JPH09189515A - Optical displacement detection device - Google Patents

Optical displacement detection device

Info

Publication number
JPH09189515A
JPH09189515A JP379496A JP379496A JPH09189515A JP H09189515 A JPH09189515 A JP H09189515A JP 379496 A JP379496 A JP 379496A JP 379496 A JP379496 A JP 379496A JP H09189515 A JPH09189515 A JP H09189515A
Authority
JP
Japan
Prior art keywords
light receiving
receiving element
assembly reference
main scale
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP379496A
Other languages
Japanese (ja)
Inventor
Toshihiro Komi
利洋 小見
Tatsuhiko Matsuura
辰彦 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitutoyo Corp
Mitsutoyo Kiko Co Ltd
Original Assignee
Mitutoyo Corp
Mitsutoyo Kiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitutoyo Corp, Mitsutoyo Kiko Co Ltd filed Critical Mitutoyo Corp
Priority to JP379496A priority Critical patent/JPH09189515A/en
Publication of JPH09189515A publication Critical patent/JPH09189515A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an optical displacement detection device which can mechanically and easily locate a light reception element and can be assembled by utilizing the side surface of the light reception element as an assembly reference surface even if the light reception element is formed of a wafer by half cutting. SOLUTION: A bottom surface which is a bottom surface B opposite to a light reception surface A of a light reception element IC 21' with the light reception surface A where a photo sensitive zone is formed with a fine pitch is fixed to a first assemble reference surface 32 of a substrate 31 and at the same time a positioning protrusion 35 with a pair of second assembly reference surfaces 33 and 34 which are at right angle to the surface 32 and are mutually in parallel is fixed. A cylindrical pin 61 is arranged in parallel with the assembly reference surface 33 between one assembly reference surface 33 of the positioning protrusion 35 and a side surface C of the light reception element IC 21'.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、光学式変位検出装
置に関する。詳しくは、光透過部と光遮断部とを一定ピ
ッチでかつ交互に配列した光学格子を有するメインスケ
ールと、このメインスケールの一方側に配置された照明
手段と、前記メインスケールを挟んで前記照明系とは反
対側に配置された受光手段とを含み、前記メインスケー
ルと受光手段との相対変位量を検出する光学式変位検出
装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical displacement detecting device. Specifically, a main scale having an optical grating in which light transmitting portions and light blocking portions are alternately arranged at a constant pitch, an illuminating unit arranged on one side of the main scale, and the illumination with the main scale interposed therebetween. The present invention relates to an optical displacement detection device including a light receiving unit arranged on the opposite side of the system and detecting the relative displacement amount between the main scale and the light receiving unit.

【0002】[0002]

【背景技術】一定ピッチの光学格子を有するメインスケ
ールと、このメインスケールの光学格子と対応する光学
格子を有するインデックススケールとを相対変位可能に
対向配置し、これらの両スケールを挟んで一方側に発光
器を、他方側に受光器をそれぞれ配置し、両スケールが
相対変位したときに受光器によって検出信号を得たの
ち、この検出信号を基に両スケールの相対変位量を検出
する光学式変位検出装置が知られている。
BACKGROUND ART A main scale having an optical grating having a constant pitch and an index scale having an optical grating corresponding to the main grating are arranged so as to be capable of relative displacement, and one side is sandwiched between these scales. An optical displacement that arranges the light emitting device and the light receiving device on the other side, obtains a detection signal by the light receiving device when both scales are relatively displaced, and then detects the relative displacement amount of both scales based on this detection signal. Detection devices are known.

【0003】最近、この種の光学式変位検出装置におい
ては、より小型化、低コスト化が求められていることか
ら、受光器自体を一定ピッチの受光素子アレイから構成
して、インデックススケールを兼用させた構造の光学式
変位検出装置が提案されている。これは、図1に示すよ
うに、ガラス基板11の上に略同一幅の光透過部12A
と光遮断部12Bとを一定ピッチでかつ交互に配列した
光学格子12を有するメインスケール13と、このメイ
ンスケール13の一方側に配置された光源14およびコ
リメータレンズ15を含む照明手段16と、前記メイン
スケール13を挟んで前記照明手段16とは反対側に対
向配置された受光素子21とを備える構成である。
Recently, in this type of optical displacement detection device, further miniaturization and cost reduction are required, so that the photodetector itself is composed of a photodetector array of a constant pitch and also serves as an index scale. An optical displacement detection device having such a structure has been proposed. As shown in FIG. 1, this is because the light transmitting portion 12A having substantially the same width is formed on the glass substrate 11.
A main scale 13 having an optical grating 12 in which the light shields 12B and the light blocking portions 12B are alternately arranged at a constant pitch; a lighting unit 16 including a light source 14 and a collimator lens 15 arranged on one side of the main scale 13; The light-receiving element 21 is arranged opposite to the illuminating means 16 with the main scale 13 interposed therebetween.

