JPH09184041A - Chromium-iron single crystal alloy and gas turbine member using the same - Google Patents

Chromium-iron single crystal alloy and gas turbine member using the same

Info

Publication number
JPH09184041A
JPH09184041A JP34237095A JP34237095A JPH09184041A JP H09184041 A JPH09184041 A JP H09184041A JP 34237095 A JP34237095 A JP 34237095A JP 34237095 A JP34237095 A JP 34237095A JP H09184041 A JPH09184041 A JP H09184041A
Authority
JP
Japan
Prior art keywords
chromium
alloy
iron
single crystal
gas turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34237095A
Other languages
Japanese (ja)
Inventor
Kuniteru Suzuki
邦輝 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Metals and Chemical Co Ltd
Original Assignee
Japan Metals and Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Metals and Chemical Co Ltd filed Critical Japan Metals and Chemical Co Ltd
Priority to JP34237095A priority Critical patent/JPH09184041A/en
Publication of JPH09184041A publication Critical patent/JPH09184041A/en
Pending legal-status Critical Current

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a chromium-iron alloy excellent in mechanical properties at high temp., particularly creep rupture characteristic, high temp. oxidation resistance, etc., and suitable for gas turbine member, etc., by regulating chromium content to a high value in a specific range in a chromium-iron binary alloy and forming a single crystal free from grain boundaries. SOLUTION: This alloy is a chromium-iron single crystal alloy having a composition consisting of, by weight, 60-95% chromium and the balance essentially iron. As to chromium content, creep rupture characteristic at high temp. becomes insufficient and a region embrittled by the presence of Σ-phase is brought about when it is below 60%, and on the other hand, hardness is deteriorated when it exceeds 95%. Because of the absence of grain boundaries in this chromium-iron single crystal alloy, intergranular fracture does not occur and this alloy becomes excellent in high temp. oxidation resistance as well as in mechanical properties at high temp. in particular. By using a gas turbine member composed of this alloy, a high-powered and high-efficiency gas turbine can be obtained. Further, it is preferable to regulate the contents of the elements other than chromium and iron to <=0.1wt.%.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、クロム−鉄系単結
晶合金、及びそれを用いたガスタービン部材に関し、さ
らに詳しくは、高温における機械物性、特にクリープ破
断特性及び耐酸化性などに優れ、例えばガスタービンの
ブレードやノズルのようなガスタービン部材などに好適
に用いられるクロムを主体とするクロム−鉄系単結晶合
金及びこの合金からなるガスタービン部材に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a chromium-iron single crystal alloy and a gas turbine member using the same, and more specifically, it has excellent mechanical properties at high temperatures, particularly excellent creep rupture properties and oxidation resistance. For example, the present invention relates to a chromium-iron single crystal alloy mainly containing chromium, which is preferably used for a gas turbine member such as a blade or a nozzle of a gas turbine, and a gas turbine member made of this alloy.

【0002】[0002]

【従来の技術】近年、ガスタービンなどの熱機関の燃焼
効率を高めるために、空気/燃料比率の増加が不可欠と
なっている。その結果、燃焼温度が上昇し、ガスタービ
ンなどのブレード(動翼)やノズル(静翼)などの翼材
には、1000℃近傍の高温における機械物性、特にク
リープ破断特性に優れるとともに、耐食性,耐酸化性な
どに優れた材料が必要となってきている。従来、ガスタ
ービンのブレードやノズルの材料としては、多結晶の普
通鋳造合金が用いられていたが、燃焼温度の上昇に伴
い、応力負荷方向に結晶粒界をもたない一方向柱状晶凝
固合金が用いられるようになり、さらに最近では結晶粒
界を全くもたない単結晶合金が用いられるようになって
きた。しかしながら、これらの従来の合金は、主として
ニッケル系合金であるが、近年の目覚ましい発展を遂げ
つつあるガスタービンエンジンの高出力,高効率の要求
に対して充分に満足しうるものではなかった。
2. Description of the Related Art In recent years, it has become essential to increase the air / fuel ratio in order to increase the combustion efficiency of heat engines such as gas turbines. As a result, the combustion temperature rises, and blade materials such as blades (moving blades) and nozzles (stating blades) of gas turbines have excellent mechanical properties at high temperatures near 1000 ° C., especially creep rupture characteristics, and corrosion resistance, Materials with excellent oxidation resistance are required. Conventionally, polycrystalline ordinary casting alloys have been used as materials for gas turbine blades and nozzles, but with increasing combustion temperature, unidirectional columnar solidified alloys that do not have grain boundaries in the stress load direction. Has been used, and more recently, single crystal alloys having no grain boundaries have been used. However, these conventional alloys, which are mainly nickel-based alloys, have not been sufficiently satisfactory to meet the demands for high output and high efficiency of gas turbine engines, which are undergoing remarkable development in recent years.

