JPH09187673A - Magnetic separator - Google Patents

Magnetic separator

Info

Publication number
JPH09187673A
JPH09187673A JP8054814A JP5481496A JPH09187673A JP H09187673 A JPH09187673 A JP H09187673A JP 8054814 A JP8054814 A JP 8054814A JP 5481496 A JP5481496 A JP 5481496A JP H09187673 A JPH09187673 A JP H09187673A
Authority
JP
Japan
Prior art keywords
magnetic
particles
pipe
separation
separated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8054814A
Other languages
Japanese (ja)
Inventor
Kingo Azuma
欣吾 東
Takuya Kimura
卓也 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP8054814A priority Critical patent/JPH09187673A/en
Publication of JPH09187673A publication Critical patent/JPH09187673A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a device by which magnetic separation performance is kept stable for a long time. SOLUTION: In a magnetic separator, materials to be separated 14, 15, 16 are passed through magnetic separation bores in which the gradient of the magnetic field is made in the diameter direction thereof to separate a specified material by the difference of magnetic force exerted on particles of the materials to be separated in the gradient of the magnetic field in the magnetic separation bore. The magnetic separator has a first magnetic separator 100 for separating ferromagnetic particles and a second magnetic separator 200 for separating paramagnetic and diamagnetic particles. The first magnetic separator 100 has a first magnetic field generator 18 for producing the small magnetic field and a first magnetic separation bore 17, and the second magnetic separator 200 has a second magnetic field generator 22 for generating the large magnetic field and a second magnetic separation bore 21.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、粉粒体を磁場及び
磁場勾配内に落下させ、その磁化率の違いにより分離す
るようにした磁気分離装置に関する。本発明は、微粉炭
から、パイライト等の硫黄分除去やカオリナイト等の灰
分除去を行う磁気分離装置、あるいは磁化率の異なる3
種類以上の分質を磁気分離する装置等にも利用できる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic separation device in which a powder or granular material is dropped into a magnetic field and a magnetic field gradient and separated according to a difference in magnetic susceptibility. The present invention is a magnetic separation device for removing sulfur such as pyrite or ash such as kaolinite from pulverized coal, or 3 having different magnetic susceptibility.
It can also be used for devices that magnetically separate more than one type of quality.

【0002】[0002]

【従来の技術】物質はそれぞれ固有の磁化率を持ってお
り、その磁化率の違いを利用して分離することができ
る。この原理による従来の磁気分離装置を図2(従来例
1)および図7〜図8(従来例2)に示す。 (1) 従来例1の装置400の説明(図2) 磁気分離ボア1の外部に磁場発生装置2を設けることに
より、磁気分離ボア1内に磁場勾配を発生させる。
2. Description of the Related Art Substances each have a unique magnetic susceptibility and can be separated by utilizing the difference in magnetic susceptibility. A conventional magnetic separation device based on this principle is shown in FIG. 2 (conventional example 1) and FIGS. 7 to 8 (conventional example 2). (1) Description of Apparatus 400 of Conventional Example 1 (FIG. 2) By providing the magnetic field generator 2 outside the magnetic separation bore 1, a magnetic field gradient is generated in the magnetic separation bore 1.

【0003】この磁場内に供給部7から粉粒体を落下さ
せると、磁化率の大きい粉粒体3は、磁気分離ボア1内
でこの磁場勾配により外向きに磁気力を受けるため外側
へ軌道が曲げられる。
When particles are dropped from the supply unit 7 into this magnetic field, the particles 3 having a high magnetic susceptibility are orientated outward due to the magnetic force directed outward by the magnetic field gradient in the magnetic separation bore 1. Can be bent.

【0004】一方、磁化率の小さい粉粒体4は、磁気力
を受けないか、弱い磁気力しか受けないため、その軌道
は変化しない。その結果、磁気分離装置の下流部では、
磁化率の大きい粉粒体3は磁気分離ボアの外側部分に集
まり、磁化率の小さい粉粒体4は磁気分離ボアの中心付
近に集まる。
On the other hand, the granular material 4 having a low magnetic susceptibility does not change its trajectory because it does not receive a magnetic force or only a weak magnetic force. As a result, in the downstream part of the magnetic separation device,
The particles 3 having a high magnetic susceptibility gather in the outer portion of the magnetic separation bore, and the particles 4 having a low magnetic susceptibility gather near the center of the magnetic separation bore.

【0005】そこで、磁化率の大きい粉粒体3の回収部
8と磁化率の小さい回収部9を設けることにより、それ
ぞれの粒子を分離回収する。以上の従来技術は実験室レ
ベルで検討されている段階にある。
Therefore, the particles 8 are separated and collected by providing a collecting portion 8 for the granular material 3 having a large magnetic susceptibility and a collecting portion 9 having a small magnetic susceptibility. The above conventional techniques are in the stage of being examined at the laboratory level.

【0006】なお、微粉炭の中の強磁性粒子の種類には
以下の様なものがある。 (a)微粉炭内に初めから存在するFeCO3 (シデラ
イト)、FeSx(ピロタイト)あるいはFeS2 (パ
イライト)の、局所的に結晶構造がくずれ、強い磁性を
示すもの。 (b)石炭を微粉炭に粉砕する際使用する鋼製粉砕ミル
刃のくず。
The types of ferromagnetic particles in the pulverized coal are as follows. (A) FeCO3 (siderite), FeSx (pyrroite), or FeS2 (pyrite) that is originally present in the pulverized coal and has strong magnetism due to local collapse of the crystal structure. (B) Steel crushing mill blade scraps used when crushing coal into pulverized coal.

【0007】これらの強磁性粒子が微粉炭の中に混入し
ているため、従来装置では磁気分離の障害となってい
る。 (2) 従来例2の装置500の説明(図7〜図8) 図7は従来の磁気分離装置(例2)の概念図、図8は従
来の磁気分離装置(例2)のフローチャートである。
Since these ferromagnetic particles are mixed in the pulverized coal, it is an obstacle to magnetic separation in the conventional apparatus. (2) Description of Apparatus 500 of Conventional Example 2 (FIGS. 7 to 8) FIG. 7 is a conceptual diagram of a conventional magnetic separation apparatus (Example 2), and FIG. 8 is a flowchart of the conventional magnetic separation apparatus (Example 2). .

【0008】磁気分離ボア504内には、超伝導4極磁
石501により、外部から磁場勾配および磁場が発生し
ている。磁場はボアの中心が零磁場で、磁気分離ボア5
04の内壁に近付くにつれ同心円状に強くなっている。
In the magnetic separation bore 504, a magnetic field gradient and a magnetic field are generated from the outside by the superconducting quadrupole magnet 501. The magnetic field has a zero magnetic field at the center of the bore, and the magnetic separation bore 5
As it gets closer to the inner wall of 04, it becomes stronger concentrically.

