means for correcting the orifice constant α, and 8 is a square root calculation means.

【0007】従って、このようなオリフィス式流量測定
装置では、高差圧用伝送器3と低差圧用伝送器4とを設
けたことから、低流量域から高流量域まで流量を精度良
く測定できる。
Therefore, in such an orifice type flow rate measuring device, since the high differential pressure transmitter 3 and the low differential pressure transmitter 4 are provided, the flow rate can be accurately measured from the low flow rate region to the high flow rate region.

【0008】[0008]

【発明が解決しようとする課題】従って、以上のような
オリフィス式流量測定装置は、新たに低流量用の差圧伝
送器4を1台追加したので、低流量域でも流量を高精度
に測定できるが、高価な2台の差圧伝送器が必要であ
り、プラントに対する測定対象数が増えてくると、非常
にコストが高くなる。
Therefore, in the above-mentioned orifice type flow rate measuring device, since one differential pressure transmitter 4 for low flow rate is newly added, the flow rate can be accurately measured even in the low flow rate region. However, two expensive differential pressure transmitters are required, and the cost becomes very high as the number of measurement targets for the plant increases.

【0009】請求項1に記載される発明は、複数のオリ
フィスを用いて、コストの低減化および流量を高精度に
測定するオリフィス式流量測定装置を提供することにあ
る。請求項2に記載される発明は、複数のオリフィスを
用いた時に生ずる永久圧損を低減化するオリフィス式流
量測定装置を提供することにある。請求項3に記載され
る発明は、より高精度に流量を測定可能とするオリフィ
ス式流量測定装置を提供することにある。
The invention described in claim 1 is to provide an orifice type flow rate measuring device which uses a plurality of orifices to reduce the cost and to measure the flow rate with high accuracy. The invention described in claim 2 is to provide an orifice type flow measuring device for reducing permanent pressure loss that occurs when a plurality of orifices are used. The invention described in claim 3 is to provide an orifice type flow rate measuring device capable of measuring a flow rate with higher accuracy.

【0010】[0010]

【課題を解決するための手段】上記課題を解決するため
に、請求項1に対応する発明は、配管に所要の距離を隔
てて設置された小穴径の低流量用オリフィスおよび大穴
径の高流量用オリフィスと、これら各オリフィスを挟ん
で配管上流側と配管下流側との間にそれぞれ設けられた
3ポートのオリフィス切替弁と、これら各オリフィス切
替弁の残りのポート側に設けられ、オリフィス切替弁の
開時に前記オリフィスによって発生する差圧を測定する
差圧測定手段と、この差圧測定手段の測定出力から前記
配管内の流量範囲を判定し、この判定結果に応じて前記
複数のオリフィス切替弁を選択的に開とし、当該開時の
オリフィス切替弁を介して得られる差圧を前記差圧測定
手段に導入可能とする弁切替制御手段とを設けたオリフ
ィス式流量測定装置である。
In order to solve the above problems, the invention according to claim 1 is directed to a low flow rate orifice having a small hole diameter and a high flow rate having a large hole diameter, which are installed in a pipe at a required distance. Orifices, a three-port orifice switching valve provided between the upstream side and the downstream side of the piping with these orifices in between, and an orifice switching valve provided at the remaining port side of each of these orifice switching valves. Differential pressure measuring means for measuring the differential pressure generated by the orifice when the valve is opened, and the flow rate range in the pipe is determined from the measurement output of the differential pressure measuring means, and the plurality of orifice switching valves are determined according to the determination result. And a valve switching control means capable of introducing the differential pressure obtained through the orifice switching valve at the time of opening to the differential pressure measuring means. It is.

【0011】この請求項1に対応する発明は、以上のよ
うな手段を講じたことにより、差圧測定手段の測定出力
から配管内の流量が低流量域にあるとき、弁切替制御手
段が低流量用オリフィス側に接続されるオリフィス切替
弁を開とし、一方、流量が高流量域にあるとき、弁切替
制御手段が高流量用オリフィス側に接続されるオリフィ
ス切替弁を開とするので、流量の大小に応じて低流量用
オリフィスと高流量用オリフィスとを適宜に使い分けで
き、従来のように2台の差圧伝送器を用いたものと比較
して、コストを大幅に低減化でき、また流量を高精度に
測定できる。
According to the invention corresponding to claim 1, by taking the above means, when the flow rate in the pipe from the measurement output of the differential pressure measuring means is in the low flow rate range, the valve switching control means is low. When the flow rate is in the high flow rate range, the valve switching control means opens the orifice changeover valve connected to the high flow rate orifice side so that the flow rate of the flow rate is increased. It is possible to properly use the low flow rate orifice and the high flow rate orifice depending on the size of, and it is possible to significantly reduce the cost as compared with the conventional one using two differential pressure transmitters. The flow rate can be measured with high accuracy.