【0003】一方、鉄−クロム系合金として、ステンレ
ス鋼が知られている。このステンレス鋼は不銹鋼といわ
れクロムを主要合金元素とする鋼で、オーステナイト系
(Cr:16〜20重量%,Ni:8〜14重量%),
フェライト系(Cr:11.5〜18重量%),オーステ
ナイト・フェライト系(Cr:23〜28重量%,N
i:3〜6重量%,Mo:1〜3重量%),マルテンサ
イト系(Cr:11.5〜13.5重量%)及び析出硬化系
(Cr:15〜17.5重量%,Ni:3〜5重量%,C
u:3〜5重量%,Nb:0.15〜0.45重量%)に分
類することができる。これらのステンレス鋼は、クロム
が11.5〜28重量%の範囲で含まれるものであり、ま
たいずれも多結晶合金である。さらに、鉄−クロム系合
金として、多成分系の耐熱鋼や超耐熱合金があり、これ
らも多結晶合金である。
On the other hand, stainless steel is known as an iron-chromium alloy. This stainless steel is called stainless steel and is a steel containing chromium as a main alloying element, and is austenitic (Cr: 16 to 20% by weight, Ni: 8 to 14% by weight),
Ferrite type (Cr: 11.5 to 18% by weight), austenite / ferrite type (Cr: 23 to 28% by weight, N
i: 3 to 6% by weight, Mo: 1 to 3% by weight), martensite system (Cr: 11.5 to 13.5% by weight) and precipitation hardening system (Cr: 15 to 17.5% by weight, Ni: 3-5% by weight, C
u: 3 to 5% by weight, Nb: 0.15 to 0.45% by weight). These stainless steels contain chromium in the range of 1 to 28% by weight, and are all polycrystalline alloys. Further, as iron-chromium alloys, there are multi-component heat resistant steels and super heat resistant alloys, which are also polycrystalline alloys.

【0004】ところで、鉄−クロム二元系多結晶合金に
ついては、これまでの研究から、(1)ブリネル硬さ
は、標準状態において、クロム含量が増加するに伴い大
きくなり、クロム含量が約75原子%で最高となり、そ
れ以上にクロムの含量が増加すると急速に低下する(F.
Adcock: J. Iron Steel Inst., 124 巻 ,(1931 年),99
頁) こと、(2)クロム含量が0〜60重量%の範囲
で、引張強さ及びロックウエル硬さは標準状態におい
て、クロム含量の増加とともに大きくなるが、伸び及び
絞りは、標準状態において、クロム含量が約10重量%
で最高となり、それ以上クロム含量が増加すると低下し
はじめ、クロム含量約60重量%で0となる(W. O. Bin
der: Trans. ASM, 43 巻,(1951年),759 〜777 頁) こ
と、及び(3)アイゾット衝撃値は、標準状態におい
て、クロム含量の増加とともに大きくなり、約25重量
%で最高となり、それ以上クロム含量が増加すると急速
に低下し、クロム含量約50重量%で0になる(W. O. B
inder: Trans. ASM, 43 巻,(1951年),759 〜777 頁) こ
とが報告されている。なお、多結晶体の場合、高温腐食
環境下では、粒界から軟化が始まることはよく知られて
いる。
By the way, regarding iron-chromium binary polycrystal alloys, according to the studies so far, (1) Brinell hardness increases as the chromium content increases in the standard state, and the chromium content is about 75. It peaks at the atomic% and decreases rapidly with increasing chromium content (F.
Adcock: J. Iron Steel Inst., Volume 124, (1931), 99.
(2) When the chromium content is in the range of 0 to 60% by weight, the tensile strength and the Rockwell hardness increase with the increase of the chromium content in the standard state, but the elongation and the drawing decrease with the chromium state in the standard state. About 10% by weight
It becomes the highest at 0, and it begins to decrease when the chromium content increases further, and becomes 0 when the chromium content is about 60% by weight (WO Bin
der: Trans. ASM, Volume 43, (1951), pages 759-777), and (3) Izod impact value increases with increasing chromium content in the standard state, reaching a maximum at about 25% by weight. When the chromium content is further increased, it rapidly decreases, and becomes 0 when the chromium content is about 50% by weight (WO B
inder: Trans. ASM, Vol. 43, (1951), pp. 759-777). In the case of a polycrystalline body, it is well known that softening starts from grain boundaries in a high temperature corrosive environment.