【0004】ここで、受光素子21としては、図2およ
び図3に示すように、シリコンからなるN型半導体基体
23に一定ピッチでP型半導体層24Aを拡散形成して
感光帯25を形成したもの、つまり、N型半導体基体2
3とP型半導体層24Aとの接合面に感光帯25を形成
した構造の受光素子IC21A、あるいは、図4および
図5に示すように、N型半導体基体23にP型半導体層
24Bを形成し、この上に透明な酸化シリコンなどの絶
縁膜26を形成したのち、その上に金属(アルミ)薄膜
によって格子状の遮光膜27を形成した構造の受光素子
IC21Bなどが知られている。
Here, as the light receiving element 21, as shown in FIGS. 2 and 3, a P-type semiconductor layer 24A is diffused and formed at a constant pitch on an N-type semiconductor substrate 23 made of silicon to form a photosensitive band 25. Thing, that is, N-type semiconductor substrate 2
3 and the P-type semiconductor layer 24A, the light-receiving element IC 21A having a structure in which the photosensitive band 25 is formed, or as shown in FIGS. 4 and 5, a P-type semiconductor layer 24B is formed on the N-type semiconductor substrate 23. There is known a light receiving element IC21B having a structure in which a transparent insulating film 26 made of silicon oxide or the like is formed thereon, and then a grid-like light shielding film 27 is formed on the insulating film 26 by a metal (aluminum) thin film.

【0005】これらの受光素子IC21A,21B(以
下、これらを受光素子IC21’と記す)は、従来のイ
ンデックススケールと受光器の役割を果たすため、構造
が簡単で信頼性も高いという利点がある。しかも、これ
をICプロセスにより製作できるので、アンプ回路など
も内蔵できるメリットを持っている。このような光学式
変位検出装置において、受光素子IC21’の感光帯2
5の間隔が数十μm以下の微細ピッチの場合、メインス
ケール13に対する受光素子IC21’の位置決めは、
数十μmオーダの厳しい位置決めが要求される。
Since these light receiving elements IC21A and 21B (hereinafter referred to as "light receiving element IC21 '") function as a conventional index scale and a light receiver, they have the advantages of a simple structure and high reliability. Moreover, since it can be manufactured by the IC process, it has an advantage that an amplifier circuit and the like can be built in. In such an optical displacement detection device, the photosensitive band 2 of the light receiving element IC 21 'is
When the interval of 5 is a fine pitch of several tens of μm or less, the positioning of the light receiving element IC 21 ′ with respect to the main scale 13 is
Strict positioning on the order of several tens of μm is required.

【0006】位置決めにおける姿勢変動のうち回転方向
は、図6に示すように、メインスケール13と受光素子
IC21’との相対変位方向と平行なx軸を中心として
回転するROLL方向、x軸に対して直交しかつ受光素
子IC21’の受光面Aに対して直交するy軸を中心と
して回転するPITCH方向、x軸およびy軸に対して
直交するz軸を中心として回転するYAW方向の3つに
分けられる。
As shown in FIG. 6, the rotational direction of the posture variation in positioning is the ROLL direction which rotates about the x-axis parallel to the relative displacement direction of the main scale 13 and the light receiving element IC21 ', and the x-axis. The PITCH direction that rotates about the y-axis that is orthogonal to the light-receiving surface of the light-receiving element IC21 'and the YAW direction that rotates about the z-axis that is orthogonal to the x-axis and the y-axis. Be divided.

【0007】これらの各回転方向に対して、メインスケ
ール13との位置決めを機械的に行う場合、受光素子I
C21’の底面B(受光面Aと反対側面)および側面C
(感光帯25の配列方向に沿った側面)を組立基準面と
して利用することが考えられる。つまり、受光素子IC
21’の底面Bは受光面Aとの平行度がよく、また、側
面Cは受光素子IC21’のカッティング時に感光帯2
5の配列方向に沿ってカットされているため、これらと
の平行度がでていることから、これらを組立基準面とし
て利用することが考えられる。
When mechanically positioning the main scale 13 in each of these rotation directions, the light receiving element I
C21 'bottom B (side opposite to light-receiving surface A) and side C
It is conceivable to use (the side surface along the arrangement direction of the photosensitive band 25) as an assembly reference surface. That is, the light receiving element IC
The bottom surface B of 21 'has good parallelism with the light receiving surface A, and the side surface C of the light receiving element IC 21' has a photosensitive band 2 at the time of cutting.
Since it is cut along the arrangement direction of No. 5, it has parallelism with these, so it is conceivable to use these as the assembly reference plane.

【0008】しかし、実際に、受光素子IC21’の受
光面Aとメインスケール13との位置決めにおいて、受
光素子IC21’の各面を機械的な組立基準面として使
用するのはきわめて困難である。何故なら、受光素子I
C21’のチップは数ミリ角と非常に小さく、また、受
光素子IC21’から信号を引き出すためにワイヤボン
ディングを行っているためである。そこで、従来では、
メインスケール13および受光素子IC21’を実際に
組み立てたのち、両者を相対変位させたときの受光素子
IC21’から得られる検出信号を見ながら、受光素子
IC21’の位置調整を行っていた。
However, in actuality, in positioning the light receiving surface A of the light receiving element IC 21 ′ and the main scale 13, it is extremely difficult to use each surface of the light receiving element IC 21 ′ as a mechanical assembly reference plane. Because the light receiving element I
This is because the chip of C21 'is very small, such as a few millimeters square, and wire bonding is performed to extract a signal from the light receiving element IC21'. So, conventionally,
After actually assembling the main scale 13 and the light receiving element IC21 ', the position of the light receiving element IC21' was adjusted while observing the detection signal obtained from the light receiving element IC21 'when the both were relatively displaced.