【0009】図7に示すように、磁気分離ボアの内に
は、回収管507が設けられ、その下部内側に分離管5
08が同軸上に配置されている。比較的磁化率が大きく
磁気分離装置により軌道を大きく変えられる分離物質
(強磁性粒子523と磁化率の大きい常磁性粒子52
2)と、磁化率が小さく磁気分離装置によりほとんど軌
道が変らず分離されない非分離物質(磁化率の小さな常
磁性粒子521)が混在した物質を、供給管509から
回収管507の中へ供給し、自由落下等の手段により、
磁気分離ボア504を通過させると、分離物質には半径
方向に移動するのに充分な磁気力が働くが、非分離物質
にはほとんど磁気力が働かない。
As shown in FIG. 7, a recovery pipe 507 is provided inside the magnetic separation bore, and the separation pipe 5 is provided inside the lower portion thereof.
08 is arranged coaxially. Separation material (ferromagnetic particle 523 and paramagnetic particle 52 having a large magnetic susceptibility) having a relatively large magnetic susceptibility and whose orbit can be largely changed by a magnetic separation device
2) and a non-separated substance (paramagnetic particles 521 having a small magnetic susceptibility), which has a small magnetic susceptibility and whose orbit hardly changes and is not separated, are supplied from the supply pipe 509 into the recovery pipe 507. By means of free fall,
When passing through the magnetic separation bore 504, sufficient magnetic force is exerted on the separated substance to move in the radial direction, but almost no magnetic force is exerted on the non-separated substance.

【0010】その結果、磁気分離ボア504を通過した
後、分離物質(強磁性粒子523と磁化率の大きい常磁
性粒子522)は回収管507の内壁に近い外側にかた
より、非分離物質(磁化率の小さな常磁性粒子521)
は逆に中心側にかたよる。
As a result, after passing through the magnetic separation bore 504, the separated substances (the ferromagnetic particles 523 and the paramagnetic particles 522 having a high magnetic susceptibility) are separated from the non-separated substances (magnetized particles) by the outside near the inner wall of the recovery tube 507. Paramagnetic particles 521 with a small rate)
On the contrary, it leans toward the center.

【0011】その中心側にかたよった粒子群と外側にか
たよった粒子群を、分離管508で別々にし、分離管5
08で収集された物質を非分離物質回収容器513で回
収し、回収管507内に残った物質を分離物質回収容器
512で回収する。
The group of particles that are curled toward the center and the group of particles that are curled toward the outside are separated by a separation tube 508, and the separation tube 5
The substance collected in 08 is collected in the non-separated substance collection container 513, and the substance remaining in the collection pipe 507 is collected in the separated substance collection container 512.

【0012】ここで、超伝導4極磁石501はクライオ
スタット502内で極低温に冷却される。一方、磁気分
離ボア504内は、ほぼ常温のため断熱構造503を設
けて断熱処理する。
The superconducting quadrupole magnet 501 is cooled to a cryogenic temperature in the cryostat 502. On the other hand, since the inside of the magnetic separation bore 504 is almost room temperature, a heat insulating structure 503 is provided to perform heat insulating processing.

【0013】[0013]

【発明が解決しようとする課題】[Problems to be Solved by the Invention]

(1) 従来の磁気分離装置(例1)では、強磁性粒
子、常磁性粒子、反磁性粒子のすべての種類の粒子を同
時に磁気分離装置に供給していたため、次のような問題
があった。
(1) In the conventional magnetic separation device (Example 1), all kinds of particles such as ferromagnetic particles, paramagnetic particles, and diamagnetic particles were simultaneously supplied to the magnetic separation device, so that there was the following problem. .

【0014】(A)強磁性体粒子は、常磁性粒子や反磁
性粒子に比べて桁違いに磁化率が大きく、磁気力も強力
であるため、磁気分離ボア内壁に付着し、磁気分離ボア
を詰まらせたり、発生磁場を減少させたりして、連続運
転に支障をきたす。
(A) Ferromagnetic particles have an order of magnitude larger magnetic susceptibility and stronger magnetic force than paramagnetic particles and diamagnetic particles, and therefore adhere to the inner wall of the magnetic separation bore and block the magnetic separation bore. It may interfere with continuous operation by reducing the generated magnetic field.

【0015】(B)永久電流モードの超伝導コイルによ
って磁気分離用の磁場を発生させている場合、強磁性粒
子の磁気履歴におけるヒステリシス損失により、磁場の
エネルギが吸収され、永久電流が減衰するため、発生磁
場が減少し、磁気分離能力が減少する。
(B) When the magnetic field for magnetic separation is generated by the superconducting coil in the persistent current mode, the hysteresis loss in the magnetic history of the ferromagnetic particles absorbs the energy of the magnetic field and attenuates the persistent current. , The generated magnetic field is reduced and the magnetic separation ability is reduced.

【0016】例えば、永久電流スイッチを使って、超伝
導コイル電流を閉ループにし、強力な発生磁場を無損失
で保持できる永久電流モードで運転する場合に、超伝導
コイルは、運転コストにおいてメリットがあるが、強磁
性粒子を磁気分離装置内を通過させる場合には、図3に
示す様なヒステリシスエネルギを磁場から奪う。
[0016] For example, when a superconducting coil current is closed loop using a persistent current switch to operate in a persistent current mode in which a strong generated magnetic field can be retained without loss, the superconducting coil has an advantage in operating cost. However, when the ferromagnetic particles pass through the magnetic separation device, the hysteresis energy as shown in FIG. 3 is taken from the magnetic field.

【0017】そのため、永久電流は減衰し、発生磁場、
及び磁場勾配が低下し、磁気分離能力が低下する。従っ
て、取り扱う量が少ない時は問題ないが、連続運転で大
量に取り扱う場合には問題となる。 (2)従来の磁気分離装置(例2)では、磁化率の大き
い常磁性粒子を、効率良く分離除去するために、超伝導
4極磁石の発生する磁場の強度を大きくすると、強磁性
粒子に加わる磁気力が強くなり過ぎ、回収管の壁に強磁
性粒子が付着してしまい、回収管が目づまりを起こすと
いう問題があった。本発明は、これらの問題を解決する
ことができる装置を提供することを目的とする。
Therefore, the permanent current is attenuated and the generated magnetic field,
Also, the magnetic field gradient is reduced and the magnetic separation ability is reduced. Therefore, there is no problem when the amount handled is small, but a problem occurs when a large amount is handled in continuous operation. (2) In the conventional magnetic separation device (Example 2), in order to efficiently separate and remove paramagnetic particles having a large magnetic susceptibility, if the strength of the magnetic field generated by the superconducting quadrupole magnet is increased, ferromagnetic particles become ferromagnetic particles. There was a problem that the magnetic force applied became too strong and ferromagnetic particles adhered to the wall of the recovery tube, causing the recovery tube to become clogged. The present invention aims to provide a device capable of solving these problems.