【0005】一方、特公昭60−57432号公報にお
いては、クロムを主体とするクロム−鉄二元系多結晶合
金が開示されており、そして、このクロム−鉄二元系多
結晶合金においては、クロム含有量が約60重量%以上
になると粉砕性が急激に良くなり、特に約70重量%以
上で粉砕性が極めて良いことが記載されている。
On the other hand, Japanese Examined Patent Publication No. 60-57432 discloses a chromium-iron binary polycrystalline alloy containing chromium as a main component, and this chromium-iron binary polycrystalline alloy contains chromium. It is described that when the amount is about 60% by weight or more, the pulverizability is remarkably improved, and particularly when the amount is about 70% by weight or more, the pulverizability is extremely good.

【0006】[0006]

【発明が解決しようとする課題】本発明は、このような
状況下で、高温における機械物性、特にクリープ破断特
性及び高温における耐酸化性などに優れ、例えばガスタ
ービンのブレードやノズルのようなガスタービン部材な
どに好適に用いられるクロム−鉄系合金、及びこのもの
からなるガスタービン部材を提供することを目的とする
ものである。
Under such circumstances, the present invention is excellent in mechanical properties at high temperatures, particularly creep rupture properties and oxidation resistance at high temperatures. For example, gas such as gas turbine blades and nozzles It is an object of the present invention to provide a chromium-iron alloy that is preferably used for a turbine member and the like, and a gas turbine member including the same.

【0007】[0007]

【課題を解決するための手段】本発明者は、前記目的を
達成するために鋭意研究を重ね、クロム−鉄二元系多結
晶合金においては、従来の研究結果から、クロムの含有
量が約30重量%以上では結晶粒子が粗いため、結晶粒
界での破断が起こりやすく、一方、特公昭60−574
32号公報から、破断後の粒子1個ずつについてみる
と、極めて強固な合金になるものと推察した。本発明者
は、これらのことを念頭に置いてさらに研究を進めた結
果、クロム含有量が30重量%以上のクロム−鉄二元系
合金において、粒界が全く存在しない単結晶のものが得
られれば、このものは極めて機械物性に優れたものにな
るであろうとの予測を持つに至り、そのような予測ある
いは着眼の下に、クロムを特定の割合で含有するクロム
−鉄系単結晶合金を調製したところ、この合金が、高温
における機械物性や耐酸化性などに優れ、ガスタービン
部材に好適に用いることができ、その目的を達成しうる
ことを見出した。ところで、クロム含有量が30〜60
重量%のクロム−鉄二元系合金は、σ相の生成によっ
て、粒内異晶析出による脆化現象が起こる領域であり、
そのためこのクロム含有量30〜60重量%の領域も好
ましくないことがわかった。本発明は、かかる知見に基
づいて完成したものである。すなわち、本発明は、クロ
ム60〜95重量%を含有し、かつ残部が実質上鉄から
なるクロム−鉄系単結晶合金、及びこのクロム−鉄系単
結晶合金からなるガスタービン部材を提供するものであ
る。
The inventors of the present invention have conducted extensive studies in order to achieve the above object, and in the chromium-iron binary polycrystal alloy, the content of chromium is about 30 based on the results of conventional studies. When the content is more than 10% by weight, the crystal grains are coarse, so that breakage easily occurs at the crystal grain boundaries. On the other hand, Japanese Patent Publication No. 60-574.
From Japanese Patent No. 32, it was inferred that an extremely strong alloy was obtained when examining each particle after fracture. As a result of further research with these things in mind, the present inventor obtained a single crystal of chromium-iron binary alloy having a chromium content of 30% by weight or more with no grain boundary at all. For example, it has come to be predicted that this material will have extremely excellent mechanical properties, and under such prediction or attention, a chromium-iron single crystal alloy containing chromium in a specific ratio is provided. As a result of the preparation, it was found that this alloy is excellent in mechanical properties and oxidation resistance at high temperatures, can be suitably used for gas turbine members, and can achieve its purpose. By the way, chromium content is 30-60
The chromium-iron binary alloy of wt% is a region where the embrittlement phenomenon due to intragranular heterocrystal precipitation occurs due to the formation of the σ phase.
Therefore, it has been found that the region having a chromium content of 30 to 60% by weight is not preferable. The present invention has been completed based on such findings. That is, the present invention provides a chromium-iron single crystal alloy containing 60 to 95% by weight of chromium and the balance substantially iron, and a gas turbine member formed of the chromium-iron single crystal alloy. Is.

