JPH09181340A - Correcting device for optical axis shift - Google Patents

Correcting device for optical axis shift

Info

Publication number
JPH09181340A
JPH09181340A JP35028395A JP35028395A JPH09181340A JP H09181340 A JPH09181340 A JP H09181340A JP 35028395 A JP35028395 A JP 35028395A JP 35028395 A JP35028395 A JP 35028395A JP H09181340 A JPH09181340 A JP H09181340A
Authority
JP
Japan
Prior art keywords
light
optical axis
receiving
light receiving
beam spot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP35028395A
Other languages
Japanese (ja)
Other versions
JP3368128B2 (en
Inventor
Tateki Orino
干城 折野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP35028395A priority Critical patent/JP3368128B2/en
Publication of JPH09181340A publication Critical patent/JPH09181340A/en
Application granted granted Critical
Publication of JP3368128B2 publication Critical patent/JP3368128B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Light Receiving Elements (AREA)
  • Photo Coupler, Interrupter, Optical-To-Optical Conversion Devices (AREA)
  • Optical Communication System (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce an correction error of optical axis shift which is generated by an uneven intensity distribution, even if there is an uneven intensity distribution in a light-receiving beam, and moreover, make it possible to conduct a stable space optical communication even if fluctuations in the extent of microns are generated in the atmosphere. SOLUTION: When the optical axis shift of the light-receiving optical axis of its own device from a light-receiving beam LB is detected on the basis of information on the positional shift of the beam LB from a reference position, and an optical axis shift correcting signal is sent to a variable part 20 in the optical axis direction on the basis of information on the optical axis shift to control the direction of the light- receiving optical axis of the own device, a plurality of diffracted lights are generated from the one beam LB by a diffraction grating of a hologram 21 provided in a light- receiving optical system and a plurality of diffracted light spots are formed on the light-receiving surface of a light-receiving beam spot position detection light-receiving element 22. Even in the case where an intensity distribution on an entrance pupil, which is the beam take-in port of the own device, is uneven, a correction of the optical axis shift is made by contriving so as to bring the center of the light intensity of a light-receiving beam spot closer to the center of a luminous flux.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、大気中で光ビーム
を受光しながら、受光ビームに対する自装置の受光光軸
の方向を制御する光軸ずれ補正装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical axis deviation compensating device for controlling a direction of a light receiving optical axis of its own device with respect to a light receiving beam while receiving a light beam in the atmosphere.

【0002】[0002]

【従来の技術】従来、光軸ずれ補正手段を備え大気中で
投光、受光を行う装置としては、例えば図32に示すよ
うな空間光伝送装置が特開平5−133716号公報に
開示されており、同様な2台の装置を空間を隔てて対向
設置して双方向通信を行うようになっている。
2. Description of the Related Art Conventionally, a spatial optical transmission device as shown in FIG. 32, for example, is disclosed in Japanese Unexamined Patent Publication No. 5-133716 as a device for projecting and receiving light in the atmosphere provided with an optical axis deviation correcting means. Therefore, two similar devices are installed facing each other across a space to perform bidirectional communication.

【0003】即ち、レーザーダイオード1から出射され
紙面に垂直方向に直線偏光となるレーザー光は、正のパ
ワーを持つレンズ群2によりほぼ平行光束となり、偏光
ビームスプリッタ3の境界面で反射され、更に光軸方向
可動部4の可変ミラー4aで反射されて、送信光LAとし
て装置Aから図示しない装置Bへ投光される。
That is, the laser light emitted from the laser diode 1 and linearly polarized in the direction perpendicular to the paper surface is made into a substantially parallel light flux by the lens group 2 having a positive power, reflected by the boundary surface of the polarization beam splitter 3, and further. It is reflected by the variable mirror 4a of the movable portion 4 in the optical axis direction, and is emitted as the transmitted light LA from the device A to the device B (not shown).

【0004】装置Bからの受信光LBは装置Aに入射し、
可変ミラー4aにより反射され、偏光ビームスプリッタ
3を透過して受光分岐素子5に至る。このとき、受信光
LBの約90%は受光分岐素子5を透過して、正のパワー
を持つレンズ群6により本信号検出用受光素子7に集光
され、残りの約10%は受光分岐素子5で反射されて、
正のパワーを持つレンズ群8によって位置検出用受光素
子9に受光される。
The received light LB from the device B enters the device A,
It is reflected by the variable mirror 4a, passes through the polarization beam splitter 3, and reaches the light receiving / branching element 5. At this time, the received light
About 90% of LB is transmitted through the light-receiving / branching element 5 and is focused on the signal-receiving light-receiving element 7 by the lens group 6 having a positive power, and the remaining about 10% is reflected by the light-receiving / branching element 5. ,
The position detection light receiving element 9 receives the light by the lens group 8 having a positive power.

【0005】偏光ビームスプリッタ3としては、その貼
り合わせ面に多層薄膜を蒸着した光学素子が使用されて
おり、この多層薄膜は例えばS偏光を約99%反射しP
偏光を透過させるようになっている。この偏光ビームス
プリッタ3を使用して最も効率の良い投受光を行うため
には、送信光LAをS偏光としたときに受信光LBがP偏光
となるような関係にすればよく、更に同一構成の送受信
装置を対向させて最も効率の良い投受光を行うために、
送受共通光軸O1を紙面後方に傾斜させ、かつ鉛直方向に
は45度の傾斜を有するように配置している。
As the polarization beam splitter 3, an optical element in which a multi-layered thin film is vapor-deposited on its bonding surface is used, and this multi-layered thin film reflects about 99% of S-polarized light and P
It is designed to transmit polarized light. In order to perform the most efficient projection / reception using this polarization beam splitter 3, it is only necessary to establish a relationship such that the reception light LB becomes P polarization when the transmission light LA is S polarization. In order to face the transmitter and receiver of the
The transmission / reception common optical axis O1 is arranged so as to be inclined rearward in the plane of the drawing and to have an inclination of 45 degrees in the vertical direction.

【0006】また、広帯域化や高速応答が可能な大容量
通信を行うために、本信号検出用受光素子7として例え
ばアバランシェフォトダイオードのような有効受光域が
直径1mm以下の小さな素子を使用している。更に、位
置検出用受光素子9の中心に受光ビームスポットSPの中
心が位置したときに、送信光LAが相手側装置Bを受信可
能な強度分布で照射することができ、かつ相手からの受
信光LBが本信号検出用受光素子7の有効受光域を外れな
いようにする必要があるので、装置の組立段階において
本信号検出用受光素子7と位置検出用受光素子9とは、
送信光の光軸に対してμm単位の精度で位置ずれの調整
を行っている。
Further, in order to perform large capacity communication capable of wide band and high speed response, a small element having an effective light receiving area of 1 mm or less such as an avalanche photodiode is used as the light receiving element 7 for detecting the present signal. There is. Furthermore, when the center of the light receiving beam spot SP is located at the center of the position detecting light receiving element 9, the transmitted light LA can irradiate the partner device B with an intensity distribution that can be received, and the received light from the partner can be received. Since it is necessary to prevent the LB from falling out of the effective light receiving area of the main signal detecting light receiving element 7, the main signal detecting light receiving element 7 and the position detecting light receiving element 9 are
The positional deviation is adjusted with an accuracy of μm with respect to the optical axis of the transmitted light.