【0012】次に、請求項2に対応する発明は、配管に
所要の距離を隔てて小穴径の低流量用オリフィスおよび
大穴径の高流量用オリフィスを設置し、前記配管内の流
量範囲に応じて、一方のオリフィスを流体の流れに逆ら
う方向に回転させ、他方のオリフィスを流体の流れ方向
に回転させるオリフィス式流量測定装置である。
Next, the invention according to claim 2 is to install a low flow rate orifice having a small hole diameter and a high flow rate orifice having a large hole diameter at a required distance in the pipe, depending on the flow rate range in the pipe. Thus, one orifice is rotated in a direction against the flow of fluid, and the other orifice is rotated in the direction of fluid flow.

【0013】請求項2に対応する発明は、以上のような
手段を講じたことにより、使用されていないオリフィス
を流体の流れ方向に回転設定するので、2個のオリフィ
スを直列に設置しても、1個のオリフィスの場合と同等
の永久圧損となり、永久圧損の大幅な低減化を実現でき
る。
In the invention corresponding to claim 2, since the unused orifices are set to rotate in the fluid flow direction by taking the above-mentioned means, even if two orifices are installed in series. The permanent pressure loss is the same as in the case of one orifice, and the permanent pressure loss can be significantly reduced.

【0014】さらに、請求項3に対応する発明は、配管
内に穴径絞り機構を有するオリフィスを設置し、前記配
管内の流量範囲に応じて、穴径絞り機構の絞りを制御
し、前記オリフィスの穴径を可変するオリフィス式流量
測定装置である。
Further, in the invention according to claim 3, an orifice having a hole diameter reducing mechanism is installed in the pipe, and the orifice of the hole diameter reducing mechanism is controlled according to the flow rate range in the pipe, and the orifice is provided. It is an orifice type flow rate measuring device that can change the hole diameter.

【0015】このような手段を講じたことにより、配管
に1個のオリフィスを設けても、流量状態に応じてオリ
フィスの穴径を適宜に可変でき、低流量域から高流量域
まで広い流量範囲にわたって高精度に流量を測定でき
る。
By taking such means, even if one orifice is provided in the pipe, the hole diameter of the orifice can be appropriately changed according to the flow rate state, and a wide flow rate range from a low flow rate range to a high flow rate range can be obtained. The flow rate can be measured with high accuracy.

【0016】[0016]

【発明の実施の形態】以下、本発明の実施形態について
図面を参照して説明する。 (第1の実施形態)図1は本発明に係わるオリフィス式
流量測定装置の一実施形態を示す構成図である。この実
施形態は、複数個のオリフィスを用いて流量を精度良く
測定することにある。
Embodiments of the present invention will be described below with reference to the drawings. (First Embodiment) FIG. 1 is a block diagram showing an embodiment of an orifice type flow rate measuring device according to the present invention. This embodiment is to measure the flow rate accurately by using a plurality of orifices.

【0017】この測定装置は、具体的には、配管11に
所要の距離を隔てて小さな穴径のオリフィス12と大き
な穴径のオリフィス13とが直列に設置されている。一
般に、オリフィスの穴口径は、流体条件によって決定さ
れるが、流量の大小と相関をもっていることから、異な
る穴径の2つのオリフィス12,13を設置し、低流量
域の場合には低流量用オリフィス12を用い、高流量域
の場合には高流量用オリフィス13を使用する。
In this measuring apparatus, specifically, an orifice 12 having a small hole diameter and an orifice 13 having a large hole diameter are installed in series in a pipe 11 at a required distance. Generally, the hole diameter of an orifice is determined by the fluid conditions, but since it has a correlation with the magnitude of the flow rate, two orifices 12 and 13 with different hole diameters are installed, and in the case of a low flow rate range The orifice 12 is used, and in the case of a high flow rate region, the high flow rate orifice 13 is used.