【0018】[0018]

【課題を解決するための手段】[Means for Solving the Problems]

(第1の手段)本発明に係る磁気分離装置は、磁気分離
ボアの径方向に磁場勾配がついている磁気分離ボア内に
被分離物質を通し、磁気分離ボア内の磁場勾配中で被分
離物質の粒子に働く磁気力の違いにより、特定の物質を
分離する磁気分離装置において、(A)強磁性粒子分離
用の第1磁気分離装置と、(B)常磁性および反磁性粒
子分離用の第2磁気分離装置を有し、(C)前記第1磁
気分離装置は、発生磁場の小さい第1磁場発生装置と、
第1磁気分離ボアを有し、第1供給部から供給された被
分離物質から強磁性粒子のみを分離して第1回収部に回
収するとともに、常磁性粒子及び反磁性粒子は、第2回
収部兼第2供給部に回収し、(D)前記第2磁気分離装
置は、発生磁場の大きい第2磁場発生装置と第2磁気分
離ボアを有し、第2回収部兼第2供給部から供給された
被分離物質から磁化率の大きい常磁性粒子のみを分離し
て第3回収部に回収するとともに、磁化率の小さい常磁
性粒子および反磁性粒子を第4回収部に回収することを
特徴とする。
(First Means) In the magnetic separation device according to the present invention, the substance to be separated is passed through the magnetic separation bore having a magnetic field gradient in the radial direction of the magnetic separation bore, and the substance to be separated is generated in the magnetic field gradient in the magnetic separation bore. (A) a first magnetic separation device for separating ferromagnetic particles and (B) a first magnetic separation device for separating paramagnetic and diamagnetic particles in a magnetic separation device for separating a specific substance due to the difference in magnetic force acting on the particles of (C) the first magnetic separation device has a first magnetic field generation device having a small generated magnetic field;
The first magnetic separation bore is provided, and only the ferromagnetic particles are separated from the substance to be separated supplied from the first supply unit and recovered in the first recovery unit, and the paramagnetic particles and the diamagnetic particles are recovered in the second recovery unit. (D) The second magnetic separation device has a second magnetic field generation device having a large generated magnetic field and a second magnetic separation bore, and is collected from the second collection part and second supply part. It is characterized in that only paramagnetic particles having a high magnetic susceptibility are separated from the supplied substance to be separated and recovered in the third recovery section, and paramagnetic particles and diamagnetic particles having a low magnetic susceptibility are recovered in the fourth recovery section. And

【0019】従って次のように作用する。分離対象の粉
粒体は、まず、第1磁気分離装置により強磁性物質のみ
が除去され、常磁性粒子と反磁性粒子のみが第2磁気分
離装置に入る。
Therefore, it operates as follows. In the particles to be separated, first, only the ferromagnetic substance is removed by the first magnetic separation device, and only the paramagnetic particles and the diamagnetic particles enter the second magnetic separation device.

【0020】次に第2磁気分離装置では、(A)常磁性
の中でも磁化率の大きい粒子と、(B)常磁性の中でも
磁化率の小さい粒子及び反磁性粒子に磁気分離される。
Next, in the second magnetic separation device, (A) particles having a large magnetic susceptibility among paramagnetic particles and (B) particles having a small magnetic susceptibility among paramagnetic particles and diamagnetic particles are magnetically separated.

【0021】そのため、下流の第2磁気分離装置には、
強磁性粒子は供給されない。したがって、下流の磁気分
離装置に強磁性粒子が付着するという問題は起こらな
い。また、常磁性粒子は図4の様な磁化特性を持ってい
るため、磁気履歴におけるヒステリシス損失はない。
Therefore, in the second magnetic separation device downstream,
No ferromagnetic particles are supplied. Therefore, the problem that the ferromagnetic particles adhere to the downstream magnetic separation device does not occur. Moreover, since the paramagnetic particles have the magnetization characteristics as shown in FIG. 4, there is no hysteresis loss in the magnetic history.

【0022】また、反磁性粒子についても同様にヒステ
リシス損失はないので、ヒステリシス損失により、磁場
のエネルギは奪われ、永久電流が減衰することも防止で
きる。(第2の手段)本発明に係る磁気分離装置は、中
心が零磁場で、磁気分離ボアの半径方向に磁場勾配がつ
いている磁場を発生させる超伝導4極磁石の磁気分離ボ
ア内に被分離物質を通し、磁気分離ボア内の磁場勾配中
で被分離物質粒子に働く磁気力の違いを利用して特定の
物質を分離する開勾配型磁気分離装置において、(A)
磁気分離ボアと、(B)第1供給管および第2供給管
と、(C)第1回収管および第2回収管と、(D)第1
分離管および第2分離管と、(E)第1分離物質回収容
器と、第2分離物質回収容器と、第3分離物質回収容器
とからなり、(F)前記磁気分離ボアは、超伝導4極磁
石により、磁気分離ボアの中心が零磁場で、磁気分離ボ
アの内壁に近付くにつれ同心円状に強くなる磁場を有
し、(G)前記磁気分離ボア内側に第2回収管を設け、
(H)前記第2回収管の内側に第1回収管を設け、
(I)前記第1回収管の上部に分離対象の物質を回収管
へ供給する第1供給管を設けるとともに、第2回収管の
上部に第2供給管を設け、(J)前記第1回収管の下部
に第1分離管を設けるとともに、第2回収管の下部に第
2分離管を設け、(K)前記第1供給管は、外部から供
給された磁性粒子と非磁性粒等の混合粉体(P)を第1
回収管へ供給し、(L)前記第1分離管は、第1回収管
を通過した磁性粒子と非磁性粒等の混合粉体Pの内、磁
化率の小さい常磁性粒子と磁化率の大きい常磁性粒子を
分離し、(M)前記第1分離物質回収容器は、第1回収
管を通過した混合粉体Pの内、第1分離管の中に入らな
かった強磁性粒子を回収し、(N)前記第1分離管から
排出された物質Aは、一旦、磁気分離装置の上に持ち上
げられた後、第2供給管を通して第2回収管に供給さ
れ、(O)前記第2分離物質回収容器は、第2回収管を
通過した物質Aの内、磁化率の大きい常磁性粒子を回収
し、(P)前記第3分離物質回収容器は、第2回収管を
通過した物質Aの内、磁化率の小さい常磁性粒子を回収
することを特徴とする。
Similarly, since diamagnetic particles do not have hysteresis loss, it is possible to prevent loss of magnetic field energy and attenuation of permanent current due to hysteresis loss. (Second Means) In the magnetic separation device according to the present invention, the magnetic field is zero in the center and the magnetic separation bore of the superconducting quadrupole magnet for generating a magnetic field having a magnetic field gradient in the radial direction of the magnetic separation bore is separated. An open-gradient magnetic separation device that separates a specific substance through the substance by utilizing the difference in magnetic force acting on the substance particles to be separated in a magnetic field gradient in the magnetic separation bore (A)
Magnetic separation bore, (B) first supply pipe and second supply pipe, (C) first recovery pipe and second recovery pipe, (D) first
A separation pipe and a second separation pipe, (E) a first separated substance collection container, a second separated substance collection container, and a third separated substance collection container, and (F) the magnetic separation bore is a superconducting tube. The polar magnet has a zero magnetic field at the center of the magnetic separation bore, and has a magnetic field that becomes concentrically strong as it approaches the inner wall of the magnetic separation bore. (G) A second recovery tube is provided inside the magnetic separation bore.
(H) A first recovery pipe is provided inside the second recovery pipe,
(I) A first supply pipe for supplying a substance to be separated to the recovery pipe is provided above the first recovery pipe, and a second supply pipe is provided above the second recovery pipe, and (J) the first recovery pipe is provided. A first separation pipe is provided in the lower part of the pipe, and a second separation pipe is provided in the lower part of the second recovery pipe. (K) The first supply pipe mixes magnetic particles and non-magnetic particles supplied from the outside. First powder (P)
(L) The first separation pipe supplies (L) the first separation pipe to the paramagnetic particles having a small magnetic susceptibility and the large magnetic susceptibility among the mixed powder P of the magnetic particles and the non-magnetic particles that have passed through the first recovery pipe. The paramagnetic particles are separated, and (M) the first separated substance recovery container recovers the ferromagnetic particles that have not entered the first separation tube from the mixed powder P that has passed through the first recovery tube. (N) The substance A discharged from the first separation pipe is once lifted on the magnetic separation device and then supplied to the second recovery pipe through the second supply pipe, and (O) the second separation substance. The recovery container recovers the paramagnetic particles having a large magnetic susceptibility from the substance A that has passed through the second recovery pipe, and (P) the third separated substance recovery container has the property A that has passed through the second recovery pipe. It is characterized in that paramagnetic particles having a small magnetic susceptibility are collected.