【0009】[0009]

【発明が解決しようとする課題】しかし、上述した従来
の調整方法では、調整に手間と時間がかかるという問題
があった。そこで、受光素子IC21’を実装するため
の基板を間接的な基準面となるようにすれば、機械的な
位置決めが可能である。たとえば、図7および図8に示
すように、基板31のメインスケール13と対向する面
を平坦な第1組立基準面32とし、この第1組立基準面
32にその第1組立基準面32に対して直角でかつ互い
に平行な一対の第2組立基準面33,34を有する位置
決め突条35を設け、この位置決め突条35の一方の第
2組立基準面33に受光素子IC21’の側面Cを当接
させ、かつ、底面Bを基板31の第1組立基準面32に
接着する。
However, the conventional adjustment method described above has a problem that the adjustment takes time and effort. Therefore, if the substrate on which the light receiving element IC21 'is mounted is used as an indirect reference plane, mechanical positioning is possible. For example, as shown in FIGS. 7 and 8, the surface of the substrate 31 facing the main scale 13 is a flat first assembly reference surface 32, and the first assembly reference surface 32 is formed with respect to the first assembly reference surface 32. Is provided with a pair of second assembly reference surfaces 33, 34 that are perpendicular to each other and parallel to each other, and the side surface C of the light receiving element IC21 'is brought into contact with the second assembly reference surface 33 of one of the positioning projections 35. The bottom surface B is bonded to the first assembly reference surface 32 of the substrate 31.

【0010】すると、受光素子IC21’の底面Bが基
板31の第1組立基準面32に接着されているから、こ
の第1組立基準面32を基準にメインスケール13に対
して平行に位置決めを行えば、PITCH方向およびR
OLL方向の回転を規制することができる。また、受光
素子IC21’の側面Cが位置決め突条35の一方の第
2組立基準面33に当接されているから、これと平行な
他方の第2組立基準面34を基準にメインスケール13
に対して直角に位置決めを行えば、YAW方向の回転を
規制することができる。
Then, since the bottom surface B of the light receiving element IC21 'is adhered to the first assembly reference surface 32 of the substrate 31, positioning is performed in parallel with the main scale 13 with the first assembly reference surface 32 as a reference. For example, PITCH direction and R
The rotation in the OLL direction can be restricted. Further, since the side surface C of the light receiving element IC21 'is in contact with one of the second assembly reference surfaces 33 of the positioning projections 35, the main scale 13 is based on the other second assembly reference surface 34 parallel thereto.
If it is positioned at a right angle to, the rotation in the YAW direction can be restricted.

【0011】ところで、通常、受光素子IC21’はウ
エハからハーフカットと呼ばれる方法で個々に分離され
る。この方法は、最初に、図9に示すように、ウエハ4
1上の受光素子IC21’を個々に分離するために、ダ
イサ(ハーフカットする機械)により、受光素子IC2
1’の境目に完全でない切れ溝42を入れる(ハーフカ
ット)。このとき、底面には粘着テープ43が貼り付け
られている。続いて、図10に示すように、湾曲したベ
ース44上にハーフカットしたウエハ41を置き、上か
ら圧力を加える。すると、切れ溝42に沿って、受光素
子IC21’がばらばらに分離される。
By the way, normally, the light receiving elements IC21 'are individually separated from the wafer by a method called half-cut. This method begins with the wafer 4 as shown in FIG.
In order to individually separate the light-receiving elements IC21 'on the first light-receiving element IC2' by a dicer (half-cutting machine)
Insert a not-complete cut groove 42 at the boundary of 1 '(half cut). At this time, the adhesive tape 43 is attached to the bottom surface. Subsequently, as shown in FIG. 10, the half-cut wafer 41 is placed on the curved base 44, and pressure is applied from above. Then, the light receiving elements IC21 'are separated along the cut grooves 42.