【0007】位置検出用受光素子9の受光面上での受光
ビームスポットSPの位置ずれ情報は、信号処理部10を
介して光軸ずれ補正信号として光軸方向制御部11に送
られ、光軸方向制御部11から光軸方向可変部4の駆動
部にミラー駆動用信号が送られる。この信号に基づいて
駆動部のモータが回転し、可変ミラー4aが図33に示
すように軸A1と軸A2の周りに回動する。
The positional deviation information of the light receiving beam spot SP on the light receiving surface of the position detecting light receiving element 9 is sent to the optical axis direction control section 11 as an optical axis deviation correction signal via the signal processing section 10, and the optical axis is controlled. The direction control unit 11 sends a mirror drive signal to the drive unit of the optical axis direction changing unit 4. Based on this signal, the motor of the drive unit rotates, and the variable mirror 4a rotates about the axis A1 and the axis A2 as shown in FIG.

【0008】このときの位置検出用受光素子9の受光面
上の受光ビームスポットSPは、軸A1の周りの可変ミラー
4aの回動により、矢印a2に示すように図34の受光面
の上下方向に移動し、軸A2の周りの可変ミラー4aの回
動により、矢印a2に示すように図35の受光面上の右上
45度方向か左上45度方向に移動する。このように、
異なる2方向へ受光ビームスポットSPを移動させる操作
を繰り返して、位置検出用受光素子9の受光面上の中心
に、受光ビームスポットSPの中心が位置するように制御
を行う。
At this time, the light receiving beam spot SP on the light receiving surface of the position detecting light receiving element 9 is moved in the vertical direction of the light receiving surface of FIG. 34 by the rotation of the variable mirror 4a around the axis A1 as shown by an arrow a2. Then, by the rotation of the variable mirror 4a around the axis A2, the variable mirror 4a is moved in the upper right 45 ° direction or the upper left 45 ° direction on the light receiving surface of FIG. 35 as shown by the arrow a2. in this way,
By repeating the operation of moving the light receiving beam spot SP in two different directions, control is performed so that the center of the light receiving beam spot SP is located at the center of the light receiving surface of the position detecting light receiving element 9.

【0009】以上のような制御を通信時に継続して行
い、空間を隔てて対向する双方向光通信装置が相手側装
置Bからの光ビームを位置検出用受光素子9の中心で受
光するための光軸ずれ補正を互いに実施することによっ
て、双方の送信ビームの強度分布の中央部が相手側装置
Bのビーム取込口に常に一致するように調整することが
できる。
The above control is continuously performed during communication so that the two-way optical communication device facing each other across the space receives the light beam from the other device B at the center of the position detecting light receiving element 9. By mutually performing the optical axis deviation correction, it is possible to adjust so that the central part of the intensity distribution of both transmission beams always coincides with the beam inlet of the partner device B.

【0010】位置検出用受光素子9としては、図34、
図35に示すような4つの素子12に分割された4分割
センサが一般的に使用されているが、このような受光素
子9を位置検出に使用する場合には、各分割素子12間
の分離帯13の無感度領域に受光ビームスポットSPが落
ち込んで出力がなくなったり、分離帯13を横切るとき
に急激に出力が変化することを防ぐために、受光ビーム
スポットSPには適当な面積を持たせることが望ましい。
このために、一般的には集光点よりもディフォーカスし
た位置に、4分割センサの受光面位置を設定している。
As the position detecting light receiving element 9, FIG.
Although a four-division sensor divided into four elements 12 as shown in FIG. 35 is generally used, when such a light receiving element 9 is used for position detection, separation between the respective division elements 12 is performed. In order to prevent the light receiving beam spot SP from falling into the insensitive area of the band 13 and losing its output, or to prevent the output from changing rapidly when it crosses the separation band 13, the light receiving beam spot SP should have an appropriate area. Is desirable.
For this reason, generally, the light receiving surface position of the four-divided sensor is set at a position defocused from the condensing point.

【0011】[0011]

【発明が解決しようとする課題】しかしながら、上述の
従来例の大気中で送受光を行う空間光伝送装置において
は、装置の設置場所の振動や大気の揺動によって伝送ビ
ームがゆらぐ現象に影響を受ける。この大気の揺動は大
別すると、伝送ビーム全体のゆらぎの原因となるマクロ
なゆらぎと、伝送ビーム内の強度分布の差を生じさせる
ミクロなゆらぎの2種類の揺動があり、大気のマクロな
ゆらぎに対しては、伝送地点での伝送ビーム径を或る程
度広くした光軸ずれ補正機能を備えることにより対処し
ている。
However, in the above-mentioned conventional spatial light transmission apparatus for transmitting and receiving light in the atmosphere, the phenomenon that the transmission beam fluctuates due to the vibration of the installation location of the apparatus or the fluctuation of the atmosphere is affected. receive. The atmospheric fluctuations are roughly classified into two types: macroscopic fluctuations that cause fluctuations in the entire transmission beam, and micro fluctuations that cause differences in the intensity distribution within the transmission beam. The fluctuation is dealt with by providing an optical axis deviation correction function in which the transmission beam diameter at the transmission point is widened to some extent.

【0012】一方、図36はモデル化した大気のミクロ
なゆらぎの説明図を示し、通信を行う2装置間の伝送路
においては、圧力や温度の異なる大気の混合等が発生す
るために、屈折率は時間的に変動する不均一な分布とな
る。これにより、伝送ビームの広がりWの中に強度の強
い部分W1と強度の弱い部分W2が発生し、しかも空間の或
る一点における光ビームの強度が時間的に変化すること
により、強度の弱い部分W2が伝送ビームの広がりWの中
であたかもランダムに揺れているように観察され、これ
が大気のミクロなゆらぎと呼ばれる。
On the other hand, FIG. 36 shows a modeled explanatory view of microscopic fluctuations of the atmosphere. In the transmission path between two devices for communication, the atmospheres having different pressures and temperatures are mixed, so that the refraction The rate has a non-uniform distribution that varies with time. As a result, a strong intensity portion W1 and a weak intensity portion W2 are generated in the divergence W of the transmission beam, and the intensity of the light beam at a certain point in space changes with time, resulting in a weak intensity portion. W2 is observed to oscillate randomly in the divergence W of the transmission beam, which is called atmospheric microfluctuation.

【0013】従来の光軸ずれ補正機能を有する双方向空
間光伝送装置においては、位置検出用受光素子9は集光
点よりもディフォーカスした位置に受光面が設定される
ので、上述のような大気のミクロなゆらぎがある状態で
は、受光面上の受光ビームスポットSPは均一な強度分布
とならずに、図37に示すように入射瞳に相当する装置
のビーム取込口Mにおける光強度分布がそのまま投射さ
れることになる。
In the conventional bidirectional spatial light transmission device having the optical axis deviation correction function, the light receiving surface of the position detecting light receiving element 9 is set at a position defocused from the converging point. In the state where there are micro fluctuations in the atmosphere, the received light beam spot SP on the light receiving surface does not have a uniform intensity distribution, but the light intensity distribution at the beam intake port M of the device corresponding to the entrance pupil as shown in FIG. Will be projected as is.

【0014】従って、図38に示すように直径Tの受光
ビームスポットPSには斜線で示す強度の弱い部分P1とそ
の他の強度の強い部分P2とが発生し、光束中心BCとは異
なる光強度中心PCが光軸と判断され、この位置ずれ量S
に相当する角度だけ光軸方向のずれが発生し、その結
果、相手側装置Bにおいて光ビームの外れの原因となり
通信が不能になるという問題が生ずる。
Therefore, as shown in FIG. 38, in the light receiving beam spot PS having the diameter T, a weakly shaded portion P1 and another strong portion P2 are generated, and a light intensity center different from the light beam center BC is generated. The PC is determined to be the optical axis, and this positional shift amount S
A deviation in the direction of the optical axis occurs by an angle corresponding to the above, and as a result, there is a problem that the other party's device B causes a deviation of the light beam and communication is disabled.