【0018】これら低流量用オリフィス12および高流
量用オリフィス13には、それぞれ個別に導圧管14,
15を介してオリフィス切替弁16,17が取り付けら
れてる。これら2つのオリフィス切替弁16,17に対
して共通に差圧伝送器18が設けられている。19は弁
切替制御手段であって、これは差圧伝送器18の出力と
予めメモリ20に規定される測定流量範囲とを比較し、
差圧伝送器18の出力が低流量域の場合には低流量用オ
リフィス12を差圧伝送器18に接続し、高流量域の場
合には高流量用オリフィス13を差圧伝送器18に接続
する機能をもっている。21は差圧伝送器18の出力を
開平演算する開平演算手段である。
The low flow rate orifice 12 and the high flow rate orifice 13 are individually provided with pressure guiding pipes 14,
Orifice switching valves 16 and 17 are attached via 15. A differential pressure transmitter 18 is provided in common for these two orifice switching valves 16 and 17. Reference numeral 19 is a valve switching control means, which compares the output of the differential pressure transmitter 18 with a measured flow rate range defined in advance in the memory 20,
When the output of the differential pressure transmitter 18 is in the low flow rate range, the low flow rate orifice 12 is connected to the differential pressure transmitter 18, and when the output is in the high flow rate range, the high flow rate orifice 13 is connected to the differential pressure transmitter 18. It has a function to do. Reference numeral 21 is a square root calculating means for square root calculating the output of the differential pressure transmitter 18.

【0019】次に、以上のように構成された第1の実施
形態の動作について説明する。常時は、差圧伝送器18
が何れかのオリフィス切替弁16または17を介してオ
リフィス12または13による流量差圧を測定してい
る。このとき、差圧伝送器18の出力から弁切替制御手
段19が低流量域であると判断し、かつ、現在高流量用
オリフィス13が差圧伝送器18に接続されている場
合、低流量用オリフィス12の両側を結ぶ導圧管14に
設置されているオリフィス切替弁16を差圧伝送器18
に接続し、低流量時の流体の流量を測定する。
Next, the operation of the first embodiment configured as described above will be described. Normally, the differential pressure transmitter 18
Measures the flow rate differential pressure by the orifice 12 or 13 via any of the orifice switching valves 16 or 17. At this time, if the valve switching control means 19 determines from the output of the differential pressure transmitter 18 that the flow rate is in the low flow rate region, and the high flow rate orifice 13 is currently connected to the differential pressure transmitter 18, the low flow rate control device 19 is used. The differential pressure transmitter 18 is provided with an orifice switching valve 16 installed in a pressure guiding pipe 14 connecting both sides of the orifice 12.
And measure the flow rate of the fluid at low flow rates.

【0020】一方、差圧伝送器18の出力から弁切替制
御手段19が高流量域であると判断し、かつ、現在低流
量用オリフィス12が差圧伝送器18に接続されている
場合、高流量用オリフィス13の両側を結ぶ導圧管15
に設置されているオリフィス切替弁17を差圧伝送器1
8に接続し、高流量時の流体の流量を測定する。
On the other hand, when it is judged from the output of the differential pressure transmitter 18 that the valve switching control means 19 is in the high flow rate region, and the low flow rate orifice 12 is currently connected to the differential pressure transmitter 18, it is high. Pressure guiding pipe 15 connecting both sides of the flow rate orifice 13
Orifice switching valve 17 installed in the differential pressure transmitter 1
8 and measure the flow rate of the fluid at high flow rate.

【0021】従って、以上のような実施形態によれば、
差圧伝送器18の出力に応じて弁切替制御手段19がオ
リフィス12,13を適宜選択し、差圧伝送器18に接
続して流量を測定するので、流量の大小に拘らず、最適
な差圧を取り込むことができ、1台の差圧伝送器18を
用いて流量を高精度に測定できる。特に、オリフィス1
2,13の価格は差圧伝送器に比べて安価であるので、
測定対象数が増加したとき、従来と比較してコストを大
幅に削減できる。 (第2の実施形態)図2は本発明に係わるオリフィス式
流量測定装置の他の実施形態を説明する図である。
Therefore, according to the above embodiment,
The valve switching control means 19 appropriately selects the orifices 12 and 13 according to the output of the differential pressure transmitter 18 and connects to the differential pressure transmitter 18 to measure the flow rate, so that the optimum difference is obtained regardless of the magnitude of the flow rate. The pressure can be taken in, and the flow rate can be measured with high accuracy using one differential pressure transmitter 18. In particular, the orifice 1
Since the prices of 2 and 13 are cheaper than the differential pressure transmitter,
When the number of measurement targets increases, the cost can be significantly reduced compared to the conventional method. (Second Embodiment) FIG. 2 is a view for explaining another embodiment of the orifice type flow rate measuring device according to the present invention.