【0023】[0023]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

(第1の実施の形態)本発明の第1の実施の形態を図1
に示す。図1において、分離すべき粉粒体は微粉炭であ
って、分離対象粒子である微粉炭は、(1)有効成分で
ある有機物(これは磁化率が反磁性で小さいので図1で
は、粒子14に相当する。)と、(2)パイライト(化
学式FeS2 、硫黄分)、カオリナイト(化学式Al2
Si2 O5 (OH)4 、灰分の主要成分)、シデライト
(化学式FeCO2 )等(パイライト、カオリナイト、
シデライトは磁化率が比較的大きい常磁性粒子で図1で
は、粒子15に相当する。)と、(3)小量の強磁性体
であるピロタイト(化学式FeSx(1.0<x<1.
14)、硫黄分)(これは図1では粒子16に相当す
る。)から成っている。
(First Embodiment) FIG. 1 shows a first embodiment of the present invention.
Shown in In FIG. 1, the granular material to be separated is pulverized coal, and the pulverized coal which is the particle to be separated is (1) an organic substance which is an active ingredient (in FIG. 14), and (2) pyrite (chemical formula FeS2, sulfur content), kaolinite (chemical formula Al2
Si2 O5 (OH) 4, main component of ash), siderite (chemical formula FeCO2), etc. (pyrite, kaolinite,
Siderite is a paramagnetic particle having a relatively large magnetic susceptibility and corresponds to particle 15 in FIG. ) And (3) a small amount of ferromagnetic material, pyrotite (chemical formula FeSx (1.0 <x <1.
14), the sulfur content) (this corresponds to the particles 16 in FIG. 1).

【0024】そこで、先ず図1の上部に配置された第1
磁気分離装置(強磁性粒子分離用磁気分離装置)によ
り、強磁性粒子である粒子16のみを分離し、第1回収
部(強磁性粒子回収部)19により回収する。
Therefore, first, the first
Only the particles 16 that are ferromagnetic particles are separated by the magnetic separation device (magnetic separation device for ferromagnetic particle separation) and collected by the first recovery unit (ferromagnetic particle recovery unit) 19.

【0025】しかし常磁性あるいは反磁性である粒子1
4、15は分離されない。なぜなら、第1磁場発生装置
(強磁性粒子のみを対象とする磁気分離装置用の磁場発
生装置)18は発生磁場が小さいため、常磁性あるいは
反磁性である粒子14、15には磁気力を及ぼさないた
めである。
However, particles 1 that are paramagnetic or diamagnetic
4, 15 are not separated. This is because the first magnetic field generator (magnetic field generator for a magnetic separation device that targets only ferromagnetic particles) 18 has a small generated magnetic field, and therefore exerts a magnetic force on the particles 14 and 15 that are paramagnetic or diamagnetic. Because there is no.

【0026】次に、強磁気粒子16のみが分離除去され
た被分離物質は、常磁性あるいは反磁性粒子14、15
のので、第1磁気分離装置の下部に配置された第2磁気
分離装置(常磁性粒子分離用磁気分離装置)200によ
り分離する。
Next, the substance to be separated from which only the strong magnetic particles 16 have been separated and removed is paramagnetic or diamagnetic particles 14 and 15.
Therefore, separation is performed by the second magnetic separation device (magnetic separation device for paramagnetic particle separation) 200 arranged below the first magnetic separation device.

【0027】このとき、従来の装置では、強磁性粒子6
が混入していれば、磁気分離ボアの内壁に強磁性粒子が
付着し、磁気分離ボア径を目詰まりさせたり、発生磁場
を減少させたりして、分離能力の低下を招くが、本発明
装置では第1磁気分離装置で分離し、回収しているの
で、その様な問題は防止され、連続安定運転が可能であ
る。
At this time, in the conventional device, the ferromagnetic particles 6
Is mixed, the ferromagnetic particles adhere to the inner wall of the magnetic separation bore, clogging the diameter of the magnetic separation bore, or reducing the generated magnetic field, leading to a decrease in separation ability. Since the magnetic field is separated by the first magnetic separation device and collected, such a problem is prevented and continuous stable operation is possible.

【0028】また、第2磁場発生装置(常磁性粒子分離
用磁場発生装置)22を超伝導コイルの永久電流モード
で使用している場合、永久電流は減衰しなくて、連続安
定運転が可能である。
When the second magnetic field generator (magnetic field generator for separating paramagnetic particles) 22 is used in the permanent current mode of the superconducting coil, the permanent current is not attenuated and continuous stable operation is possible. is there.

【0029】この場合も、強磁性粒子が混入している
と、従来の装置では強磁性粒子の磁気履歴によるヒステ
リシス損失により永久電流は徐々に減衰するため、連続
安定運転が不可能であるが、本発明装置では、第1磁気
分離装置で回収しているので、その様な問題は防止でき
る。 (第2の実施の形態)本発明の第2の実施の形態を図5
〜図6に示す。
Also in this case, when the ferromagnetic particles are mixed, the permanent current is gradually attenuated by the hysteresis loss due to the magnetic history of the ferromagnetic particles in the conventional device, so that continuous stable operation is impossible. In the device of the present invention, such a problem can be prevented because the first magnetic separation device collects the magnetic field. (Second Embodiment) FIG. 5 shows the second embodiment of the present invention.
6 to FIG.