【0012】この方法は、受光素子IC21’を完全に
分離するフルカットに比べ、低コストで、かつ、取扱い
が有利である。つまり、受光素子IC21’の単価はカ
ッティングのための工程も含むため、フルカットするよ
りもハーフカットの方が切削時間を短縮することができ
るから、コストを下げることができる。また、受光素子
IC21’をカットするとき、ブレードと呼ばれる丸い
刃先が高速で回転しながらカッティングしており、これ
を冷却するのに刃先に向かって高圧の冷却材(純水な
ど)が吹き付けられているが、ハーフカットであればウ
エハ41全体が粘着テープ43により固定されているの
で、安定なカッティングが可能で、カット中に受光素子
IC21’がテープ43から剥がれ落ちたりすることが
ない。よって、取扱いもウエハ単体となるので容易であ
る。
This method is lower in cost and advantageous in handling as compared with the full-cut method for completely separating the light receiving element IC21 '. That is, since the unit price of the light receiving element IC21 'includes a step for cutting, the cutting time can be shortened in the half cut rather than the full cut, and the cost can be reduced. Further, when cutting the light receiving element IC21 ', a round blade edge called a blade is cutting while rotating at a high speed, and a high pressure coolant (pure water etc.) is sprayed toward the blade edge to cool it. However, in the case of half-cutting, since the entire wafer 41 is fixed by the adhesive tape 43, stable cutting is possible, and the light-receiving element IC 21 ′ does not peel off from the tape 43 during cutting. Therefore, it is easy to handle since it is a single wafer.

【0013】しかし、その反面、受光素子IC21’を
個々に分離する際に、切り残した部分からランダムな方
向に亀裂ができるので、受光素子IC21’単体での断
面形状は、図11に示すようなバリ45をもった形にな
る。このような場合、受光素子IC21’の側面Cを組
立基準として使用できなくなる。
On the other hand, however, when the light receiving elements IC21 'are individually separated, cracks can be generated in random directions from the uncut portions, so that the cross section of the light receiving element IC21' alone is as shown in FIG. It becomes a shape with a burr 45. In such a case, the side surface C of the light receiving element IC21 'cannot be used as an assembly reference.

【0014】本発明の目的は、このような従来の問題を
全て解消し、受光素子の位置決めを機械的にかつ容易に
行うことができ、しかも、受光素子をウエハからハーフ
カットによって作成した場合でも受光素子の側面を組立
基準面として利用して組立できる光学式変位検出装置を
提供することにある。
An object of the present invention is to solve all of the problems of the prior art, to mechanically and easily position the light receiving element, and even when the light receiving element is formed from a wafer by half-cutting. An object of the present invention is to provide an optical displacement detection device that can be assembled by using the side surface of a light receiving element as an assembly reference surface.

【0015】[0015]

【課題を解決するための手段】本発明の光学式変位検出
装置は、光透過部と光遮断部とを一定ピッチでかつ交互
に配列した光学格子を有するメインスケールと、このメ
インスケールの一方側に配置された照明手段と、前記メ
インスケールを挟んで前記照明手段とは反対側に配置さ
れた受光手段とを含む光学式変位検出装置において、前
記受光手段は、前記メインスケールと対向して相対変位
可能に配置されかつそのメインスケールと対向する面が
第1組立基準面とされた基板と、この基板の第1組立基
準面に固定されその第1組立基準面に対して直角でかつ
互いに平行な一対の第2組立基準面を有する位置決め突
条と、感光帯を微細ピッチで形成した受光面を有しその
受光面とは反対側面が前記基板の第1組立基準面に固定
された受光素子と、この受光素子の側面と前記位置決め
突条の一方の第2組立基準面との間にこれらに接して配
置されかつ前記第2組立基準面と平行に配置された円柱
状のピンとを備えることを特徴とする。
An optical displacement detection device according to the present invention comprises a main scale having an optical grating in which light transmitting portions and light blocking portions are alternately arranged at a constant pitch, and one side of the main scale. In the optical displacement detection device including an illuminating unit disposed on the main scale and a light receiving unit disposed on the opposite side of the main scale from the illuminating unit, the light receiving unit is opposed to the main scale. A substrate that is displaceably arranged and has a surface facing the main scale as a first assembly reference surface, and a board fixed to the first assembly reference surface of the board and perpendicular to the first assembly reference surface and parallel to each other. And a light receiving element having a pair of second assembly reference surfaces and a light receiving surface having a photosensitive band formed at a fine pitch, and a side surface opposite to the light receiving surface fixed to the first assembly reference surface of the substrate. When A cylindrical pin is provided between the side surface of the light receiving element and the second assembly reference plane of one of the positioning projections so as to be in contact therewith and arranged in parallel to the second assembly reference plane. And

【0016】このような構成によれば、受光素子の受光
面よりはるかに大きい基板の第1組立基準面および位置
決め突条の第2組立基準面を基準として、メインスケー
ルとの位置決めを行うことができるから、位置決めを機
械的にかつ容易に行うことができる。つまり、受光素子
の受光面とは反対側面が基板の第1組立基準面に固定さ
れているから、この第1組立基準面を基準にメインスケ
ールに対して平行に位置決めを行えば、PITCH方向
およびROLL方向の回転を規制することができる。ま
た、受光素子の側面がピンを介して位置決め突条の一方
の第2組立基準面に当接されているから、これと平行な
他方の第2組立基準面を基準にメインスケールに対して
直角に位置決めを行えば、YAW方向の回転を規制する
ことができる。
According to this structure, the positioning with the main scale can be performed with the first assembly reference plane of the substrate and the second assembly reference plane of the positioning ridge much larger than the light receiving surface of the light receiving element as a reference. Therefore, the positioning can be performed mechanically and easily. That is, since the side surface opposite to the light receiving surface of the light receiving element is fixed to the first assembly reference surface of the substrate, if positioning is performed in parallel with the main scale with reference to the first assembly reference surface, the PITCH direction and The rotation in the ROLL direction can be restricted. Further, since the side surface of the light receiving element is in contact with one of the second assembly reference planes of the positioning projection through the pin, it is perpendicular to the main scale with the other second assembly reference plane parallel thereto. If the positioning is performed at, the rotation in the YAW direction can be restricted.