【0008】[0008]

【発明の実施の形態】本発明のクロム−鉄系単結晶合金
においては、クロム含有量は60〜95重量%の範囲で
選定される。この含有量が60重量%未満では高温での
クリープ破断特性が不充分であり、また、σ相が存在す
る領域(クロム含有量約43〜50重量%で、かつ温度
約800℃以下の領域)があり、この領域では特に脆く
なる。一方、95重量%を超えると硬さが低下する。ク
リープ破断特性及び硬さなどの面から、特に好ましいク
ロム含有量は70〜85重量%の範囲である。また、本
発明の単結晶合金においては、クロム以外の成分は実質
上鉄である。本明細書においてこの実質上とは、合金製
造時に、原料から不可避的に混入する不純物元素を、通
常0.1重量%以下の割合で含有してもよいことを意味す
る。すなわち、本発明の単結晶合金におけるクロムと鉄
の合計含有量は、通常99.9重量%以上である。
BEST MODE FOR CARRYING OUT THE INVENTION In the chromium-iron single crystal alloy of the present invention, the chromium content is selected in the range of 60 to 95% by weight. If this content is less than 60% by weight, the creep rupture property at high temperature is insufficient, and the region in which the σ phase exists (region where the chromium content is about 43 to 50% by weight and the temperature is about 800 ° C or less). , And it becomes particularly brittle in this region. On the other hand, if it exceeds 95% by weight, the hardness decreases. From the viewpoint of creep rupture properties and hardness, the particularly preferable chromium content is in the range of 70 to 85% by weight. Further, in the single crystal alloy of the present invention, the component other than chromium is substantially iron. In the present specification, “substantially” means that an impurity element that is inevitably mixed in from the raw material at the time of alloy production may be contained in a proportion of usually 0.1% by weight or less. That is, the total content of chromium and iron in the single crystal alloy of the present invention is usually 99.9% by weight or more.

【0009】本発明のクロム−鉄系単結晶合金は、粒界
が存在しないため、結晶粒界破断が生じることがなく、
特に高温時の機械物性に優れており、例えばクロム含有
量が80重量%で、残部が実質上鉄であるクロム−鉄系
単結晶合金の場合、温度1040℃及び荷重19kgf
/mm2 におけるクリープ破断試験において、寿命は約
1000時間である。さらに、本発明の単結晶合金は高
温時における耐酸化性にも優れている。このように、本
発明のクロム−鉄系単結晶合金は、高温時における機械
物性、特にクリープ破断特性に優れ、かつ高温時におけ
る耐酸化性にも優れていることから、高温で高いクリー
プ破断強度と優れた耐酸化性が要求される過酷な環境下
で使用される部材、例えばガスタービン部材、特にガス
タービンのブレード及びノズルの材料などとして好適に
用いられる。
Since the chromium-iron single crystal alloy of the present invention has no grain boundaries, it does not cause grain boundary fracture.
Particularly in the case of a chromium-iron single crystal alloy having excellent mechanical properties at a high temperature, for example, a chromium content of 80% by weight and the balance being substantially iron, a temperature of 1040 ° C. and a load of 19 kgf
In the creep rupture test at / mm 2 , the life is about 1000 hours. Furthermore, the single crystal alloy of the present invention is also excellent in oxidation resistance at high temperatures. As described above, the chromium-iron single crystal alloy of the present invention has excellent mechanical properties at high temperatures, particularly excellent creep rupture properties, and also excellent oxidation resistance at high temperatures, and thus has high creep rupture strength at high temperatures. It is preferably used as a member used in a severe environment where excellent oxidation resistance is required, for example, a gas turbine member, especially a material for a blade and a nozzle of a gas turbine.