【0015】本発明の目的は、上述の問題点を解消し、
受光ビームに不均一な強度分布があっても、これによっ
て生ずる光軸ずれ補正誤差を減少させ、更に大気のミク
ロなゆらぎが発生しても安定した通信を行うことができ
る光軸ずれ補正装置を提供することにある。
An object of the present invention is to solve the above problems,
Even if the received light beam has a non-uniform intensity distribution, an optical axis shift correction device that reduces the optical axis shift correction error caused by this and can perform stable communication even if microscopic fluctuations of the atmosphere occur. To provide.

【0016】[0016]

【課題を解決するための手段】上記目的を達成するため
の本発明に係る光軸ずれ補正装置は、受光光学系と、受
光ビームスポット位置検出部と、受光ビームスポット基
準位置からの位置ずれ情報に基づいて受信光に対する自
装置の受光光軸の光軸ずれを検出する光軸ずれ検出手段
と、光軸方向可変手段と、前記光軸ずれ検出手段により
検出される光軸ずれ情報に基づいて前記光軸方向可変手
段へ光軸ずれ補正信号を送信して自装置の受光光軸の方
向を制御する光軸方向制御手段とを有する光軸ずれ補正
装置において、前記受光光学系に回折素子を設けて1つ
の受光ビームから複数の回折光を発生させて、前記受光
ビームスポット位置検出部の受光面上に複数の回折光ス
ポットを形成させることを特徴とする。
An optical axis deviation correcting device according to the present invention for achieving the above object is a light receiving optical system, a light receiving beam spot position detecting section, and position deviation information from a light receiving beam spot reference position. Based on the optical axis deviation information detected by the optical axis deviation detecting means, the optical axis direction varying means and the optical axis deviation detecting means for detecting the optical axis deviation of the light receiving optical axis of the own device with respect to the received light. An optical axis deviation correction device having an optical axis direction control means for transmitting an optical axis deviation correction signal to the optical axis direction varying means to control the direction of the light receiving optical axis of the device itself, wherein a diffraction element is provided in the light receiving optical system. A plurality of diffracted light beams are provided to generate a plurality of diffracted light beams to form a plurality of diffracted light spots on the light receiving surface of the received light beam spot position detection unit.

【0017】[0017]

【発明の実施の形態】本発明を図示の図1〜図31に実
施例に基づいて詳細に説明する。図1は第1の実施例の
光軸ずれ補正機能を有する空間光受信装置の構成図を示
し、受信光LBの光軸方向を偏向する光軸方向可変部20
の背後には、透明ガラスの表面に高解像力感光材を定着
した写真感板を使用したホログラム21が斜設され、更
に位置検出受光素子22と信号処理部23から成る受光
ビームスポット位置検出部が配置されており、位置検出
受光素子22の出力は、信号処理部23、光軸方向制御
部24を介して光軸方向可変部20に接続されている。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail based on embodiments with reference to FIGS. FIG. 1 is a block diagram of a spatial light receiving device having an optical axis shift correction function of the first embodiment, in which an optical axis direction changing unit 20 for deflecting the optical axis direction of the received light LB is used.
Behind is a hologram 21 using a photographic plate having a high-resolution photosensitive material fixed on the surface of transparent glass, and a light receiving beam spot position detecting section including a position detecting light receiving element 22 and a signal processing section 23 is further provided. The output of the position detection light receiving element 22 is connected to the optical axis direction changing unit 20 via the signal processing unit 23 and the optical axis direction control unit 24.

【0018】光軸方向可変部20としては、従来例の図
33に示すような1枚ミラーで2軸回動制御によるもの
や、図2に示すようなそれぞれの回転軸B1、B2を有する
2枚のミラー25a、25bで各1軸回動制御によるも
の、又は図3に示すようなそれぞれの回転軸C1、C2を有
する2枚の透明ガラス26a、26bと液体密封用フィ
ルム27により透明液体28を密封した可変頂角プリズ
ムの頂角可変制御によるもの等を使用することができ
る。
As the optical axis direction variable section 20, a single mirror as shown in FIG. 33, which is controlled by two-axis rotation, or an optical axis direction variable section 20, which has respective rotary axes B1 and B2 as shown in FIG. One of the mirrors 25a and 25b is controlled by one axis rotation, or two transparent glasses 26a and 26b having respective rotation axes C1 and C2 as shown in FIG. It is possible to use, for example, a variable apex angle prism with a variable apex angle control which is hermetically sealed.

【0019】光軸ずれ補正装置においては、相手側装置
から出射された光軸方向制御用パイロット信号を含む受
信光LBが、位置検出用受光素子22の受光面上に受光さ
れ、このときの光ビームの基準位置からの位置ずれ情報
が信号処理部23に送られ、光軸ずれ信号に変換されて
光軸方向制御部24に送られる。この光軸ずれ信号に基
づいて光軸方向制御部24は光軸方向可変部20を作動
して、受信光LBに対して自装置の受光光軸を一致させる
制御を行う。
In the optical axis shift correcting device, the received light LB including the pilot signal for controlling the optical axis direction emitted from the partner device is received on the light receiving surface of the position detecting light receiving element 22, and the light at this time is received. The positional deviation information from the reference position of the beam is sent to the signal processing section 23, converted into an optical axis deviation signal and sent to the optical axis direction control section 24. Based on this optical axis shift signal, the optical axis direction control unit 24 operates the optical axis direction changing unit 20 to perform control to match the received light optical axis of the own device with the received light LB.

【0020】次に、図4に示すように受光光学系のホロ
グラム21の写真感板には、受信光LBと同一波長の平行
光が参照光LRとして斜め下方より照射される。同時に、
参照光LRと同一光源から分岐して作られる点物体光LMが
写真感板の正面から照射され、点物体光LMは写真感板に
平行な平面内で隣り合う移動区間を等間隔dだけずらし
て多重露光される。
Next, as shown in FIG. 4, the photographic plate of the hologram 21 of the light receiving optical system is irradiated with the parallel light having the same wavelength as the received light LB as the reference light LR from diagonally below. at the same time,
The point object light LM generated by branching from the same light source as the reference light LR is emitted from the front of the photographic plate, and the point object light LM shifts adjacent moving sections by an equal distance d in a plane parallel to the photographic plate. Multiple exposure.

【0021】このように作成されたホログラム21の参
照光LR方向と逆方向から、ホログラム面21aに受信光
LBが入射するようにホログラム21を配置すると、図5
に示すように0次光LOはそのまま透過するが、ホログラ
ム21の製作時の点物体光LMの位置を回折光近軸像面G1
とする回折光LDが発生する。
The received light is reflected on the hologram surface 21a from the direction opposite to the reference light LR direction of the hologram 21 thus created.
When the hologram 21 is arranged so that the LB is incident on it, as shown in FIG.
Although the 0th-order light LO is transmitted as it is, the position of the point object light LM at the time of manufacturing the hologram 21 is changed to the diffracted light paraxial image plane G1.
Diffracted light LD is generated.