【0017】また、ピンを円柱状としてあるため、受光
素子をウエハからハーフカットによって作成した場合で
も、受光素子の側面を組立基準面として利用することが
できる。つまり、受光素子をウエハからハーフカットに
よって作成した場合、受光素子の側面にバリが発生する
が、そのバリを円柱状のピンによって逃がすことができ
るから、受光素子の側面を組立基準面として利用するこ
とができ、従って、容易に組立できる。しかも、ピン
を、半径寸法が受光素子の厚み寸法よりも小さい円柱状
とすれば、受光素子を第2組立基準面方向へ押し当てる
と、受光素子の側面がピンに接した位置で停止されるか
ら、位置決めを容易にできる。
Further, since the pins have a cylindrical shape, the side surface of the light receiving element can be used as an assembly reference plane even when the light receiving element is formed by half-cutting from the wafer. That is, when the light receiving element is formed by half-cutting from the wafer, a burr is generated on the side surface of the light receiving element, but since the burr can be escaped by the columnar pin, the side surface of the light receiving element is used as an assembly reference plane. Therefore, it can be easily assembled. Moreover, if the pin has a cylindrical shape whose radius is smaller than the thickness of the light receiving element, when the light receiving element is pressed in the direction of the second assembly reference plane, the side surface of the light receiving element is stopped at a position in contact with the pin. Therefore, the positioning can be facilitated.

【0018】[0018]

【発明の実施の形態】以下、本発明の一実施形態を図1
2および図13を参照しながら詳細に説明する。なお、
以下の説明にあたって、前述した各図と同一構成要件に
ついては、同一符号を付し、その説明を省略する。図1
2は本実施形態にかかる受光手段の平面図、図13はそ
の断面図である。同受光手段は、前記メインスケール1
3と対向する面を第1組立基準面32とした前記基板3
1と、この基板31の第1組立基準面32に設けられ前
記位置決め突条35を含んで矩形枠状に構成された枠体
51と、前記基板31の第1組立基準面32に底面Bが
固定される前記受光素子IC21’と、円柱状のピン6
1とを備える。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the present invention will be described below with reference to FIG.
2 and FIG. 13, a detailed description will be given. In addition,
In the following description, the same components as those in the above-mentioned drawings are designated by the same reference numerals, and the description thereof will be omitted. FIG.
2 is a plan view of the light receiving means according to the present embodiment, and FIG. 13 is a sectional view thereof. The light receiving means is the main scale 1
The substrate 3 having a surface facing the third assembly as a first assembly reference surface 32.
1, a frame body 51 provided on the first assembly reference surface 32 of the substrate 31 and configured in a rectangular frame shape including the positioning protrusions 35, and a bottom surface B on the first assembly reference surface 32 of the substrate 31. The light receiving element IC 21 ′ to be fixed and the columnar pin 6
1 is provided.

【0019】前記枠体51は、前記位置決め突条35
と、この位置決め突条部35と平行に設けられた枠材5
2と、この枠材52と位置決め突条35との両端を連結
する一対の枠材53,54とから矩形枠状に構成されて
いる。この枠体51内には、前記受光素子IC21’お
よびピン61が収納されたのち、透光性を有する樹脂5
5が充填されるようになっている。
The frame body 51 includes the positioning protrusion 35.
And the frame member 5 provided in parallel with the positioning protrusion 35.
2 and a pair of frame members 53 and 54 connecting both ends of the frame member 52 and the positioning ridge 35 to form a rectangular frame shape. The light receiving element IC 21 ′ and the pin 61 are housed in the frame 51, and then the resin 5 having a light transmitting property is provided.
5 is filled.

【0020】前記ピン61は、半径寸法rが前記受光素
子IC21’の厚み寸法tよりも小さく、かつ、受光素
子IC21’の厚み寸法tの1/2以上の円柱状とさ
れ、受光素子IC21’の側面Cと前記位置決め突条3
5の一方の第2組立基準面33との間にこれらと接して
かつ前記第2組立基準面33,34と平行に配置されて
いる。
The pin 61 has a radius dimension r smaller than the thickness dimension t of the light receiving element IC21 ', and has a columnar shape which is 1/2 or more of the thickness dimension t of the light receiving element IC21'. Side face C and the positioning protrusion 3
5 is arranged in contact with one of the second assembly reference surfaces 33 and parallel to the second assembly reference surfaces 33 and 34.