【0010】本発明のクロム−鉄系単結晶合金の製造方
法については特に制限はなく、従来公知の単結晶合金の
製造方法、例えばニッケル基単結晶合金(特開平5−5
143号公報,特開平7−11365号公報,特開平7
−70678号公報)などの製造に用いられている一方
向凝固法を適用することができる。この一方向凝固法
は、溶解金属を冷却して結晶成長させる際に、狭さく部
を通して一方向に成長させる方法である。次に、本発明
のクロム−鉄系単結晶合金の好適な製造方法の一例につ
いて説明すると、まず、アーク式高温雰囲気溶解装置、
抵抗加熱式高温雰囲気溶解装置、高周波誘導雰囲気溶解
装置などの雰囲気溶解装置を用い、所定の割合の純度9
9.9%以上のクロム及び純度99.9%以上の鉄の混合物
を、好ましくはアルゴンなどの不活性ガス雰囲気下にお
いて溶解して合金溶湯を形成させ、この溶湯を冷却凝固
させることにより、所望の組成のマスターインゴットを
作製する。次に、このマスターインゴットを一方向凝固
装置により単結晶化させる。図1は一方向凝固装置の一
例の概略説明図であり、底部に狭さく部4を介して凝固
開始部5を有する凝固槽1が冷却盤2上に固定され、加
熱ヒーター3の中に設置されている。上記マスターイン
ゴットを高周波加熱などで溶解し、得られた溶湯を、合
金の融点以上に加熱した凝固槽1の中に注ぎ込んだのち
(図において、斜線部)、凝固槽1をヒーター3から徐
々に引き出し、凝固開始部5より順次一方向凝固させ
る。凝固開始部5内ではいくつもの柱状晶が成長する
が、狭さく部4を通りその一つの結晶のみがさらに成長
し、狭さく部4より上の部分は単結晶合金となる。加熱
ヒーター3は、凝固槽1が完全に引き出され、該溶湯が
完全に凝固するまでは合金の融点以上の温度に保持す
る。この一方向凝固処理はアルゴンなどの不活性ガス雰
囲気下又は減圧下で行うのが有利である。このようにし
て、本発明のクロム−鉄系単結晶合金を容易に製造する
ことができる。
The method for producing the chromium-iron single crystal alloy of the present invention is not particularly limited, and a conventionally known method for producing a single crystal alloy, for example, a nickel-based single crystal alloy (Japanese Patent Laid-Open No. 5-5)
143, JP 7-11365, JP 7
-70678 gazette) and the like, which are used in the production, can be applied. This unidirectional solidification method is a method in which the molten metal is grown in one direction through a narrow portion when the crystal is grown by cooling. Next, an example of a preferred method for producing a chromium-iron single crystal alloy of the present invention will be described. First, an arc type high temperature atmosphere melting apparatus,
Using a resistance heating type high temperature atmosphere melting apparatus, an atmosphere melting apparatus such as a high frequency induction atmosphere melting apparatus, a purity of 9
A mixture of chromium of 9.9% or more and iron of 99.9% or more in purity is preferably melted in an atmosphere of an inert gas such as argon to form an alloy melt, and the melt is cooled and solidified to obtain a desired alloy. A master ingot having the composition of is prepared. Next, this master ingot is single-crystallized by a unidirectional solidification apparatus. FIG. 1 is a schematic explanatory view of an example of a unidirectional solidification apparatus, in which a solidification tank 1 having a solidification initiation portion 5 through a narrowed portion 4 at the bottom is fixed on a cooling board 2 and installed in a heater 3. ing. The above master ingot is melted by high-frequency heating or the like, and the obtained molten metal is poured into the coagulation tank 1 heated to a temperature higher than the melting point of the alloy (hatched portion in the figure), and then the coagulation tank 1 is gradually heated from the heater 3. One-way solidification is sequentially carried out from the drawing and solidification starting section 5. Although a number of columnar crystals grow in the solidification starting portion 5, only one crystal of the columnar crystal further grows through the narrow portion 4, and the portion above the narrow portion 4 becomes a single crystal alloy. The heater 3 is maintained at a temperature equal to or higher than the melting point of the alloy until the solidification tank 1 is completely drawn out and the molten metal is completely solidified. This unidirectional solidification treatment is advantageously performed in an atmosphere of an inert gas such as argon or under reduced pressure. Thus, the chromium-iron single crystal alloy of the present invention can be easily manufactured.