【0022】回折光近軸像面G1から距離xだけディフォ
ーカスした位置に位置検出用受光素子22の受光面G2を
置くと、図6に示すように4分割された受光有効部22
aとそれらの間の分離帯22bとから成る位置検出用受
光素子22上において、直径δの回折光スポットDSがス
ポット中心間隔dでオーバラップして配列され、全回折
光スポットDSの広がりの最大スポット径が間隔Tとなる
受光ビームスポットが受光面G2の位置に形成される。こ
こで、ホログラム面21aから回折光近軸像面G1までの
距離をL、ホログラム面21aの入射光線有効径をDと
すると、次式が成立する。 δ/x=D/L …(1)
When the light receiving surface G2 of the position detecting light receiving element 22 is placed at a position defocused from the paraxial image plane G1 of the diffracted light by a distance x, the light receiving effective portion 22 is divided into four as shown in FIG.
On the position-detecting light receiving element 22 composed of a and the separation band 22b between them, diffracted light spots DS of diameter δ are arranged so as to overlap each other at the spot center interval d, and the maximum spread of all diffracted light spots DS is obtained. A light receiving beam spot having a spot diameter of the interval T is formed at the position of the light receiving surface G2. Here, assuming that the distance from the hologram surface 21a to the paraxial image plane G1 of the diffracted light is L and the effective diameter of the incident light ray on the hologram surface 21a is D, the following equation is established. δ / x = D / L (1)

【0023】次に、大気のミクロなゆらぎにより発生す
る受光ビームスポット位置検出誤差については、図7に
示すように中央の横一列の回折光スポットDSに横方向に
のみ強度の弱い部分P1と強い部分P2の差のある場合に
は、位置検出誤差は全回折光スポットDSの光強度中心PC
と光束中心BCとの差Sと考えることができる。
Next, as shown in FIG. 7, the received beam spot position detection error caused by the microfluctuation of the atmosphere is strong in the central one horizontal row diffracted light spot DS and the weak portion P1 only in the horizontal direction. If there is a difference in the part P2, the position detection error is the light intensity center PC of the total diffracted light spot DS.
Can be considered as the difference S between the light beam center BC.

【0024】この図7は回折光近軸像面G1から距離xだ
けディフォーカスした位置の回折光スポットDSのうち、
中央の横一列だけについて図示したものであり、直径δ
の回折光スポットDSがスポット中心間隔dでオーバラッ
プして配列している。回折光スポットDSの中央の横一列
に並ぶスポット数をNとすると、受光ビームスポット径
Tは、次式で表される。 T=(N−1)d+δ …(2)
FIG. 7 shows a diffracted light spot DS at a position defocused by a distance x from the paraxial image plane G1 of diffracted light.
Only one horizontal row in the center is shown, and the diameter δ
The diffracted light spots DS are arranged so as to overlap each other at the spot center interval d. Assuming that the number of spots arranged in a horizontal row in the center of the diffracted light spot DS is N, the light receiving beam spot diameter T is expressed by the following equation. T = (N-1) d + δ (2)

【0025】なお、各回折光スポットDSの強度分布が不
均一なことによって生ずる光束中心BCと光強度中心PCと
の差Sは、図7に示すように1つの回折光スポットDSの
直径δの1/2を越えることはない。
The difference S between the light beam center BC and the light intensity center PC caused by the non-uniform intensity distribution of each diffracted light spot DS is as shown in FIG. It does not exceed 1/2.

【0026】また、1つの回折光スポット径δが10μ
m程度まで小さくなると、図8に示すように回折光スポ
ットDSの幾つかは、4分割センサの分離帯22bの無感
度領域に落ち込み、光軸ずれ補正制御中に回折光スポッ
トDSが分離帯22bを横切る際に、位置ずれ検出出力が
急激な変化をして制御上好ましくない。このような受光
ビームスポットを得るために、ホログラム面21aから
回折光近軸像面G1までの距離Lを100mm、ホログラ
ム面21aの入射光線有効径Dを20mmとすると、式
(1) より、x=δ・L/D=50μmなるディフォーカ
ス位置xに位置検出用受光素子22の受光面G2を置く。
Further, one diffracted light spot diameter δ is 10 μm.
When it is reduced to about m, some of the diffracted light spots DS fall into the insensitive area of the separation band 22b of the four-division sensor as shown in FIG. 8, and the diffracted light spots DS are separated during the optical axis deviation correction control. When it crosses the position, the position shift detection output changes abruptly, which is not preferable for control. In order to obtain such a received light beam spot, assuming that the distance L from the hologram surface 21a to the paraxial image plane G1 of the diffracted light is 100 mm and the incident light effective diameter D of the hologram surface 21a is 20 mm,
According to (1), the light receiving surface G2 of the position detecting light receiving element 22 is placed at the defocus position x where x = δ · L / D = 50 μm.

【0027】また、回折光スポットDSの中央横一列に並
ぶスポット数Nが5であるから、受光ビームスポット径
Tを400μmに選ぶと、式(2) より、d=(T−δ)
/(N−1)=97.5μmなるスポット中心間隔、つ
まりホログラム21の製作時に点物体光LMの移動間隔d
で複数の回折光スポットDSが並ぶ受光ビームスポットと
なる。なお、このときの各回折光スポットDS内の強度分
布の不均一に原因する光束中心BCと光強度中心PCとの差
Sは、図9に示すようにδ/2=5μmを越えることは
ない。
Further, since the number N of spots of the diffracted light spots DS arranged in a horizontal line in the center is 5, when the receiving beam spot diameter T is selected to be 400 μm, d = (T-δ) is obtained from the equation (2).
/(N-1)=97.5 μm spot center interval, that is, the moving interval d of the point object light LM when the hologram 21 is manufactured.
Thus, a plurality of diffracted light spots DS form a received light beam spot. At this time, the difference S between the light beam center BC and the light intensity center PC due to the non-uniformity of the intensity distribution in each diffracted light spot DS does not exceed δ / 2 = 5 μm as shown in FIG. .

【0028】次に、隣接する回折光スポットDSのオーバ
ラップする部分が多くなり、受光ビームスポット位置検
出誤差が大きくなり、図10に示すように受光ビームス
ポット径Tが回折光スポット径δの2倍となる受光ビー
ムスポットの場合には、受光ビームスポット径Tを上述
と同じ400μmに選び、ホログラム面21aから回折
光近軸像面G1までの距離Lを100mm、ホログラム面
21aの入射光線有効径Dを20mmとすると、式(1)
より、x=δ・L/D=1mmなるディフォーカス位置
xに位置検出用受光素子22の受光面G2を置く。
Next, the overlapped portions of the adjacent diffracted light spots DS increase, and the received light beam spot position detection error increases. As shown in FIG. In the case of a double received light beam spot, the received light beam spot diameter T is selected to be 400 μm which is the same as the above, the distance L from the hologram surface 21a to the paraxial image plane G1 of the diffracted light is 100 mm, and the effective incident light diameter of the hologram surface 21a is 100 mm. If D is 20 mm, formula (1)
Therefore, the light receiving surface G2 of the position detecting light receiving element 22 is placed at the defocus position x where x = δ · L / D = 1 mm.

【0029】また、回折光スポットDSの中央横一列に並
ぶスポット数Nが5であるから、式(2) より、d=(T
−δ)/(N−1)=50μmなるスポット中心間隔d
で複数の回折光スポットDSが並ぶ受光ビームスポットと
なる。なお、このときの各回折光スポットDS内の強度分
布の不均一に原因する光束中心BCと光強度中心PCとの差
Sは、図11に示すようにδ/2=100μmを越える
ことはない。
Further, since the number N of spots arranged in a horizontal line in the center of the diffracted light spot DS is 5, d = (T
−δ) / (N−1) = 50 μm spot center interval d
Thus, a plurality of diffracted light spots DS form a received light beam spot. At this time, the difference S between the light beam center BC and the light intensity center PC due to the non-uniformity of the intensity distribution in each diffracted light spot DS does not exceed δ / 2 = 100 μm as shown in FIG. .