【0022】この実施形態は、2個のオリフィス12,
13を直列に設置したとき、これらオリフィス12,1
3の永久圧損が加算され、配管全体の永久圧損が大きく
なるので、かかる永久圧損を低減化することにある。
In this embodiment, two orifices 12,
When installing 13 in series, these orifices 12, 1
Since the permanent pressure loss of No. 3 is added to increase the permanent pressure loss of the entire pipe, the permanent pressure loss is to be reduced.

【0023】この永久損失の低減化方法は、図2に示す
ごとく2つのオリフィス12,13に回転機構を設け、
これら2つのオリフィス12,13のうち、使用されて
いない側のオリフィス例えば13を回転させ、流体の流
れ方向にそうように設定して永久損失を零とし、1個の
オリフィスと同様の永久損失まで低減化する。
In this permanent loss reduction method, as shown in FIG. 2, two orifices 12 and 13 are provided with rotating mechanisms,
Of these two orifices 12, 13, the orifice on the unused side, for example 13, is rotated and set in the direction of fluid flow so that the permanent loss is zero, and the permanent loss is the same as that of one orifice. Reduce.

【0024】構成的には、例えば図3に示すように各オ
リフィス12,13にそれぞれ回転可能とするための回
転軸31,32が配管11を貫通して突設され、これら
回転軸31,32の突端部に円板状の回転体33,34
が取り付けられている。また、各回転体33,34の回
転軸側とは反対側面の中心位置からずらして所定位置に
突起体35,36が固定され、これら突起体35,36
にそれぞれアーム37,38の一端部が遊動可能に係合
されている。
Constitutionally, for example, as shown in FIG. 3, rotary shafts 31 and 32 for allowing rotation to the respective orifices 12 and 13 are provided so as to penetrate the pipe 11 so as to project therefrom. Disc-shaped rotating bodies 33, 34
Is attached. Further, the protrusions 35, 36 are fixed at predetermined positions by being displaced from the center positions of the side surfaces of the rotating bodies 33, 34 opposite to the rotation shaft side.
One ends of arms 37 and 38 are movably engaged with each other.

【0025】39は弁切替制御手段19からの切替指示
に従って所定角度だけ正転・逆転動作を繰り返す回転駆
動源であって、この回転駆動源39の回転軸には変形カ
ム40が取り付けられ、この変形カム40の互いに相反
する部位に前記アーム37,38の他端部が係合されて
いる。
Reference numeral 39 denotes a rotary drive source that repeats forward / reverse operation by a predetermined angle in accordance with a switching instruction from the valve switching control means 19. A rotary cam of the rotary drive source 39 is provided with a deformable cam 40. The other ends of the arms 37 and 38 are engaged with mutually opposite portions of the deformable cam 40.

【0026】従って、このような構成の実施形態によれ
ば、図3に示す位置関係において差圧伝送器18の出力
から弁切替制御手段19が低流量域であると判断したと
き、弁切替制御手段19から低流量用オリフィス12を
流量測定位置に設定するための指示を出力する。この指
示を受けた回転駆動源39は、変形カム40を90度回
転させると、各アーム37,38が変形カム40面にそ
って進退移動し、回転体33,34をそれぞれ90度回
転させるので、低流量用オリフィス12は流体の流れに
逆らうように設定され、一方、高流量用オリフィス13
は流体の流れの方向に設定され、高流量用オリフィス1
3による永久損失をほぼ零とすることができる。よっ
て、2個のオリフィス12,13を用いても、実質的に
従来と同様に1個のオリフィスの場合と同様に扱うこと
ができ、永久圧損を大幅に低減化することができる。 (第3の実施形態)この第3の実施形態は、1個のオリ
フィスを設置し、当該オリフィスの穴径を任意に可変す
ることにより、低流量域から高流量域まで広流量範囲に
わたって流量を精度良く測定することにある。
Therefore, according to the embodiment having such a configuration, when the valve switching control means 19 determines from the output of the differential pressure transmitter 18 in the positional relationship shown in FIG. 3, the valve switching control is performed. The means 19 outputs an instruction for setting the low flow rate orifice 12 at the flow rate measurement position. Upon receiving this instruction, when the deforming cam 40 is rotated by 90 degrees, the rotary drive source 39 causes the arms 37 and 38 to move back and forth along the surface of the deforming cam 40, thereby rotating the rotating bodies 33 and 34 by 90 degrees. , The low flow rate orifice 12 is set to oppose the flow of fluid, while the high flow rate orifice 13
Is set in the direction of fluid flow, and high flow rate orifice 1
The permanent loss due to 3 can be almost zero. Therefore, even if the two orifices 12 and 13 are used, they can be handled substantially as in the case of one orifice as in the conventional case, and the permanent pressure loss can be greatly reduced. (Third Embodiment) In the third embodiment, by installing one orifice and arbitrarily changing the hole diameter of the orifice, the flow rate can be varied over a wide flow range from a low flow range to a high flow range. It is to measure accurately.