【0021】従って、本実施形態の構成によれば、基板
31の第1組立基準面32に、その第1組立基準面32
に対して直角でかつ互いに平行な一対の第2組立基準面
33,34を有する位置決め突条35を固定するととも
に、感光帯25を微細ピッチで形成した受光面Aを有す
る受光素子IC21’の底面B(受光面Aとは反対側
面)を固定し、この受光素子IC21’の側面Cと前記
位置決め突条35の一方の第2組立基準面33との間に
これらに接して円柱状のピン61を配置したので、受光
素子IC21’の受光面Aよりはるかに大きい基板31
の第1組立基準面32および位置決め突条35の第2組
立基準面33,34を基準として、メインスケール13
との位置決めを行うことができるから、機械的な位置決
めが可能である。
Therefore, according to the configuration of the present embodiment, the first assembly reference plane 32 of the board 31 has the first assembly reference plane 32.
A bottom surface of a light receiving element IC21 'having a light receiving surface A having a pair of second assembly reference surfaces 33 and 34 that are perpendicular to and fixed to the B (the side surface opposite to the light receiving surface A) is fixed, and the cylindrical pin 61 is in contact with the side surface C of the light receiving element IC 21 ′ and one of the second assembly reference surfaces 33 of the positioning projections 35. The substrate 31 which is much larger than the light receiving surface A of the light receiving element IC21 '
With reference to the first assembling reference surface 32 and the second assembling reference surfaces 33 and 34 of the positioning protrusions 35, the main scale 13
Since it is possible to perform positioning with respect to, mechanical positioning is possible.

【0022】この場合、受光素子IC21’の底面B
(受光面Aとは反対側面)が基板31の第1組立基準面
32に固定されているから、この第1組立基準面32を
基準にメインスケール13に対して平行に位置決めを行
えば、PITCH方向およびROLL方向の回転を規制
することができる。また、受光素子IC21’の側面C
が円柱状のピン61を介して位置決め突条35の一方の
第2組立基準面33に当接されているから、これと平行
な他方の第2組立基準面34を基準にメインスケール1
3に対して直角に位置決めを行えば、YAW方向の回転
を規制することができる。
In this case, the bottom surface B of the light receiving element IC21 '
Since the (side surface opposite to the light receiving surface A) is fixed to the first assembly reference surface 32 of the substrate 31, if the positioning is performed in parallel with the main scale 13 with the first assembly reference surface 32 as a reference, the PITCH The rotation in the direction and the ROLL direction can be restricted. In addition, the side surface C of the light receiving element IC21 '
Is in contact with one of the second assembly reference planes 33 of the positioning projections 35 via the cylindrical pin 61, so that the main scale 1 is designed with the other second assembly reference plane 34 parallel thereto as a reference.
If the positioning is performed at a right angle to 3, the rotation in the YAW direction can be restricted.

【0023】また、ピン61を円柱状としてあるため、
受光素子IC21’をウエハ41からハーフカットによ
って作成した場合でも、受光素子IC21’の側面Cを
組立基準面として利用することができる。つまり、受光
素子IC21’をウエハ41からハーフカットによって
作成した場合、受光素子IC21’の側面Cにバリ45
が発生するが、そのバリ45を円柱状のピン61によっ
て逃がしながら受光素子IC21’の側面Cを位置決め
できるから、受光素子IC21’の側面Cを組立基準面
として利用することができる。よって、受光素子IC2
1’をウエハ41からハーフカットによって作成した場
合でも、容易に組立できる。
Since the pin 61 has a cylindrical shape,
Even when the light receiving element IC21 'is formed by half-cutting from the wafer 41, the side surface C of the light receiving element IC21' can be used as the assembly reference plane. That is, when the light receiving element IC 21 ′ is formed by half-cutting from the wafer 41, the burr 45 is formed on the side surface C of the light receiving element IC 21 ′.
However, since the side surface C of the light receiving element IC21 'can be positioned while allowing the burr 45 to escape by the columnar pin 61, the side surface C of the light receiving element IC21' can be used as an assembly reference surface. Therefore, the light receiving element IC2
Even if 1'is created from the wafer 41 by half-cutting, it can be easily assembled.

【0024】しかも、ピン61を、半径寸法rが受光素
子IC21’の厚み寸法tよりも小さく、かつ、受光素
子IC21’の厚み寸法tの1/2以上の円柱状とした
ので、受光素子IC21’を第2組立基準面33方向へ
押し当てていくと、受光素子IC21’の側面Cがピン
61に接した位置で停止されるから、位置決めを容易に
できる。
Moreover, since the pin 61 has a columnar shape in which the radius dimension r is smaller than the thickness dimension t of the light receiving element IC21 'and is 1/2 or more of the thickness dimension t of the light receiving element IC21', the light receiving element IC21 is formed. By pressing 'in the direction of the second assembly reference plane 33, the side surface C of the light receiving element IC21' is stopped at the position in contact with the pin 61, so that the positioning can be facilitated.