【0030】図5は本発明の第2の実施の形態に係る磁
気分離装置の概念図、図6は本発明の第2の実施の形態
に係る磁気分離装置のフローチャートである。 図5に
示すように、超伝導4極磁石301、クライオスタット
302、断熱構造303は従来の磁気分離装置と同様に
配置する。
FIG. 5 is a conceptual diagram of a magnetic separation device according to the second embodiment of the present invention, and FIG. 6 is a flow chart of the magnetic separation device according to the second embodiment of the present invention. As shown in FIG. 5, the superconducting quadrupole magnet 301, the cryostat 302, and the heat insulating structure 303 are arranged in the same manner as in the conventional magnetic separation device.

【0031】磁気分離ボア304内には、まず第2回収
管307を配置し、その内側の磁気分離ボア軸上に第1
回収管305を配置する。第1回収管305と第2回収
管307の上部には、分離対象の物質を回収管へ供給す
る第1供給管309と第2供給管310がそれぞれ差し
込まれている。
In the magnetic separation bore 304, first, the second recovery pipe 307 is arranged, and the first recovery pipe 307 is arranged on the inside of the second recovery pipe 307 on the axis of the magnetic separation bore.
A collection pipe 305 is arranged. A first supply pipe 309 and a second supply pipe 310 for supplying the substance to be separated to the recovery pipe are inserted in the upper portions of the first recovery pipe 305 and the second recovery pipe 307, respectively.

【0032】また回収管の下部には、磁気分離ボア軸上
に第1分離管306と第2分離管308が設けられてい
る。強磁性粒子323と、磁化率の大きい常磁性粒子3
22と、磁化率の小さい常磁性粒子321が混合した物
質Pを,第1供給管309を通して第1回収管305を
通過させると、磁化率の小さい常磁性粒子321と磁化
率の大きい常磁性粒子322は第1分離管306の中に
入り、残りの強磁性粒子323は第1回収管305を通
り抜けて、第1分離物質回収容器311に回収される。
A first separation pipe 306 and a second separation pipe 308 are provided below the recovery pipe on the magnetic separation bore axis. Ferromagnetic particles 323 and paramagnetic particles 3 having a high magnetic susceptibility
22 and the substance P in which the paramagnetic particles 321 having a low magnetic susceptibility are mixed and passed through the first recovery pipe 305 through the first supply pipe 309, the paramagnetic particles 321 having a low magnetic susceptibility and the paramagnetic particles having a high magnetic susceptibility are obtained. 322 enters the first separation tube 306, and the remaining ferromagnetic particles 323 pass through the first recovery tube 305 and are collected in the first separated substance recovery container 311.

【0033】第1分離管306から排出された物質A
は、一旦、磁気分離装置300の上に持ち上げられ、第
2供給管310を通して第2回収管307に供給され
る。この第1分離管306から排出された物質Aは、第
2回収管307を通過していく間に、磁化率の大きい常
磁性粒子322は外側に引き寄せられ、第2分離物質回
収容器312に回収される。
Substance A discharged from the first separation pipe 306
Is once lifted above the magnetic separation device 300 and supplied to the second recovery pipe 307 through the second supply pipe 310. The substance A discharged from the first separation pipe 306 is collected in the second separation substance recovery container 312 while the paramagnetic particles 322 having a high magnetic susceptibility are attracted to the outside while passing through the second recovery pipe 307. To be done.

【0034】一方、磁化率の小さい常磁性粒子321
は、そのまま通過して、第2分離管308を通して第3
分離物質回収容器313で回収される。前述のように、
第2の実施の形態に係る発明は、開勾配型磁気分離装置
の磁気分離ボア内の軸上に、2本の回収管を配置すると
ともに、内側の回収管305で分離されなかった粒子
を、外側の回収管307へ供給する供給管を設けたこと
を特徴とする。
On the other hand, paramagnetic particles 321 having a small magnetic susceptibility
Passes through the second separation pipe 308 to the third
It is recovered in the separated substance recovery container 313. As aforementioned,
In the invention according to the second embodiment, two recovery tubes are arranged on the shaft in the magnetic separation bore of the open gradient type magnetic separation device, and particles not separated by the inner recovery tube 305 are It is characterized in that a supply pipe for supplying to the outer recovery pipe 307 is provided.

【0035】[0035]

【発明の効果】本発明は前述のように構成されているの
で、以下に記載するような効果を奏する。 (1)請求項1の発明の効果 (A)強磁性体粒子を第1磁気分離装置によりあらかじ
め分離対象粒子から取り除くことができるので、常磁性
粒子を分離する磁気分離ボア内に強磁性粒子が付着する
ことがない。
Since the present invention is constructed as described above, it has the following effects. (1) The effect of the invention of claim 1 (A) Since the ferromagnetic particles can be removed from the particles to be separated in advance by the first magnetic separation device, the ferromagnetic particles are contained in the magnetic separation bore separating the paramagnetic particles. Does not adhere.

【0036】そのため、連続安定運転が可能になる。 (B)強磁性体粒子を第1磁気分離装置であらかじめ分
離対象粒子から取り除いているので、第2磁気分離装置
では常磁性粒子と反磁性粒子のみが分離対象物質とな
る。そして常磁性粒子と反磁性粒子に対しては磁気履歴
におけるヒステリシス損失がない。
Therefore, continuous stable operation becomes possible. (B) Since the ferromagnetic particles have been removed from the particles to be separated in advance by the first magnetic separator, only the paramagnetic particles and the diamagnetic particles are the objects to be separated in the second magnetic separator. And there is no hysteresis loss in the magnetic history for paramagnetic particles and diamagnetic particles.

【0037】そのため、第2磁気分離装置では磁場のエ
ネルギは奪われない。 (C)永久電流モードで運転している場合、超伝導コイ
ルが発生している磁場のエネルギは奪われない。したが
って、永久電流は減少せず、磁気分離装置の磁場と、磁
場勾配は減衰しない。
Therefore, the energy of the magnetic field is not lost in the second magnetic separation device. (C) When operating in the persistent current mode, the energy of the magnetic field generated by the superconducting coil is not lost. Therefore, the persistent current is not reduced and the magnetic field of the magnetic separator and the magnetic field gradient are not attenuated.

【0038】そのため、発生磁場は保持され、長時間の
連続安定運転が可能になり、磁気分離装置の分離性能の
長時間安定維持が可能になる。 (2)請求項2および3の発明の効果 (A)強磁性粒子を第1段階で除去できるため、すなわ
ち、強磁性粒子323は第1回収管305を通り抜け
て、第1分離物質回収容器311に回収されるため、回
収管の目づまりを抑制することが出来る。
Therefore, the generated magnetic field is held, continuous stable operation for a long time becomes possible, and stable separation performance of the magnetic separation device can be maintained for a long time. (2) Effects of the inventions of claims 2 and 3 (A) Because the ferromagnetic particles can be removed in the first step, that is, the ferromagnetic particles 323 pass through the first recovery pipe 305, and the first separated substance recovery container 311. Since it is collected in the first place, clogging of the collection pipe can be suppressed.