【0027】このようにオリフィスの穴径を可変する理
由は、オリフィスの測定可能範囲,すなわちレンジャビ
リテイが通常,1対3程度であり、一方、差圧伝送器の
レンジャビリテイは、最近の技術進歩に伴なって1対1
0或いは1対50程度まで拡大してきている。従って、
これら機器のレンジャビリテイを考えると、オリフィス
がボトルネックとなり、流量測定範囲が大きく制限され
てくるので、オリフィスの穴径を可変することにより柔
軟に流量測定範囲を拡張することにある。
The reason for changing the hole diameter of the orifice in this way is that the measurable range of the orifice, that is, the rangeability is usually about 1: 3, while the rangeability of the differential pressure transmitter is the latest. One-to-one with technological progress
It is expanding to 0 or 1:50. Therefore,
Considering the rangeability of these devices, the orifice becomes a bottleneck and the flow rate measuring range is greatly limited. Therefore, the flow rate measuring range is flexibly expanded by changing the hole diameter of the orifice.

【0028】図4は配管11に設置されるオリフィスの
構成を示す図である。すなわち、このオリフィスは、配
管11の外側ほぼ等間隔の3方向から配管内部の中心部
に向けて所定長さのエッジ支持部材41,…が配置さ
れ、これらエッジ支持部材41に対して横断するように
異なる径の複数のリング状のオリフィスエッジ部42,
…が取り付けている。そして、オリフィスエッジ部4
2,…と反対面側に位置して前記配管11内に穴径絞り
機構43が設けられている。
FIG. 4 is a view showing the structure of the orifice installed in the pipe 11. That is, in this orifice, edge support members 41, ... With a predetermined length are arranged from the three directions at substantially equal intervals on the outside of the pipe 11 toward the center of the inside of the pipe. A plurality of ring-shaped orifice edge portions 42 having different diameters,
... is attached. And the orifice edge portion 4
A hole diameter reducing mechanism 43 is provided in the pipe 11 on the side opposite to 2 ,.

【0029】この穴径絞り機構43は、図5に示すよう
に流体流通配管11の中心軸上にカム46、絞り部47
および固定台48が配置されている。カム46は、全体
が環状をなし中央部分に開口部461が形成され、開口
部461の周囲に複数の穴462が放射状に形成されて
いる。前記絞り部47は、図示するごとく複数枚の絞り
板471,…からなり、これら絞り板471,…の一端
部にカム46の各穴462に挿入される係合片472を
それぞれ有し、他端部の固定台48側の面に固定台48
の後述する穴481,…に回動自在に挿入される軸47
3(同図b参照)が設けられている。これら複数枚の絞
り板471,…は、各絞り板471の一方の面を隣接す
る絞り板471の他方の面に重ねるように組み合わされ
ている。固定台48は、中央部分に開口部482が形成
され、その周囲に前記複数の絞り板471,…の対応す
る軸472が回動自在に挿入される穴481が形成され
ている。
As shown in FIG. 5, the hole diameter reducing mechanism 43 has a cam 46 and a throttle portion 47 on the central axis of the fluid flow pipe 11.
And the fixed base 48 is arranged. The cam 46 has an annular shape as a whole, an opening 461 is formed in the central portion, and a plurality of holes 462 are radially formed around the opening 461. The throttle portion 47 is composed of a plurality of diaphragm plates 471, ... As shown in the drawing, and has an engaging piece 472 inserted into each hole 462 of the cam 46 at one end of each of the diaphragm plates 471 ,. On the surface of the end of the fixed base 48 side, the fixed base 48
Shaft 47 rotatably inserted into holes 481, ...
3 (refer to the same figure b) are provided. The plurality of diaphragm plates 471, ... Are combined so that one surface of each diaphragm plate 471 is superposed on the other surface of the adjacent diaphragm plate 471. An opening 482 is formed in the center of the fixed base 48, and a hole 481 into which the corresponding shaft 472 of the plurality of diaphragm plates 471, ... Is rotatably inserted is formed around the opening 482.