【0011】また、本発明は、このクロム−鉄系単結晶
合金からなるガスタービン部材、特にガスタービンのブ
レード及びノズルをも提供するものである。本発明のク
ロム−鉄系単結晶合金からなるガスタービン部材を製造
するには、前記のクロム−鉄系単結晶合金の製造方法に
おいて、凝固槽として底部に狭さく部を介して凝固開始
部を有する所望形状の鋳型を使用すればよい。完全に凝
固させたのち鋳型から単結晶鋳造物を取り出し、凝固開
始部及び狭さく部を切断することにより、所望のガスタ
ービン部材が得られる。ガスタービンブレードを作製す
る場合には、結晶を翼部長手方向、すなわち<001>
方向が遠心力のかかる方向になるように成長させるのが
望ましい。一方、ガスタービンノズルを作製する場合に
は、結晶を<001>方向が翼部横手方向、すなわち<
001>方向がガスタービンの起動・停止に伴う熱サイ
クルから生じる熱応力のかかる方向になるように成長さ
せるのが望ましい。
The present invention also provides a gas turbine member made of this chromium-iron single crystal alloy, particularly a blade and nozzle of a gas turbine. In order to manufacture a gas turbine member made of the chromium-iron single crystal alloy of the present invention, in the above-mentioned method for manufacturing the chromium-iron single crystal alloy, the solidification tank has a solidification start part through a narrowed part at the bottom. A mold having a desired shape may be used. After completely solidifying, the single crystal casting is taken out from the mold, and the solidification starting portion and the narrowing portion are cut to obtain a desired gas turbine member. In the case of producing a gas turbine blade, the crystal is set in the blade longitudinal direction, that is, <001>.
It is desirable to grow so that the direction is the direction in which centrifugal force is applied. On the other hand, in the case of producing a gas turbine nozzle, the crystal is oriented in the lateral direction of the blade,
It is desirable to grow so that the 001> direction is the direction in which the thermal stress generated from the thermal cycle accompanying the start / stop of the gas turbine is applied.

【0012】[0012]

【実施例】次に、本発明を実施例によりさらに詳細に説
明するが、本発明は、これらの例によってなんら限定さ
れるものではない。なお、合金のクリープ破断特性及び
耐酸化性は下記の要領で評価した。 (1)クリープ破断特性 合金を平行部直径6.35mm、評点間距離25.4mmの
試験片に加工し、ASTM法に基づき、1040℃の温
度下、荷重19kgf/mm2 をかけ、クリープ破断時
間とその際の伸びを求めた。 (2)耐酸化性 直径7mm、厚さ4mmの円盤状の試験片に加工し、こ
の試験片をるつぼの中で1100℃で16時間加熱後、
空冷の熱サイクルを10回繰り返した後の酸化減量値を
求めた。
EXAMPLES Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples. The creep rupture characteristics and oxidation resistance of the alloy were evaluated according to the following procedures. (1) Creep rupture property The alloy was processed into a test piece with a diameter of 6.35 mm in the parallel part and a distance between the scores of 25.4 mm, and a load of 19 kgf / mm 2 was applied at a temperature of 1040 ° C based on the ASTM method, and the creep rupture time. I asked for the growth at that time. (2) Oxidation resistance A disc-shaped test piece having a diameter of 7 mm and a thickness of 4 mm was processed, and the test piece was heated in a crucible at 1100 ° C. for 16 hours,
The oxidation weight loss value was obtained after repeating the air-cooling thermal cycle 10 times.

【0013】実施例1 (1)クロム−鉄系多結晶合金インゴットの作製 純度99.9%以上のクロム及び鉄を、合金中のクロム含
有量が80重量%になるように配合し、これをアーク式
高温雰囲気溶解装置により、アルゴンガス雰囲気下17
80℃で加熱溶解したのち、合金溶湯を鋳型に注ぎ込ん
で室温まで自然冷却し、クロム−鉄系多結晶合金インゴ
ットを作製した。 (2)クロム−鉄系単結晶合金の作製 上記(1)で得られたインゴットを図1で示す一方向凝
固装置により、単結晶化した。すなわち、該インゴット
を高周波加熱で溶解し、この溶湯を、ヒーター3で合金
の融点以上の温度1750℃に加熱した鋳型(凝固槽)
1の中に注ぎ込んだ後、鋳型1をヒーター3から徐々に
引き出し、水冷冷却盤2に接している凝固開始部5よ
り、順次一方向凝固させた。3時間後に鋳型1はヒータ
ー3から完全に引き出され、溶湯は完全に凝固し、狭さ
く部4より上の部分は単結晶合金となった。なお、この
凝固処理はアルゴン雰囲気中で行い、ヒーター3は鋳型
1が完全に引き出されるまでは合金の融点以上の温度と
した。鋳型から合金を取り出し、狭さく部と凝固開始部
の合金を切断し、クロム含有量80重量%のクロム−鉄
系単結晶合金を得た。この単結晶合金のクリープ破断特
性及び耐酸化性の評価結果を第1表に示す。また、X線
回折チャートを図2に示す。
Example 1 (1) Preparation of chromium-iron-based polycrystalline alloy ingot Chromium and iron having a purity of 99.9% or more were blended so that the chromium content in the alloy would be 80% by weight. Using an arc type high-temperature atmosphere melting device, under an argon gas atmosphere 17
After heating and melting at 80 ° C., the molten alloy was poured into a mold and naturally cooled to room temperature to produce a chromium-iron-based polycrystalline alloy ingot. (2) Preparation of chromium-iron single crystal alloy The ingot obtained in (1) above was single crystallized by the unidirectional solidification apparatus shown in FIG. That is, a mold (solidification tank) in which the ingot is melted by high-frequency heating, and the molten metal is heated by a heater 3 to a temperature of 1750 ° C. which is higher than the melting point of the alloy.
After pouring into the mold 1, the mold 1 was gradually drawn out from the heater 3 and was sequentially unidirectionally solidified from the solidification starting portion 5 in contact with the water-cooled cooling board 2. After 3 hours, the mold 1 was completely withdrawn from the heater 3, the molten metal was completely solidified, and the portion above the narrowed portion 4 became a single crystal alloy. This solidification treatment was performed in an argon atmosphere, and the heater 3 was kept at a temperature not lower than the melting point of the alloy until the mold 1 was completely drawn out. The alloy was taken out of the mold, and the alloy at the narrowing portion and the solidification starting portion was cut to obtain a chromium-iron single crystal alloy having a chromium content of 80% by weight. Table 1 shows the evaluation results of creep rupture properties and oxidation resistance of this single crystal alloy. An X-ray diffraction chart is shown in FIG.