【0039】(B)通常では、分離効率の低い磁気分離
ボア中央部を有効に活用することが出来る。そのため、
装置全体の分離効率を向上することが出来る。 (C)請求項1の発明は分離装置を上下2段とするもの
であるが、請求項2および3の発明は分離装置が1段で
あるので、コイルの数を減ずることができる。
(B) Normally, the central portion of the magnetic separation bore, which has a low separation efficiency, can be effectively utilized. for that reason,
The separation efficiency of the entire device can be improved. (C) In the invention of claim 1, the separating device has two upper and lower stages, but in the inventions of claims 2 and 3, since the separating device has one stage, the number of coils can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態に係る磁気分離装置
の概念図。
FIG. 1 is a conceptual diagram of a magnetic separation device according to a first embodiment of the present invention.

【図2】従来の磁気分離装置(例1)の概念図。FIG. 2 is a conceptual diagram of a conventional magnetic separation device (example 1).

【図3】強磁性粒子のM−H特性を示す図。FIG. 3 is a diagram showing MH characteristics of ferromagnetic particles.

【図4】常磁性粒子のM−H特性を示す図。FIG. 4 is a diagram showing MH characteristics of paramagnetic particles.

【図5】本発明の第2の実施の形態に係る磁気分離装置
の概念図。
FIG. 5 is a conceptual diagram of a magnetic separation device according to a second embodiment of the present invention.

【図6】本発明の第2の実施の形態に係る磁気分離装置
のフローチャート。
FIG. 6 is a flowchart of a magnetic separation device according to a second embodiment of the present invention.

【図7】従来の磁気分離装置(例2)の概念図。FIG. 7 is a conceptual diagram of a conventional magnetic separation device (example 2).

【図8】従来の磁気分離装置(例2)のフローチャー
ト。
FIG. 8 is a flowchart of a conventional magnetic separation device (example 2).

【符号の説明】[Explanation of symbols]