【0030】従来例の光軸ずれ補正手段で受光する場合
には、受光ビームスポット内の強度分布が不均一なこと
によって生ずる受光ビームスポット位置検出誤差につい
ては、図38に示すように受光ビームスポット径T=4
00μmで考えると、光束中心BCと光強度中心PCとのず
れ量Sの最大値はT/2=200μmに近い場合も起こ
り得るが、本実施例においては受光ビームスポット位置
検出誤差が最大となる場合でも、従来の光軸ずれ補正手
段による場合に比べてその誤差を1/2以下にすること
ができる。
When light is received by the optical axis deviation correcting means of the conventional example, the received light beam spot position detection error caused by the non-uniform intensity distribution in the received light beam spot is as shown in FIG. Diameter T = 4
Considering at 00 μm, the maximum value of the shift amount S between the light beam center BC and the light intensity center PC may be close to T / 2 = 200 μm, but in this embodiment, the received beam spot position detection error is the maximum. Even in such a case, the error can be reduced to 1/2 or less as compared with the case of the conventional optical axis deviation correcting means.

【0031】従って、位置検出用受光素子22として使
用する面分割型センサの素子間の分離帯22bの幅を
t、受光ビームスポット径をTとすると、回折光スポッ
ト径δは、 t≦δ≦T/2 …(3) なるときに回折素子が有効に作用することになり、また
位置検出用受光素子22としてPSD(Position Sensit
ive Device) のような非分割型センサを用いる場合は、 δ≦T/2 …(4) なるときに回折素子が有効に作用することになる。
Therefore, when the width of the separation band 22b between the elements of the surface-divided sensor used as the position detecting light receiving element 22 is t and the light receiving beam spot diameter is T, the diffracted light spot diameter δ is t ≦ δ ≦ When T / 2 (3), the diffractive element acts effectively, and a PSD (Position Sensit
When a non-divided sensor such as an ive device) is used, the diffractive element effectively works when δ ≦ T / 2 (4).

【0032】このようなホログラム21は干渉縞を銀塩
感光材料等に記録し、現像後の黒化銀粒子等による振幅
変調型ホログラムであるが、これを現像後に漂白処理し
た透明な銀塩粒子等による屈折率変化や厚みの変化の
縞、即ち位相変調型ホログラムに変更すれば、光の吸収
損失を抑えて、より高い回折効率を得ることができる。
Such a hologram 21 is an amplitude modulation hologram in which interference fringes are recorded on a silver salt photosensitive material or the like and developed and then blackened silver particles are used. By changing to a fringe of a change in the refractive index or a change in the thickness due to, for example, a phase modulation hologram, absorption loss of light can be suppressed and higher diffraction efficiency can be obtained.

【0033】また、このホログラム21はホログラム面
21aを境界として受信光LBと反対側に回折光が射出す
る透過型ホログラム21であるが、図12に示すように
参照光LRを反対方向から照射するようにすれば、ホログ
ラム面31aに対して受信光LBと回折光が同じ側に存在
する反射型ホログラム31を作成することができ、図1
と同様の効果を得ることができる。
The hologram 21 is a transmissive hologram 21 in which diffracted light is emitted to the side opposite to the received light LB with the hologram surface 21a as a boundary. As shown in FIG. 12, the reference light LR is emitted from the opposite direction. By doing so, it is possible to create the reflection hologram 31 in which the received light LB and the diffracted light exist on the same side with respect to the hologram surface 31a.
The same effect as described above can be obtained.

【0034】図13は第2の実施例の光学ずれ補正機能
を有する空間光伝送装置の構成図を示し、投光光軸と受
光光軸を同時に偏向可能な光軸方向可変部20の背後に
は、投受光分岐素子34が配置されており、この投受光
分岐素子34の反射方向には、正のパワーを持つレンズ
群35と発光素子36から成る投光部が配置され、投受
光分岐素子34の透過方向には、反射を主とする面に複
数の透過部37aが二次元の周期的に配列された複数開
口部材37を介して、正のパワーを持つレンズ群38と
位置検出用受光素子22と信号処理部23から成る受光
ビームスポット位置検出部が配置されており、その他は
図1と同様で、同じ符号は同じ部材を表している。
FIG. 13 is a block diagram of a spatial light transmission device having an optical deviation correction function of the second embodiment, which is behind an optical axis direction variable section 20 capable of simultaneously deflecting a light projecting optical axis and a light receiving optical axis. Is provided with a light projecting / receiving branching element 34, and a light projecting section composed of a lens group 35 having a positive power and a light emitting element 36 is arranged in the reflecting direction of the light projecting / receiving branching element 34. In the transmission direction of 34, a plurality of transmissive portions 37a are two-dimensionally arrayed on a surface mainly for reflection through a plurality of aperture members 37, and a lens group 38 having a positive power and a position detection light-receiving element are received. A light-receiving beam spot position detection unit including an element 22 and a signal processing unit 23 is arranged. Others are the same as those in FIG. 1, and the same reference numerals represent the same members.

【0035】複数開口部材37は図14に示すように一
辺の長さがaの正方形の透過部37aとそれ以外の部分
の反射部37bとから成り、複数の透過部37aはピッ
チP=3aで縦横方向に周期的に配列されている。な
お、複数開口部材37の反射部37bは、受信光LBを反
射する誘電体薄膜や金属薄膜を真空蒸着や写真感光等を
行うことにより形成することができ、また反射部37b
は受信光LBを吸収又は遮断する遮光部としてもよい。
As shown in FIG. 14, the plural aperture member 37 is composed of a square transmissive portion 37a having a side length of a and a reflective portion 37b in the other portion, and the plural transmissive portions 37a have a pitch P = 3a. They are arranged periodically in the vertical and horizontal directions. The reflective portion 37b of the multi-opening member 37 can be formed by performing vacuum deposition, photosensitization, or the like on a dielectric thin film or a metal thin film that reflects the received light LB.
May be a light blocking portion that absorbs or blocks the received light LB.

【0036】複数開口部材37の2回反射光が位置検出
用受光素子22の受光有効部22aに入射することを防
ぐために、複数の透過部37aを有する面又は反対面は
入射光軸に対して少し傾けるように配置されている。な
お、本実施例のように複数開口部材37を新たに設ける
代りに、投受光分岐素子34の受信光LBの出射面に直接
複数の透過部37aを加工するようにしてもよい。
In order to prevent the twice-reflected light of the multiple aperture member 37 from entering the light receiving effective portion 22a of the position detecting light receiving element 22, the surface having the plurality of transmitting portions 37a or the opposite surface with respect to the incident optical axis. It is arranged to tilt a little. Instead of newly providing the plurality of opening members 37 as in the present embodiment, a plurality of transmitting portions 37a may be directly processed on the emission surface of the received light LB of the light projecting / receiving branch element 34.