【0025】また、基板31の第1組立基準面32に、
位置決め突条35および枠材52,53,54によって
矩形枠状の枠体51を形成し、この枠体51内に透光性
を有する樹脂55を充填するようにしたので、受光素子
IC21’およびワイヤ28を保護することができる。
Further, on the first assembly reference plane 32 of the substrate 31,
Since the positioning ridge 35 and the frame members 52, 53, 54 form a rectangular frame body 51 and the frame body 51 is filled with the resin 55 having a light-transmitting property, the light receiving element IC 21 'and The wire 28 can be protected.

【0026】以上述べた実施の形態において、受光素子
21として、N型半導体基体23と、この半導体基体2
3上に形成されその半導体基体23とは異なる極性のP
型半導体層24A,24Bとを含む構造の受光素子IC
21’を用いたが、この構造に限られるものでなく、た
とえば、P型半導体基体23上にN型半導体層を微細ピ
ッチで形成して構成してもよい。
In the embodiments described above, the N-type semiconductor substrate 23 and the semiconductor substrate 2 are used as the light receiving element 21.
P having a polarity different from that of the semiconductor substrate 23 formed on
Type light receiving element IC having a structure including the semiconductor layers 24A and 24B
Although 21 'is used, the structure is not limited to this, and for example, an N-type semiconductor layer may be formed on the P-type semiconductor substrate 23 at a fine pitch.

【0027】[0027]

【発明の効果】本発明の光学式変位検出装置によれば、
受光素子の位置決めを機械的にかつ容易に行うことがで
き、しかも、受光素子をウエハからハーフカットによっ
て作成した場合でも受光素子の側面を組立基準面として
利用して組立できる。
According to the optical displacement detecting device of the present invention,
Positioning of the light receiving element can be performed mechanically and easily, and even when the light receiving element is formed by half-cutting from the wafer, the side surface of the light receiving element can be used as an assembly reference plane for assembly.

【図面の簡単な説明】[Brief description of the drawings]

【図1】一般的な光学式変位検出装置の構成を示す図で
ある。
FIG. 1 is a diagram showing a configuration of a general optical displacement detection device.

【図2】光学式変位検出装置に用いられる受光素子を示
す斜視図である。
FIG. 2 is a perspective view showing a light receiving element used in an optical displacement detection device.

【図3】図2の III−III 線断面図である。FIG. 3 is a sectional view taken along line III-III of FIG. 2;

【図4】光学式変位検出装置に用いられる他の受光素子
を示す斜視図である。
FIG. 4 is a perspective view showing another light receiving element used in the optical displacement detection device.

【図5】図4の V−V 線断面図である。FIG. 5 is a sectional view taken along line VV of FIG. 4;

【図6】光学式変位検出装置の位置決めのうちの回動方
向を示す図である。
FIG. 6 is a diagram showing a rotation direction of positioning of the optical displacement detection device.

【図7】受光素子を機械的に位置決めする際の構造を示
す図である。
FIG. 7 is a diagram showing a structure for mechanically positioning a light receiving element.

【図8】図7の側面図である。FIG. 8 is a side view of FIG. 7;

【図9】ウエハをハーフカットする際の様子を示す図で
ある。
FIG. 9 is a diagram showing how a wafer is half-cut.

【図10】ハーフカットしたウエハを個々に分離する様
子を示す図である。
FIG. 10 is a diagram showing how half-cut wafers are individually separated.

【図11】ハーフカットによって得られた受光素子IC
を示す図である。
FIG. 11: Light-receiving element IC obtained by half-cutting
FIG.

【図12】本発明の光学式変位検出装置に用いられる受
光手段の一実施形態を示す平面図である。
FIG. 12 is a plan view showing an embodiment of a light receiving means used in the optical displacement detection device of the present invention.

【図13】図12のXIII−XIII線相当断面図である。13 is a sectional view corresponding to line XIII-XIII in FIG.

【符号の説明】[Explanation of symbols]

12 光学格子 12A 光透過部 12B 光遮断部 13 メインスケール 16 照明手段 21 受光素子 21A,21B,21’受光素子IC 23 N型半導体基体 24A,24B P型半導体層 25 感光帯 31 基板 32 第1組立基準面 33,34 第2組立基準面 35 位置決め部 61 ピン 12 Optical Grating 12A Light Transmitting Section 12B Light Blocking Section 13 Main Scale 16 Illuminating Means 21 Light-Receiving Element 21A, 21B, 21 'Light-Receiving Element IC 23 N-type Semiconductor Base 24A, 24B P-type Semiconductor Layer 25 Photosensitive Band 31 Substrate 32 First Assembly Reference surface 33, 34 Second assembly reference surface 35 Positioning portion 61 pin