1…磁気分離ボア、 2…磁場発生装置、 3…磁化率の大きい粉粒体、 4…磁化率の小さい常磁性粒子又は反磁性粒子、 6…強磁性粒子、 7…供給部、 8…磁化率の大きい常磁性粒子の回収部、 9…磁化率の小さい粒子の回収部、 10…第1供給部、 14…磁化率の小さい常磁性粒子又は反磁性粒子、 15…磁化率の大きい常磁性粒子、 16…強磁性粒子、 17…第1磁気分離ボア(強磁性粒子分離用)、 18…第1磁場発生装置(強磁性粒子分離用)、 19…第1回収部(強磁性粒子回収用)、 20…第2回収部兼第2供給部、 21…第2磁気分離ボア(常磁性粒子分離用)、 22…第2磁場発生装置(常磁性粒子分離用)、 23…第3回収部(磁化率の大きい常磁性粒子回収
用)、 24…第4回収部(磁化率の小さい常磁性粒子回収
用)、 100…第1磁気分離装置、 200…第2磁気分離装置、 300…磁気分離装置、 301…超伝導4極磁石、 302…クライオスタット、 303…断熱構造、 304…磁気分離ボア、 305…第1回収管、 306…第1分離管、 307…第2回収管、 308…第2分離管、 309…第1供給管、 310…第2供給管、 311…第1分離物質回収容器、 312…第2分離物質回収容器、 313…第3分離物質回収容器、 321…磁化率の小さい常磁性粒子、 322…磁化率の大きい常磁性粒子、 323…強磁性粒子、 400…従来の磁気分離装置(例1)、 500…従来の磁気分離装置(例2)、 501…超伝導4極磁石、 502…クライオスタット、 503…断熱構造、 504…磁気分離ボア、 507…回収管、 508…分離管、 509…供給管、 512…分離物質回収容器、 513…非分離物質回収容器、 521…磁化率の小さい常磁性粒子、 522…磁化率の大きい常磁性粒子、 523…強磁性粒子、 A…第1分離管から排出された物質、 M…磁化の強さ、 H…磁化力。 P…強磁性粒子、常磁性粒子、非常磁性粒等の混合粉
体。
DESCRIPTION OF SYMBOLS 1 ... Magnetic separation bore, 2 ... Magnetic field generator, 3 ... Granules with a large magnetic susceptibility, 4 ... Paramagnetic particles or diamagnetic particles with a small magnetic susceptibility, 6 ... Ferromagnetic particles, 7 ... Supply part, 8 ... Magnetization High magnetic susceptibility paramagnetic particle recovery section, 9 ... Small magnetic susceptibility particle recovery section, 10 ... First supply section, 14 ... Small magnetic susceptibility paramagnetic particle or diamagnetic particle, 15 ... Large magnetic susceptibility paramagnetic. Particles, 16 ... Ferromagnetic particles, 17 ... First magnetic separation bore (for separating ferromagnetic particles), 18 ... First magnetic field generator (for separating ferromagnetic particles), 19 ... First recovery unit (for recovering ferromagnetic particles) ), 20 ... Second recovery section / second supply section, 21 ... Second magnetic separation bore (for paramagnetic particle separation), 22 ... Second magnetic field generator (for paramagnetic particle separation), 23 ... Third recovery section (For collecting paramagnetic particles having a large magnetic susceptibility), 24 ... Fourth collecting section (paramagnetic particles having a small magnetic susceptibility) Child recovery), 100 ... First magnetic separation device, 200 ... Second magnetic separation device, 300 ... Magnetic separation device, 301 ... Superconducting quadrupole magnet, 302 ... Cryostat, 303 ... Thermal insulation structure, 304 ... Magnetic separation bore, 305 ... 1st collection pipe, 306 ... 1st separation pipe, 307 ... 2nd collection pipe, 308 ... 2nd separation pipe, 309 ... 1st supply pipe, 310 ... 2nd supply pipe, 311 ... 1st separated substance collection container , 312 ... Second separation material recovery container, 313 ... Third separation material recovery container, 321 ... Paramagnetic particle with low magnetic susceptibility, 322 ... Paramagnetic particle with high magnetic susceptibility, 323 ... Ferromagnetic particle, 400 ... Conventional magnetism Separation device (Example 1), 500 ... Conventional magnetic separation device (Example 2), 501 ... Superconducting quadrupole magnet, 502 ... Cryostat, 503 ... Thermal insulation structure, 504 ... Magnetic separation bore, 507 ... Recovery , 508 ... Separation tube, 509 ... Supply tube, 512 ... Separation material recovery container, 513 ... Non-separation material recovery container, 521 ... Paramagnetic particle with low magnetic susceptibility, 522 ... Paramagnetic particle with high magnetic susceptibility, 523 ... Ferromagnetism Particles, A ... Substance discharged from the first separation tube, M ... Magnetic strength, H ... Magnetic force. P ... Mixed powder of ferromagnetic particles, paramagnetic particles, extremely magnetic particles, etc.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 磁気分離ボアの径方向に磁場勾配がつい
ている磁気分離ボア内に被分離物質(14、15、1
6)を通し、磁気分離ボア内の磁場勾配中で被分離物質
の粒子に働く磁気力の違いにより、特定の物質を分離す
る磁気分離装置において、(A)強磁性粒子分離用の第
1磁気分離装置(100)と、(B)常磁性および反磁
性粒子分離用の第2磁気分離装置(200)を有し、
(C)前記第1磁気分離装置(100)は、発生磁場の
小さい第1磁場発生装置(18)と、第1磁気分離ボア
(17)を有し、第1供給部(10)から供給された被
分離物質から、強磁性粒子(16)のみを分離して第1
回収部(19)に回収するとともに、常磁性粒子及び反
磁性粒子(14、15)は第2回収部兼第2供給部(2
0)に回収し、(D)前記第2磁気分離装置(200)
は、発生磁場の大きい第2磁場発生装置(22)と第2
磁気分離ボア(21)を有し、第2回収部兼第2供給部
(20)から供給された被分離物質(14、15)か
ら、磁化率の大きい常磁性粒子(15)のみを分離して
第3回収部(23)に回収するとともに、磁化率の小さ
い常磁性粒子および反磁性粒子(14)を第4回収部
(24)に回収することを特徴とする磁気分離装置。
1. A substance to be separated (14, 15, 1) is placed in a magnetic separation bore having a magnetic field gradient in a radial direction of the magnetic separation bore.
6) through a magnetic separation device that separates a specific substance due to the difference in the magnetic force acting on the particles of the substance to be separated in the magnetic field gradient in the magnetic separation bore, (A) The first magnetic field for separating ferromagnetic particles. A separating device (100) and (B) a second magnetic separating device (200) for separating paramagnetic and diamagnetic particles,
(C) The first magnetic separation device (100) has a first magnetic field generation device (18) having a small generated magnetic field and a first magnetic separation bore (17), and is supplied from the first supply unit (10). The ferromagnetic particles (16) are separated from the separated substance
The paramagnetic particles and the diamagnetic particles (14, 15) are collected in the collecting section (19) and the paramagnetic particles and diamagnetic particles (14, 15) are collected in the second collecting section and the second supplying section (2).
0), and (D) the second magnetic separation device (200).
Is a second magnetic field generator (22) that generates a large magnetic field
It has a magnetic separation bore (21) and separates only the paramagnetic particles (15) having a large magnetic susceptibility from the substances (14, 15) to be separated supplied from the second recovery section / second supply section (20). And a third magnetic recovery unit (23) for recovering paramagnetic particles and diamagnetic particles (14) having a low magnetic susceptibility, and a fourth magnetic recovery unit (24).
【請求項2】 中心が零磁場で、磁気分離ボアの半径方
向に磁場勾配がついている磁場を発生させる超伝導4極
磁石の磁気分離ボア内に被分離物質を通し、磁気分離ボ
ア内の磁場勾配中で被分離物質粒子に働く磁気力の違い
を利用して特定の物質を分離する開勾配型磁気分離装置
において、(A)磁気分離ボア(304)の内側に設け
た第2回収管(307)と、(B)第2回収管(30
7)の内側に設けた第1回収管(305)と、(C)磁
性粒子と非磁性粒等の混合粉体(P)を第1回収管(3
05)へ供給する第1供給管(309)と、(D)第1
回収管(305)で分離されなかった粒子を第2回収管
(307)へ供給する第2供給管(310)を設けたこ
とを特徴とする磁気分離装置。
2. A magnetic field in the magnetic separation bore, wherein a substance to be separated is passed through the magnetic separation bore of a superconducting quadrupole magnet that generates a magnetic field having a zero magnetic field at the center and a magnetic field gradient in the radial direction of the magnetic separation bore. In an open gradient type magnetic separation device that separates a specific substance by utilizing the difference in magnetic force acting on the particles to be separated in the gradient, (A) a second recovery pipe () provided inside the magnetic separation bore (304) 307) and (B) second recovery pipe (30
7), the first recovery pipe (305) and (C) the mixed powder (P) of magnetic particles and non-magnetic particles (P) into the first recovery pipe (3).
05), a first supply pipe (309), and (D) first
A magnetic separation device comprising a second supply pipe (310) for supplying particles not separated by the recovery pipe (305) to the second recovery pipe (307).
【請求項3】 中心が零磁場で、磁気分離ボアの半径方
向に磁場勾配がついている磁場を発生させる超伝導4極
磁石の磁気分離ボア内に被分離物質を通し、磁気分離ボ
ア内の磁場勾配中で被分離物質粒子に働く磁気力の違い
を利用して特定の物質を分離する開勾配型磁気分離装置
において、(A)磁気分離ボア(304)と、(B)第
1供給管(309)および第2供給管(310)と、
(C)第1回収管(305)および第2回収管(30
7)と、(D)第1分離管(306)および第2分離管
(308)と、(E)第1分離物質回収容器(31
1)、第2分離物質回収容器(312)および第3分離
物質回収容器(313)とからなり、(F)前記磁気分
離ボア(304)は、超伝導4極磁石(301)によ
り、磁気分離ボアの中心が零磁場で、磁気分離ボアの内
壁に近付くにつれ同心円状に強くなる磁場を有し、
(G)前記磁気分離ボア(304)内側に第2回収管
(307)を設け、(H)前記第2回収管(307)の
内側に第1回収管(305)を設け、(I)前記第1回
収管(305)の上部に分離対象の物質を回収管へ供給
する第1供給管(309)を設けるとともに、第2回収
管(307)の上部に第2供給管(310)を設け、
(J)前記第1回収管(305)の下部に第1分離管
(306)を設けるとともに、第2回収管(307)の
下部に第2分離管(308)を設け、(K)前記第1供
給管(309)は、外部から供給された磁性粒子と非磁
性粒等の混合粉体(P)を第1回収管(305)へ供給
し、(L)前記第1分離管(306)は、第1回収管
(305)を通過した磁性粒子と非磁性粒等の混合粉体
(P)の内、磁化率の小さい常磁性粒子(321)と磁
化率の大きい常磁性粒子(322)を分離し、(M)前
記第1分離物質回収容器(311)は、第1回収管(3
05)を通過した混合粉体(P)の内、第1分離管(3
06)の中に入らなかった強磁性粒子(323)を回収
し、(N)前記第1分離管(306)から排出された物
質(A)は、一旦、磁気分離装置(300)の上に持ち
上げられた後、第2供給管(310)を通して第2回収
管(307)に供給され、(O)前記第2分離物質回収
容器(312)は、第2回収管(307)を通過した物
質(A)の内、磁化率の大きい常磁性粒子(322)を
回収し、(P)前記第3分離物質回収容器(313)
は、第2回収管(307)を通過した物質(A)の内、
磁化率の小さい常磁性粒子(321)を回収することを
特徴とする磁気分離装置。
3. A magnetic field in the magnetic separation bore, wherein a substance to be separated is passed through the magnetic separation bore of a superconducting quadrupole magnet that generates a magnetic field having a zero magnetic field at the center and a magnetic field gradient in the radial direction of the magnetic separation bore. In an open gradient type magnetic separation device that separates a specific substance by using the difference in magnetic force acting on the particles to be separated in the gradient, (A) magnetic separation bore (304) and (B) first supply pipe ( 309) and the second supply pipe (310),
(C) First recovery pipe (305) and second recovery pipe (30)
7), (D) first separation pipe (306) and second separation pipe (308), and (E) first separation substance recovery container (31).
1), a second separated substance recovery container (312) and a third separated substance recovery container (313). (F) The magnetic separation bore (304) is magnetically separated by a superconducting quadrupole magnet (301). The center of the bore has a zero magnetic field, and has a magnetic field that concentrically strengthens as it approaches the inner wall of the magnetic separation bore,
(G) A second recovery pipe (307) is provided inside the magnetic separation bore (304), (H) A first recovery pipe (305) is provided inside the second recovery pipe (307), and (I) A first supply pipe (309) for supplying the substance to be separated to the recovery pipe is provided above the first recovery pipe (305), and a second supply pipe (310) is provided above the second recovery pipe (307). ,
(J) A first separation pipe (306) is provided below the first recovery pipe (305), and a second separation pipe (308) is provided below the second recovery pipe (307). The first supply pipe (309) supplies the mixed powder (P) of magnetic particles and non-magnetic particles supplied from the outside to the first recovery pipe (305), and (L) the first separation pipe (306). Is a paramagnetic particle (321) having a small magnetic susceptibility and a paramagnetic particle (322) having a large magnetic susceptibility among the mixed powder (P) of magnetic particles and non-magnetic particles that have passed through the first recovery pipe (305). (M) The first separated substance recovery container (311) is connected to the first recovery pipe (3
Of the mixed powder (P) that has passed through 05), the first separation pipe (3
The ferromagnetic particles (323) that did not enter into (06) are collected, and (N) the substance (A) discharged from the first separation tube (306) is once placed on the magnetic separation device (300). After being lifted, it is supplied to the second recovery pipe (307) through the second supply pipe (310), and (O) the second separated substance recovery container (312) passes through the second recovery pipe (307). Paramagnetic particles (322) having a high magnetic susceptibility among (A) are recovered, and (P) the third separated substance recovery container (313).
Of the substance (A) that has passed through the second recovery pipe (307),
A magnetic separation device characterized by collecting paramagnetic particles (321) having a small magnetic susceptibility.
JP8054814A 1995-10-30 1996-03-12 Magnetic separator Withdrawn JPH09187673A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8054814A JPH09187673A (en) 1995-10-30 1996-03-12 Magnetic separator