【0037】発光素子36から発したレーザー光は、正
のパワーを持つレンズ群35によりほぼ平行光束となっ
て投受光分岐素子34の境界面で反射され、光軸方向可
変部20から相手側装置へ送信光LAとして出射される。
一方、相手側装置からのパイロット信号を含む受信光LB
は光軸方向可変部20に入射し、投受光分岐素子34を
通って複数開口部材37に至り、その透過部37aを通
った光束は、正のパワーを持つレンズ群38により位置
検出用受光素子22に集光しビームスポットとして受光
される。そして、この受光ビームスポットは信号処理部
23を介して光軸ずれ補正信号として光軸方向制御部2
4に送られ、光軸方向可変部20が駆動されて光軸ずれ
が補正される。
The laser light emitted from the light emitting element 36 becomes a substantially parallel light flux by the lens group 35 having a positive power, and is reflected by the boundary surface of the light projecting / branching element 34. Is emitted as transmission light LA to.
On the other hand, the received optical LB containing the pilot signal from the other device
Is incident on the optical axis direction variable portion 20, passes through the light projecting / receiving light splitting element 34 to reach the plurality of aperture members 37, and the light flux passing through the transmitting portion 37a is received by the lens group 38 having positive power. It is focused on 22 and received as a beam spot. Then, this received light beam spot is passed through the signal processing unit 23 as an optical axis deviation correction signal to be the optical axis direction control unit 2.
4, the optical axis direction variable unit 20 is driven and the optical axis shift is corrected.

【0038】複数開口部材37による回折像の強度分布
は図15に示すように周期的に極大値が現れ、その極大
値を連ねる曲線SCは図16に示すようなsinc関数の2乗
で表される1個の正方形開口の回折像の強度分布と同形
となる。従って、この回折像は0次光D0、1次回折光D
1、2次回折光D2までで全結像エネルギの殆ど全てを占
めている。
In the intensity distribution of the diffraction image by the multiple aperture member 37, local maxima appear periodically as shown in FIG. 15, and the curve SC connecting the maxima is represented by the square of the sinc function as shown in FIG. It has the same shape as the intensity distribution of the diffraction image of one square aperture. Therefore, this diffraction image is the 0th order light D0, the 1st order diffracted light D
Almost all of the total imaging energy is occupied by the first and second-order diffracted lights D2.

【0039】図17は図13における配置を左右反転さ
せ、複数開口部材37と正のパワーを持つレンズ群38
のみを抜き出した図であり、正のパワーを持つレンズ群
38の焦点距離をfとし、複数開口部材37の後方の距
離fに正のパワーを持つレンズ群38の前側焦点位置H1
を位置させると、正のパワーを持つレンズ群38の後側
焦点位置H2の後方の距離fの位置に回折光近軸像面G1が
ある。
In FIG. 17, the arrangement in FIG. 13 is reversed left and right, and a plurality of aperture members 37 and a lens group 38 having a positive power are provided.
It is the figure which extracted only, the focal length of the lens group 38 which has positive power is set to f, and the front focus position H1 of the lens group 38 which has positive power in the distance f behind the multiple aperture member 37.
Is positioned, there is a diffracted light paraxial image plane G1 at a position of a distance f behind the rear focal position H2 of the lens group 38 having a positive power.

【0040】従って、回折光近軸像面G1から距離xだけ
ディフォーカスした位置に位置検出用受光素子22の受
光面G2を置くと、図18に示すように直径δの回折光ス
ポットDSがスポット中心間隔dでオーバラップして配列
し、全回折光スポットDSの広がりの最大スポット径がT
となる受光ビームスポットが受光面G2の位置に形成され
る。
Therefore, when the light receiving surface G2 of the position detecting light receiving element 22 is placed at a position defocused from the paraxial image plane G1 of the diffracted light by a distance x, a diffracted light spot DS having a diameter δ is spotted as shown in FIG. The maximum diffracted light spot DS has a maximum spot diameter T
A light receiving beam spot is formed at the position of the light receiving surface G2.

【0041】いま、正のパワーを持つレンズ群38の焦
点距離をf、入射光線有効径をDとすると、次式が成立
する。 δ/x=D/f …(5)
Assuming that the focal length of the lens group 38 having a positive power is f and the effective diameter of the incident light beam is D, the following equation is established. δ / x = D / f (5)

【0042】また、1次回折光の回折角をθとすると、
次式が成立する。 d=f・ tanθ …(6)
If the diffraction angle of the first-order diffracted light is θ,
The following equation holds. d = f · tan θ (6)

【0043】更に、入射光線の波長をλとすれば、複数
開口部材37の開口のピッチPは、次式で表される。 P=λ/ sinθ …(7)
Further, when the wavelength of the incident light beam is λ, the pitch P of the openings of the multiple opening member 37 is expressed by the following equation. P = λ / sin θ (7)

【0044】ここで、回折角θが小さいときは tanθ≒
sinθであるから、次の関係式が成立する。 P≒f・λ/d …(8)
Here, when the diffraction angle θ is small, tan θ≈
Since it is sin θ, the following relational expression holds. P≈f · λ / d (8)

【0045】位置検出用受光素子22として面分割型セ
ンサを使用する場合には、1つの回折光スポット径δが
10μm程度になるときが回折光スポット径δの下限値
である。正のパワーを持つレンズ群38の焦点距離fを
100mm、入射光線有効径Dを20mmとすると、式
(5) より、x=δ・f/D=50μmなるディフォーカ
ス位置xに位置検出用受光素子22の受光面G2を置く。
When a surface-divided sensor is used as the position detection light receiving element 22, the lower limit of the diffracted light spot diameter δ is when one diffracted light spot diameter δ is about 10 μm. If the focal length f of the lens group 38 having positive power is 100 mm and the effective diameter D of incident light is 20 mm,
According to (5), the light receiving surface G2 of the position detecting light receiving element 22 is placed at the defocus position x where x = δ · f / D = 50 μm.

【0046】また、回折光スポットDSの中央横一列に並
ぶスポット数Nが5であるから、受光ビームスポット径
Tを400μmに選ぶと、式(2) より、d=(T−δ)
/(N−1)=97.5μmなるスポット中心間隔dで
複数回折光スポットDSが並ぶ受光ビームスポットとな
る。
Since the number N of spots of the diffracted light spot DS lined up in one horizontal line in the center is 5, when the light receiving beam spot diameter T is selected to be 400 μm, d = (T−δ) is obtained from the equation (2).
A plurality of diffracted light spots DS are lined up at a spot center interval d of (N-1) = 97.5 μm.

【0047】ここで、受信光LBの波長λを0.83μm
とすると、式(8) から、複数開口部材37の図14に示
す透過部37aのピッチPは851μmとなるので、正
方形透過部37aの一辺の長さaは284μmにすれば
よい。このときの各回折光スポットDS内の強度分布の不
均一に原因する光束中心BCと光強度中心PCとの差Sは、
第1の実施例と同様にδ/2=5μmを越えることはな
い。
Here, the wavelength λ of the received light LB is 0.83 μm.
Then, from the formula (8), the pitch P of the transmissive portions 37a of the multiple aperture member 37 shown in FIG. 14 is 851 μm, and therefore the length a of one side of the square transmissive portion 37a may be 284 μm. At this time, the difference S between the light beam center BC and the light intensity center PC due to the non-uniformity of the intensity distribution in each diffracted light spot DS is
As in the first embodiment, δ / 2 = 5 μm is not exceeded.

【0048】次に、隣接する回折光スポットDSのオーバ
ラップする部分が多くなって、受光ビームスポット位置
検出誤差が大きくなった場合でも、従来の光軸ずれ補正
手段による誤差と比べて、その誤差を1/2以下にする
ことができる回折光スポット径δの上限値となるのは、
第1の実施例と同様にして、受光ビームスポット径Tが
回折光スポット径δの2倍となる受光ビームスポットの
場合である。
Next, even if the overlapped portions of the adjacent diffracted light spots DS increase and the received light beam spot position detection error increases, the error is larger than the error caused by the conventional optical axis deviation correction means. The upper limit of the diffracted light spot diameter δ at which
Similar to the first embodiment, this is a case where the light receiving beam spot diameter T is twice the diffracted light spot diameter δ.