【0030】このような穴径絞り機構43では、カム4
6を回動すると、絞り部47の絞り板471,…は、軸
472を中心にして隣接する絞り板471が重なり合っ
てカム46の回動方向に回転し、複数枚の絞り板47
1,…の内周縁により形成される開口径を変化させるこ
とができる。
In such a hole diameter reducing mechanism 43, the cam 4
When 6 is rotated, the diaphragm plates 471, ... Of the diaphragm portion 47 rotate in the rotation direction of the cam 46 with the adjacent diaphragm plates 471 overlapping each other around the shaft 472, and a plurality of diaphragm plates 47 are formed.
The opening diameter formed by the inner peripheral edges of 1, ... Can be changed.

【0031】このことは、予めメモリ20に測定流量域
とカム46の回動角度とを対応するデータを設定してお
けば、差圧伝送器18の出力から弁切替制御手段19が
配管内の流量に応じた回動角度を読み出してカム46を
回動すれば、流量状態に合った穴径に可変して流量を測
定できる。
This means that if the data corresponding to the measured flow rate region and the rotation angle of the cam 46 are set in the memory 20 in advance, the valve switching control means 19 will be installed in the pipe from the output of the differential pressure transmitter 18. By reading the rotation angle according to the flow rate and rotating the cam 46, it is possible to measure the flow rate by changing the hole diameter according to the flow rate state.

【0032】従って、このような構成の実施形態によれ
ば、配管11内の流量に応じてオリフィスの穴径を可変
すれば、低流量域から高流量域にわたって安定な差圧を
確保でき、差圧伝送器18のレンジャビリティまで拡大
できる。しかも、オリフィスエッジ部42,…は穴口径
に応じて数種の径のものを用意し、穴径絞り機構43を
絞ることにより、オリフィスの穴径を段階的に変更で
き、流量の大小に応じて最適な差圧を取り出せ、よって
流量測定のレンジャビリティを差圧伝送器以上に高める
ことが可能となり、より流量の測定精度を向上できる。
なお、上記実施形態では、差圧伝送器を用いたが、要は
差圧を測定する機器であれば、伝送機能をもたなくても
よい。
Therefore, according to the embodiment having such a configuration, if the hole diameter of the orifice is changed according to the flow rate in the pipe 11, a stable differential pressure can be secured from the low flow rate range to the high flow rate range. The rangeability of the pressure transmitter 18 can be expanded. Moreover, the orifice edge portions 42, ... Are prepared with several diameters according to the hole diameter, and by narrowing the hole diameter reduction mechanism 43, the hole diameter of the orifice can be changed in stages, and the orifice flow rate can be changed according to the flow rate. Therefore, the optimum differential pressure can be taken out, and thus the rangeability of flow rate measurement can be increased more than that of the differential pressure transmitter, and the flow rate measurement accuracy can be further improved.
In addition, although the differential pressure transmitter is used in the above-described embodiment, it is not necessary to have a transmission function as long as the device measures the differential pressure.

【0033】[0033]

【発明の効果】以上説明したように本発明によれば、次
のような種々の効果を奏する。請求項1の発明において
は、複数のオリフィスを用いることにより、低流量域か
ら高流量域までの広い範囲にわたって流量を測定でき、
しかもコストを大幅に低減化でき、配管の流量にあった
差圧を取り出すことができ、よって流量を高精度に測定
できる。
As described above, according to the present invention, the following various effects are exhibited. In the invention of claim 1, by using a plurality of orifices, the flow rate can be measured over a wide range from a low flow rate range to a high flow rate range,
Moreover, the cost can be significantly reduced, and the differential pressure that matches the flow rate of the pipe can be taken out, so that the flow rate can be measured with high accuracy.