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 光透過部と光遮断部とを一定ピッチでか
つ交互に配列した光学格子を有するメインスケールと、
このメインスケールの一方側に配置された照明手段と、
前記メインスケールを挟んで前記照明手段とは反対側に
配置された受光手段とを含む光学式変位検出装置におい
て、 前記受光手段は、前記メインスケールと対向して相対変
位可能に配置されかつそのメインスケールと対向する面
が第1組立基準面とされた基板と、この基板の第1組立
基準面に固定されその第1組立基準面に対して直角でか
つ互いに平行な一対の第2組立基準面を有する位置決め
突条と、感光帯を微細ピッチで形成した受光面を有しそ
の受光面とは反対側面が前記基板の第1組立基準面に固
定された受光素子と、この受光素子の側面と前記位置決
め突条の一方の第2組立基準面との間にこれらに接して
配置されかつ前記第2組立基準面と平行に配置された円
柱状のピンとを備えることを特徴とする光学式変位検出
装置。
1. A main scale having an optical grating in which light transmitting portions and light blocking portions are alternately arranged at a constant pitch,
Illumination means arranged on one side of this main scale,
In an optical displacement detection device including a light receiving unit arranged on the opposite side of the illumination unit with the main scale interposed therebetween, the light receiving unit is arranged so as to be relatively displaceable so as to face the main scale. A board having a surface facing the scale as a first assembly reference surface, and a pair of second assembly reference surfaces which are fixed to the first assembly reference surface and are perpendicular to the first assembly reference surface and parallel to each other. And a light receiving element having a light receiving surface having a photosensitive band formed at a fine pitch and having a side surface opposite to the light receiving surface fixed to the first assembly reference surface of the substrate, and a side surface of the light receiving element. An optical displacement detection device, comprising: a cylindrical pin disposed between the positioning protrusion and one of the second assembly reference planes so as to be in contact therewith, and in parallel with the second assembly reference plane. apparatus.
【請求項2】 請求項1に記載の光学式変位検出装置に
おいて、前記ピンは、半径寸法が前記受光素子の厚み寸
法よりも小さい円柱状とされていることを特徴とする光
学式変位検出装置。
2. The optical displacement detection device according to claim 1, wherein the pin has a cylindrical shape having a radius dimension smaller than a thickness dimension of the light receiving element. .
JP379496A 1996-01-12 1996-01-12 Optical displacement detection device Withdrawn JPH09189515A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP379496A JPH09189515A (en) 1996-01-12 1996-01-12 Optical displacement detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP379496A JPH09189515A (en) 1996-01-12 1996-01-12 Optical displacement detection device

Publications (1)

Publication Number Publication Date
JPH09189515A true JPH09189515A (en) 1997-07-22

Family

ID=11567105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP379496A Withdrawn JPH09189515A (en) 1996-01-12 1996-01-12 Optical displacement detection device

Country Status (1)

Country Link
JP (1) JPH09189515A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103208484A (en) * 2012-01-16 2013-07-17 株式会社三丰 Semiconductor package and method for manufacturing the same
CN106546303A (en) * 2015-09-23 2017-03-29 珠海任驰光电科技有限公司 The capacitance level transducer being applied under adverse circumstances

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103208484A (en) * 2012-01-16 2013-07-17 株式会社三丰 Semiconductor package and method for manufacturing the same
US8987905B2 (en) 2012-01-16 2015-03-24 Mitutoyo Corporation Semiconductor package and method for manufacturing the same
CN106546303A (en) * 2015-09-23 2017-03-29 珠海任驰光电科技有限公司 The capacitance level transducer being applied under adverse circumstances

Similar Documents

Publication Publication Date Title
JP3530158B2 (en) Semiconductor device and manufacturing method thereof
US8542963B2 (en) Method for manufacturing optical coupling element, optical transmission substrate, optical coupling component, coupling method, and optical interconnect system
US5659566A (en) Semiconductor laser module and method of assembling semiconductor laser module
JP7119271B2 (en) Laser diode package modules, distance detectors, electronic devices
JP2003060119A (en) Semiconductor device and method for manufacturing the same
JP3941713B2 (en) Semiconductor integrated circuit provided with surface emitting laser, semiconductor integrated circuit manufacturing method, and electronic apparatus
JPH0778897A (en) Semiconductor chip and its preparation
JPH11121771A (en) Micro-photonics module with partition wall
JPH11339295A (en) Integrated mirror and laser/detector integrated device using reflected and diffracted light beams
US6656755B1 (en) Method for manufacturing semiconductor device by polishing
JP2578774B2 (en) Method for manufacturing module with lens
JPH09189515A (en) Optical displacement detection device
US6137121A (en) Integrated semiconductor light generating and detecting device
JPH0810496B2 (en) Optical head manufacturing method
JPH04139628A (en) Optical semiconductor device and its manufacture
JPH05327131A (en) Semiconductor laser device
JPH10144954A (en) Method for manufacturing semiconductor device
JPH05315700A (en) Semiconductor laser
JP2003131088A (en) Optical path converting body, method for manufacturing the same, and optical module using the same
JPH09191154A (en) Semiconductor laser device
JP2005221703A (en) Manufacturing method of optical element
KR100416503B1 (en) Wafer level package for optical device and packaging method thereof
JPH11112014A (en) Reflector, optical semiconductor device using the same and manufacture thereof
JPH0593827A (en) Optical reception module
JPS62188293A (en) Semiconductor laser device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030401