【0049】諸条件は上述と同様であり、受光ビームス
ポット径Tを400μm、正のパワーを持つレンズ群3
8の焦点距離fを100mm、入射光線の有効径Dを2
0mmとすると、式(5) より、x=δ・f/D=1mm
なるディフォーカス位置xに位置検出用受光素子22の
受光面G2を置く。
The conditions are the same as those described above, the receiving light beam spot diameter T is 400 μm, and the lens group 3 having a positive power is used.
The focal length f of 8 is 100 mm, and the effective diameter D of the incident light is 2
Assuming 0 mm, x = δ · f / D = 1 mm from the formula (5).
The light receiving surface G2 of the position detecting light receiving element 22 is placed at the defocus position x.

【0050】また、回折光スポットDSの中央横一列に並
ぶスポット数Nが5であるから、式(2) より、d=(T
−δ)/(N−1)=50μmなるスポット中心間隔d
で複数の回折光スポットDSが並ぶ受光ビームスポットと
なる。
Further, since the number N of spots arranged in a horizontal line in the center of the diffracted light spot DS is 5, d = (T
−δ) / (N−1) = 50 μm spot center interval d
Thus, a plurality of diffracted light spots DS form a received light beam spot.

【0051】ここで、受信光LBの波長λを0.83μm
とすると、式(8) から、複数開口部材37の図14に示
す正方形透過部37aのピッチPは1.66mmとなる
ので、正方形透過部37aの一辺の長さaを553μm
にすればよい。このときの各回折光スポットDS内の強度
分布の不均一に原因する光束中心BCと光強度中心PCとの
差Sは、第1の実施例と同様にδ/2=100μmを越
えることはない。
Here, the wavelength λ of the received light LB is 0.83 μm.
Then, from the formula (8), the pitch P of the square transmissive portions 37a of the multi-opening member 37 shown in FIG. 14 is 1.66 mm. Therefore, the length a of one side of the square transmissive portion 37a is 553 μm.
What should I do? At this time, the difference S between the light beam center BC and the light intensity center PC due to the non-uniformity of the intensity distribution in each diffracted light spot DS does not exceed δ / 2 = 100 μm as in the first embodiment. .

【0052】このようにして、図35に示すような大気
のミクロなゆらぎが存在する条件下で本実施例の回折素
子を使用すれば、第1の実施例と同様に位置検出用受光
素子22として面分割型センサを使用する場合は式(3)
を満たし、非分割型センサを使用する場合は式(4) を満
たす回折光スポット径δのときに有効に作用することに
なる。
In this way, if the diffractive element of this embodiment is used under the condition that there are microscopic fluctuations in the atmosphere as shown in FIG. 35, the position detecting light receiving element 22 is used as in the first embodiment. (3) when using a surface-division sensor as
When the non-divided sensor is used, the diffracted light spot diameter δ that satisfies the expression (4) is effectively used.

【0053】以上の説明は正のパワーを持つレンズ群3
8が無収差の場合であるが、一般にレンズには収差があ
り、図19は球面収差のあるレンズ群39を使用した場
合の周辺部光束LSと中央部光束LCを示している。図20
に示すように、開口のピッチがP、開口の一辺の長さが
bで、P=2bとなる正方形の透過部37a’が多数配
列する複数開口部材37の回折像の強度分布は、図21
に示すように周期的に現れる極大値を連ねる曲線とな
る。これは1個の開口による回折像の強度分布であるsi
nc関数の2乗で表現される分布曲線SCと同形であり、回
折像は0次光D0と1次回折光D2とで全結像エネルギの殆
どを占めている。
The above description is for the lens group 3 having a positive power.
8 shows the case where there is no aberration, but the lens generally has aberration, and FIG. 19 shows the peripheral light flux LS and the central light flux LC when the lens group 39 having spherical aberration is used. FIG.
As shown in FIG. 21, the intensity distribution of the diffraction image of the multiple aperture member 37 in which a large number of square transmissive portions 37a ′ with P = 2b, in which the aperture pitch is P, one side length of the aperture is b, is shown in FIG.
As shown in, the curve becomes a series of maximum values that appear periodically. This is the intensity distribution of the diffraction image by one aperture si
It has the same shape as the distribution curve SC represented by the square of the nc function, and the diffracted image occupies most of the total imaging energy by the 0th-order light D0 and the 1st-order diffracted light D2.

【0054】図22は複数開口部材37の正面図を示
し、複数開口部材37の第1ゾーン37cは図19の周
辺部光束LSの0次光透過位置に対応し、複数開口部材3
7の第2ゾーン37dは図19の中央部光束LCの0次光
透過位置に対応する。複数開口部材37の第1ゾーン3
7cには、図14に示した開口配列と同様の、開口の一
辺の長さがaで、開口のピッチがP=3aとなる複数透
過部37aが設けられ、複数開口部37の第2ゾーン3
7dには、図20に示した開口と同様の、開口の一辺の
長さがb=3/2aで、開口のピッチがP=2bとなる
複数透過部37a’設けられている。
FIG. 22 shows a front view of the multi-aperture member 37. The first zone 37c of the multi-aperture member 37 corresponds to the 0th-order light transmitting position of the peripheral light flux LS of FIG.
The second zone 37d of No. 7 corresponds to the 0th-order light transmitting position of the central light flux LC in FIG. First zone 3 of multi-opening member 37
7c is provided with a plurality of transmissive portions 37a in which the length of one side of the apertures is a and the pitch of the apertures is P = 3a, similar to the aperture arrangement shown in FIG. Three
7d is provided with a plurality of transmissive portions 37a 'in which the length of one side of the opening is b = 3 / 2a and the pitch of the openings is P = 2b, similar to the opening shown in FIG.

【0055】このような光軸ずれ検出手段は、図17と
同様に球面収差のあるレンズ群39の前側焦点H1と開口
の広がる面との間に、焦点距離fの位置関係で配置され
ている。そして、図23に示すように周辺部光束LSによ
る回折光スポット径δ1 が10μm以上で、図24に示
すように中心部光束LCによる回折光スポット径δ2 がT
/2以下となる位置に、位置検出用受光素子22の受光
面G2を設定する。このようにして、図25に示すように
中央部光束LCによる回折光スポットDSと周辺部光束LSに
よる回折光スポットDCは、本実施例の回折素子が有効に
作用するスポット径で受光ビームスポット径T内に存在
することになる。
Such an optical axis shift detecting means is arranged in a positional relationship of the focal length f between the front focus H1 of the lens group 39 having spherical aberration and the surface where the aperture is widened, as in FIG. . As shown in FIG. 23, the diffracted light spot diameter δ1 by the peripheral light flux LS is 10 μm or more, and as shown in FIG.
The light-receiving surface G2 of the position-detecting light-receiving element 22 is set at a position of / 2 or less. Thus, as shown in FIG. 25, the diffracted light spot DS by the central light flux LC and the diffracted light spot DC by the peripheral light flux LS are the spot diameters at which the diffractive element of the present embodiment effectively acts and the received light beam spot diameters. It will exist in T.