【0034】請求項2の発明においては、複数のオリフ
ィスを用いた場合でも、1個のオリフィスを用いたとき
と同等の永久圧損まで低減化できる。請求項3の発明に
おいては、流量域に応じて連続的にオリフィスの穴径を
可変でき、より高精度に流量を測定できる。
According to the second aspect of the present invention, even when a plurality of orifices are used, it is possible to reduce the permanent pressure loss to the same level as when one orifice is used. According to the third aspect of the invention, the hole diameter of the orifice can be continuously changed according to the flow rate range, and the flow rate can be measured with higher accuracy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明に係わるオリフィス式流量測定装置の
第1の実施形態を示す構成図。
FIG. 1 is a configuration diagram showing a first embodiment of an orifice type flow rate measuring device according to the present invention.

【図2】 本発明に係わるオリフィス式流量測定装置の
第2の実施形態における測定原理を説明する図。
FIG. 2 is a view for explaining the measurement principle of a second embodiment of the orifice type flow rate measuring device according to the present invention.

【図3】 第2の実施形態における一例を示す構成図、FIG. 3 is a configuration diagram showing an example of a second embodiment,

【図4】 本発明に係わるオリフィス式流量測定装置の
第3の実施形態を説明する配管断面図。
FIG. 4 is a piping cross-sectional view illustrating a third embodiment of the orifice type flow rate measuring device according to the present invention.

【図5】 第3の実施形態における一例を示す構成図、FIG. 5 is a configuration diagram showing an example in a third embodiment,

【図6】 従来のスプリットレンジによる流量測定法を
説明する図。
FIG. 6 is a diagram illustrating a conventional flow measurement method using a split range.

【符号の説明】[Explanation of symbols]

11…配管、12…低流量用オリフィス、13…高流量
用オリフィス、16,17…オリフィス切替弁、18…
差圧伝送器、19…弁切替制御手段、39…回転駆動
源、40…変形カム、43…穴径絞り機構。
11 ... Piping, 12 ... Low flow rate orifice, 13 ... High flow rate orifice, 16, 17 ... Orifice switching valve, 18 ...
Differential pressure transmitter, 19 ... Valve switching control means, 39 ... Rotational drive source, 40 ... Deformation cam, 43 ... Hole diameter reduction mechanism.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 配管に所要の距離を隔てて設置された小
穴径の低流量用オリフィスおよび大穴径の高流量用オリ
フィスと、 これら各オリフィスを挟んで配管上流側と配管下流側と
の間にそれぞれ設けられた3ポートのオリフィス切替弁
と、 これら各オリフィス切替弁の残りのポート側に設けら
れ、オリフィス切替弁の開時に前記オリフィスによって
発生する差圧を測定する差圧測定手段と、 この差圧測定手段の測定出力から前記配管内の流量範囲
を判定し、この判定結果に基づいて前記複数のオリフィ
ス切替弁を選択的に開とし、当該開時のオリフィス切替
弁を介して得られる差圧を前記差圧測定手段に導入可能
とする弁切替制御手段と、 を備えたことを特徴とするオリフィス式流量測定装置。
1. A low flow rate orifice having a small hole diameter and a high flow rate orifice having a large hole diameter, which are installed in a pipe at a required distance, and between the upstream side and the downstream side of the pipe with these orifices sandwiched therebetween. Three-port orifice switching valves provided respectively, and differential pressure measuring means provided on the remaining port side of each of these orifice switching valves for measuring the differential pressure generated by the orifice when the orifice switching valve is opened, The flow rate range in the pipe is determined from the measurement output of the pressure measuring means, the plurality of orifice switching valves are selectively opened based on the determination result, and the differential pressure obtained via the orifice switching valve at the time of opening. An orifice type flow rate measuring device comprising: a valve switching control means capable of introducing the differential pressure measuring means into the differential pressure measuring means.
【請求項2】 配管に所要の距離を隔てて小穴径の低流
量用オリフィスおよび大穴径の高流量用オリフィスを設
置し、前記配管内の流量範囲に応じて、一方のオリフィ
スを流体の流れに逆らう方向に回転させ、他方のオリフ
ィスを流体の流れ方向に回転させることを特徴とするオ
リフィス式流量測定装置。
2. A low flow rate orifice having a small hole diameter and a high flow rate orifice having a large hole diameter are installed in a pipe at a required distance, and one of the orifices is used for the fluid flow depending on the flow rate range in the pipe. An orifice type flow rate measuring device characterized by rotating in the opposite direction and rotating the other orifice in the direction of fluid flow.
【請求項3】 配管内に穴径絞り機構を有するオリフィ
スを設置し、前記配管内の流量範囲に応じて、穴径絞り
機構の絞りを制御し、前記オリフィスの穴径を可変する
ことを特徴とするオリフィス式流量測定装置。
3. An orifice having a hole diameter reduction mechanism is installed in the pipe, and the throttle of the hole diameter reduction mechanism is controlled according to the flow rate range in the pipe to change the hole diameter of the orifice. Orifice type flow rate measuring device.
JP247496A 1996-01-10 1996-01-10 Orifice-type flow rate-measuring apparatus Pending JPH09189586A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP247496A JPH09189586A (en) 1996-01-10 1996-01-10 Orifice-type flow rate-measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP247496A JPH09189586A (en) 1996-01-10 1996-01-10 Orifice-type flow rate-measuring apparatus