【0014】比較例1 実施例1(1)で得られたクロム含有量が80重量%の
クロム−鉄系多結晶合金インゴットについて、クリープ
破断特性及び耐酸化性を評価した。その結果を第1表に
示す。 比較例2 実施例1と同様にして、クロム含有量が50重量%のク
ロム−鉄系単結晶合金を作製し、クリープ破断特性及び
耐酸化性を評価した。その結果を第1表に示す。
Comparative Example 1 With respect to the chromium-iron-based polycrystalline alloy ingot having a chromium content of 80% by weight obtained in Example 1 (1), creep rupture characteristics and oxidation resistance were evaluated. Table 1 shows the results. Comparative Example 2 In the same manner as in Example 1, a chromium-iron based single crystal alloy having a chromium content of 50% by weight was prepared, and the creep rupture characteristics and the oxidation resistance were evaluated. Table 1 shows the results.

【0015】[0015]

【表1】 [Table 1]

【0016】 注)*1:137MPa,1000時間の条件で測定 *2:650℃で測定 *3:1200℃,5時間の条件で測定した酸化増量を
示す。 第1表から分かるように、本発明のクロム−鉄系単結晶
合金は、比較例の合金に比べて、耐力,耐用温度及び耐
酸化性に優れている。
Note) * 1: Measured under conditions of 137 MPa and 1000 hours * 2: Measured at 650 ° C. * 3: Indicates the increase in oxidation measured under conditions of 1200 ° C. and 5 hours As can be seen from Table 1, the chromium-iron single crystal alloy of the present invention is superior to the alloys of Comparative Examples in yield strength, service temperature and oxidation resistance.

【0017】[0017]

【発明の効果】本発明のクロム−鉄系単結晶合金は、高
温時における機械物性、特にクリープ破断特性に優れ、
かつ高温時における耐酸化性にも優れていることから、
高温での高いクリープ破断強度と優れた耐酸化性が要求
される過酷な環境下で使用される部材、例えばガスター
ビンのブレードやノズルなどのガスタービン部材などに
好適に用いられる。また、本発明の単結晶合金からなる
ガスタービンブレードやガスタービンノズルを用いるこ
とにより、高出力、高効率のガスタービンが得られる。
The chromium-iron single crystal alloy of the present invention has excellent mechanical properties at high temperature, particularly excellent creep rupture properties,
And because it is also excellent in oxidation resistance at high temperatures,
It is preferably used for members used in a severe environment where high creep rupture strength at high temperature and excellent oxidation resistance are required, for example, gas turbine members such as gas turbine blades and nozzles. Further, by using the gas turbine blade or the gas turbine nozzle made of the single crystal alloy of the present invention, a gas turbine with high output and high efficiency can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のクロム−鉄系単結晶合金を製造するた
めの一方向凝固装置の一例の概略説明図である。
FIG. 1 is a schematic explanatory view of an example of a unidirectional solidification apparatus for producing a chromium-iron based single crystal alloy of the present invention.