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7-281728 1995-10-30
JP28172895 1995-10-30
JP8054814A JPH09187673A (en) 1995-10-30 1996-03-12 Magnetic separator

Publications (1)

Publication Number Publication Date
JPH09187673A true JPH09187673A (en) 1997-07-22

Family

ID=26395624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8054814A Withdrawn JPH09187673A (en) 1995-10-30 1996-03-12 Magnetic separator

Country Status (1)

Country Link
JP (1) JPH09187673A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010156613A (en) * 2008-12-26 2010-07-15 Mitsubishi Heavy Ind Ltd Foreign matter removing apparatus and method for removing foreign mater in coal
CN102380458A (en) * 2011-11-25 2012-03-21 江苏旌凯中科超导高技术有限公司 Magnetic separating recycling device for ferromagnetic fine iron ore material
KR20130103282A (en) * 2012-03-09 2013-09-23 한국전자통신연구원 Multiple discrimination device and method for tumor discrimination
CN108745634A (en) * 2018-05-24 2018-11-06 贺州学院 A kind of electromagnetic separation
CN114345546A (en) * 2022-01-06 2022-04-15 浙江天元金属制品股份有限公司 Screw screening device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010156613A (en) * 2008-12-26 2010-07-15 Mitsubishi Heavy Ind Ltd Foreign matter removing apparatus and method for removing foreign mater in coal
CN102380458A (en) * 2011-11-25 2012-03-21 江苏旌凯中科超导高技术有限公司 Magnetic separating recycling device for ferromagnetic fine iron ore material
KR20130103282A (en) * 2012-03-09 2013-09-23 한국전자통신연구원 Multiple discrimination device and method for tumor discrimination
CN108745634A (en) * 2018-05-24 2018-11-06 贺州学院 A kind of electromagnetic separation
CN114345546A (en) * 2022-01-06 2022-04-15 浙江天元金属制品股份有限公司 Screw screening device

Similar Documents

Publication Publication Date Title
GB1501396A (en) Magnetic separators
JPH09187673A (en) Magnetic separator
McNeely et al. Structural and low-temperature magnetic studies on compounds Sm2Fe17 with aluminium substitution for iron
Dean et al. Magnetic separation of ores
Diev et al. High temperature superconducting magnetic system for high gradient magnetic separator
Kido High field magnetostriction in intermetallic compounds
Proksch et al. Interactions between single domain particles
Cornelison et al. Giant coercivities and chemical short‐range order in Pr‐Ga‐Fe metallic glasses
Watson The design for a high-Tc superconducting magnetic separator
Fukamichi et al. Magnetic properties and density of Fe-Ce amorphous alloys
Jin et al. Developing a HTS magnet for high gradient magnetic separation techniques
Hayashi et al. Study on high gradient magnetic separation for selective removal of impurity from highly viscous fluid
Andres Magnetic liquids
Nishimoto et al. Study on volume reduction of cesium contaminated soil by high gradient magnetic separation: design of magnetic filters
Kopp Superconducting magnetic separators
JP4385469B2 (en) Method for separating structures containing ferrite magnets
GB2067435A (en) Magnetic particle separation
Johnson et al. Effects of chemical and magnetic disorder in Fe0. 50Mn0. 50
Kim Quantum-classical escape-rate crossover of antiferromagnetic particles in an external magnetic field
Okada et al. Removal of aerosol by magnetic separation
Li et al. Aggregation experiments on fine fly ash particles in a gradient magnetic field
Hartikainen et al. Open-gradient magnetic separator with racetrack coils suitable for cleaning aqueous solutions
US7056400B1 (en) Method of separating superalloy metal powder from admixed contaminants
Oba et al. Magnetic Separation of High-T c Superconducting Particles
JP2005021801A (en) Method and apparatus for separation and recovery of material using superconductive magnetic field

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030603