Publications (1)

Publication Number Publication Date
JPH09189586A true JPH09189586A (en) 1997-07-22

Family

ID=11530336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP247496A Pending JPH09189586A (en) 1996-01-10 1996-01-10 Orifice-type flow rate-measuring apparatus

Country Status (1)

Country Link
JP (1) JPH09189586A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003056510A (en) * 2001-08-13 2003-02-26 Smc Corp Master valve provided with flow measuring function
WO2003058363A1 (en) * 2001-12-28 2003-07-17 Fujikin Incorporated Advanced pressure type flow control device
JP2012509060A (en) * 2008-11-18 2012-04-19 ラクトコーダー アクチエンゲゼルシャフト Apparatus and method for measuring the amount of milk produced by an animal during the milking process
JP2014109497A (en) * 2012-12-03 2014-06-12 Hino Motors Ltd Gas flowmeter

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003056510A (en) * 2001-08-13 2003-02-26 Smc Corp Master valve provided with flow measuring function
JP4703912B2 (en) * 2001-08-13 2011-06-15 Smc株式会社 Master valve with flow measurement function
WO2003058363A1 (en) * 2001-12-28 2003-07-17 Fujikin Incorporated Advanced pressure type flow control device
US6964279B2 (en) 2001-12-28 2005-11-15 Fujikin Incorporated Pressure-type flow rate control apparatus
JP2012509060A (en) * 2008-11-18 2012-04-19 ラクトコーダー アクチエンゲゼルシャフト Apparatus and method for measuring the amount of milk produced by an animal during the milking process
US8485047B2 (en) 2008-11-18 2013-07-16 Lactocorder Ag Apparatus and method for measuring a quantity of milk yielded by an animal during a milking process
JP2014109497A (en) * 2012-12-03 2014-06-12 Hino Motors Ltd Gas flowmeter

Similar Documents

Publication Publication Date Title
CA2481869C (en) Averaging orifice primary flow element
US20190204133A1 (en) Variable Restriction for Flow Measurement
JP2005011258A (en) Device and method for distributary supply of gas to chamber from gas supply plant equipped with flow-control device
US9512925B2 (en) Manual balancing valve
JPH09189586A (en) Orifice-type flow rate-measuring apparatus
EP3353506B1 (en) Alignement device for flangeless flowmeter
KR20120132810A (en) Structure of quadruple eccentricity metal butterfly valve
TW202201603A (en) Substrate holder and method for fixing and bonding a substrate
US3835876A (en) Fluid signal limiting device
US3136341A (en) Multiple orifice fitting
JP2002107133A (en) Air micro device for measuring axial deviation, and measurement method therefor
JP2000249619A (en) Gas leakage detecting method
JP2000055510A (en) Fluid distributor and air conditioner having same
US20050121640A1 (en) Flow control device for fluids
JP2003049958A (en) Opening and closing valve of connecting passage for differential pressure detector
CN102400105B (en) Rotating Joint And Sputtering Device
US3242743A (en) Rotor speed control
US2661725A (en) Pneumatic valve precise positioning device
WO2020235423A1 (en) Gas safety device and gas safety system
US3378226A (en) High pressure fluid flow measurement and/or control
JP2602148Y2 (en) Orifice flow detection end
JPS5913406Y2 (en) Flow adjustable switching valve
JPH0932581A (en) Plural engine connecting type motive power transmitting device
US3078723A (en) Control apparatus
US3780754A (en) Fluidic angular shaft position sensor