【図2】クロム−鉄系単結晶合金の一例のX線回折チャ
ートである。
FIG. 2 is an X-ray diffraction chart of an example of a chromium-iron based single crystal alloy.

【符号の説明】[Explanation of symbols]

1:凝固槽(鋳型) 2:冷却盤 3:加熱ヒーター 4:狭さく部 5:凝固開始部 1: Solidification tank (mold) 2: Cooling plate 3: Heating heater 4: Narrow part 5: Solidification start part

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 クロム60〜95重量%を含有し、かつ
残部が実質上鉄からなるクロム−鉄系単結晶合金。
1. A chromium-iron single crystal alloy containing 60 to 95% by weight of chromium and the balance substantially consisting of iron.
【請求項2】 クロム及び鉄以外の元素の含有量が0.1
重量%以下である請求項1記載のクロム−鉄系単結晶合
金。
2. The content of elements other than chromium and iron is 0.1.
The chromium-iron single crystal alloy according to claim 1, which is not more than wt%.
【請求項3】 請求項1又は2記載のクロム−鉄系単結
晶合金からなるガスタービン部材。
3. A gas turbine member made of the chromium-iron single crystal alloy according to claim 1.
【請求項4】 ガスタービンブレートである請求項3記
載のガスタービン部材。
4. The gas turbine member according to claim 3, which is a gas turbine plate.
【請求項5】 ガスタービンノズルである請求項3記載
のガスタービン部材。
5. The gas turbine member according to claim 3, which is a gas turbine nozzle.
JP34237095A 1995-12-28 1995-12-28 Chromium-iron single crystal alloy and gas turbine member using the same Pending JPH09184041A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34237095A JPH09184041A (en) 1995-12-28 1995-12-28 Chromium-iron single crystal alloy and gas turbine member using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34237095A JPH09184041A (en) 1995-12-28 1995-12-28 Chromium-iron single crystal alloy and gas turbine member using the same

Publications (1)

Publication Number Publication Date
JPH09184041A true JPH09184041A (en) 1997-07-15

Family

ID=18353209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34237095A Pending JPH09184041A (en) 1995-12-28 1995-12-28 Chromium-iron single crystal alloy and gas turbine member using the same

Country Status (1)

Country Link
JP (1) JPH09184041A (en)

Similar Documents

Publication Publication Date Title
CN109468495B (en) Cobalt-based alloy layered molded body, cobalt-based alloy manufactured body, and methods for manufacturing same
EP1710322B1 (en) Nickel based superalloy compositions, articles, and methods of manufacture
CA3061851C (en) Cobalt based alloy additive manufactured article, cobalt based alloy product, and method for manufacturing same
US4789412A (en) Cobalt-base alloy having high strength and high toughness, production process of the same, and gas turbine nozzle
US4144102A (en) Production of low expansion superalloy products
CA1066922A (en) Heat-resistant allow for welded structures
CA2980063C (en) Method for producing ni-based superalloy material
JP3559670B2 (en) High-strength Ni-base superalloy for directional solidification
KR20130116239A (en) Heat-resistant ferritic cast steel having excellent melt flowability, freedom from gas defect, toughness, and machinability, and exhaust system component comprising same
US2519406A (en) Wrought alloy
JP2004315973A (en) Precipitation-strengthened nickel-iron-chromium alloy and processing method therefor
CN114737072B (en) K417G nickel-based high-temperature alloy refining preparation and forming method
CN112004953A (en) Cobalt-based alloy powder, cobalt-based alloy sintered body, and method for producing cobalt-based alloy sintered body
JP2005097689A (en) Component material made of heat resistant alloy
CN111254317B (en) Nickel-based casting alloy and preparation method thereof
KR20180081313A (en) Directional solidification ni base superalloy and manufacturing method therefor
JPH09184041A (en) Chromium-iron single crystal alloy and gas turbine member using the same
US3486887A (en) Nickel base heat-resisting alloy
JPH03134144A (en) Nickel-base alloy member and its manufacture
JP2000273582A (en) Cast steel for pressure vessel and production of pressure vessel using the same
KR100203379B1 (en) Ultra heat-resistance nickel alloy
JPH0413415B2 (en)
JPH1046277A (en) Columnar ni base heat resistant alloy casting and turbine blade made of the same
JP2002180169A (en) Ni BASED HEAT RESISTANT ALLOY
CN116057187A (en) Austenitic stainless steel cast steel and method for producing austenitic stainless steel cast steel