【0056】図26は第3の実施例の光軸ずれ補正機能
を有する空間光伝送装置の構成図を示し、複数開口部材
37からの透過光を利用した第2の実施例に対して、反
射光を利用する複数開口部材41を使用した実施例であ
り、図13と同じ符号は同じ部材を表している。正方形
透過部41aは図14や図20に示した実施例とは逆の
反射部37bとなり、本実施例の反射部41bが図14
や図22の実施例の透過部37aとなっている。また、
複数開口部材41は光軸に対して45度傾いているの
で、図13の実施例と同じ回折効果を得るためには、図
27に示すように反射部41bの配列ピッチPは横方向
の長さを縦方向の21/2 倍の長さにするとよい。
FIG. 26 is a block diagram of a spatial light transmission device having an optical axis deviation correcting function of the third embodiment, which is a reflection of the second embodiment using the transmitted light from the plural aperture members 37. This is an example in which a plurality of aperture members 41 utilizing light is used, and the same reference numerals as those in FIG. 13 represent the same members. The square transmissive portion 41a becomes a reflection portion 37b which is the reverse of the embodiment shown in FIGS. 14 and 20, and the reflection portion 41b of this embodiment is shown in FIG.
22 and the transparent portion 37a of the embodiment shown in FIG. Also,
Since the multi-opening member 41 is inclined by 45 degrees with respect to the optical axis, in order to obtain the same diffraction effect as that of the embodiment of FIG. 13, the arrangement pitch P of the reflecting portions 41b is a lateral length as shown in FIG. The length should be 2 1/2 times the length.

【0057】以上の実施例においては、位置検出用受光
素子22として使用する4分割センサの分離帯22bの
クロスラインを鉛直方向に対して45度方向に延びるよ
うにすることにより、回折光スポットDSが分離帯22b
に落ち込んで位置検出誤差となることを回避している。
また、4分割センサの分離帯22bのクロスラインの延
びる方向を鉛直方向及び水平方向に一致させて使用する
場合には、図14や図20の開口は図28に示すように
45度回転した菱形開口41b’にすればよく、対角長
が21/2 aの菱形開口にすれば図27に示す開口と等価
な開口となる。
In the above embodiment, the diffracted light spot DS is formed by extending the cross line of the separation band 22b of the 4-division sensor used as the position detecting light receiving element 22 in the direction of 45 degrees with respect to the vertical direction. Is the separator 22b
It is possible to avoid the occurrence of a position detection error due to a drop in position.
Further, when the direction in which the cross line of the separation band 22b of the four-division sensor extends is aligned with the vertical direction and the horizontal direction, the openings in FIGS. 14 and 20 are diamond-shaped rotated by 45 degrees as shown in FIG. The opening 41 b ′ may be used, and if it is a rhombic opening having a diagonal length of 2 1/2 a, it becomes an opening equivalent to the opening shown in FIG. 27.

【0058】本実施例においても、装置が揺れたり大気
のミクロなゆらぎが生じた場合にも、図示しない相手側
装置Bの方向に正確に送信光LAを投光することができる
ので、安定した通信を行うことができる。
Also in the present embodiment, even when the device shakes or micro-fluctuations of the atmosphere occur, the transmission light LA can be accurately projected in the direction of the partner device B (not shown), so that it is stable. Can communicate.

【0059】図29〜図31は第4の実施例の光軸ずれ
補正機能を有する空間光受信装置の構成図を示し、図2
9は図1の光軸ずれ補正装置を備え、等価型ホログラム
21の受信光LBの透過側に、本信号検出用受光素子42
と正のパワーを持つレンズ群43から構成される本信号
検出手段を有する受信装置である。
29 to 31 are block diagrams of a spatial light receiving device having an optical axis deviation correcting function of the fourth embodiment, and FIG.
9 is equipped with the optical axis shift compensating device of FIG. 1, and the light receiving element 42 for detecting this signal is provided on the transmission side of the received light LB of the equivalent type hologram 21.
And a receiving device having the present signal detecting means composed of a lens group 43 having a positive power.

【0060】図30は図12の光軸ずれ補正装置を備
え、反射型ホログラム31の受信光LBの透過側に、本信
号検出用受光素子42と正のパワーを持つレンズ群43
から構成される本信号検出手段を有する受信装置であ
る。
FIG. 30 is equipped with the optical axis shift compensating device of FIG. 12, and on the transmission side of the reception light LB of the reflection type hologram 31, a light receiving element 42 for detecting this signal and a lens group 43 having a positive power.
It is a receiving device having the present signal detecting means.

【0061】図31は図26の光軸ずれ補正装置を備
え、複数開口部材41の受信光LBの透過側に、本信号検
出用受光素子42と正のパワーを持つレンズ群43から
構成される本信号検出手段を有する受信装置である。な
お、複数開口部材41の透過部41aと反射部41bを
反転させ、レンズ群43を含む本信号検出部側とレンズ
群38を含む受光ビームスポット位置検出部側とを入れ
換えた構成にしても同様の効果を得ることができる。
FIG. 31 is provided with the optical axis deviation compensating device of FIG. 26, and comprises a light receiving element 42 for detecting this signal and a lens group 43 having a positive power on the transmission side of the received light LB of the multiple aperture member 41. It is a receiving device having the present signal detecting means. The same applies to the configuration in which the transmissive portion 41a and the reflective portion 41b of the multi-aperture member 41 are reversed, and the main signal detection portion side including the lens group 43 and the received light beam spot position detection portion side including the lens group 38 are interchanged. The effect of can be obtained.

【0062】これらの4つの実施例の光軸ずれ補正装置
の動作原理は上述の実施例と同様であり、回折素子から
の回折光を受光ビーム位置検出部へ導き、回折素子から
の非回折光を本信号検出部へ導く構成にしているので、
受信光LBの全光ビームを有効に利用することができ、従
って光ビーム利用効率の高いかつ安定した受信パワーレ
ベルが得られる受信装置にすることができる。
The operation principle of the optical axis deviation compensating device of these four embodiments is the same as that of the above-mentioned embodiments, that is, the diffracted light from the diffractive element is guided to the received beam position detecting section and the non-diffracted light from the diffractive element is guided. Since it is configured to lead to this signal detection unit,
The entire light beam of the received light LB can be effectively used, and therefore, a receiving device can be obtained which has a high light beam utilization efficiency and a stable reception power level.

【0063】以上の説明においては、位置検出用受光素
子22として主に面分割型センサを使用したが、PSD
のような非分割型センサを使用する場合でも、受光面上
における受光ビームスポットが常に集光する状態を維持
できないときには、回折素子を使用することにより、大
気のミクロなゆらぎによって発生する光軸方向制御誤差
を軽減させることができる。
In the above description, the surface division type sensor is mainly used as the position detecting light receiving element 22.
Even when using a non-split sensor such as the one described above, if the received beam spot on the light receiving surface cannot always maintain a focused state, a diffractive element is used to determine the direction of the optical axis generated by microscopic fluctuations in the atmosphere. The control error can be reduced.

【0064】[0064]

【発明の効果】以上説明したように本発明に係る光軸ず
れ補正装置は、装置の揺れや大気のミクロなゆらぎが発
生していても、パイロット信号を含む受光ビームに対し
て自装置の受光光軸を一致させることができ、また光軸
ずれ補正装置の非回折光側に本信号検出部を設けること
により、受信パワーレベルを安定させることができる。
更に、光軸ずれ補正装置に投光部を設け、受光ビームス
ポット位置検出部の光軸と投光部の光軸を一致させるこ
とにより、相手側装置へ正確に投光して送信状態を安定
させることができる。
As described above, the optical axis deviation compensating device according to the present invention receives the light beam received by the device itself against the light receiving beam including the pilot signal even if the device shakes or the microscopic fluctuation of the atmosphere occurs. The optical axes can be matched, and the reception power level can be stabilized by providing this signal detection unit on the non-diffracted light side of the optical axis shift correction device.
Furthermore, by providing a light projection unit in the optical axis deviation correction device and making the optical axis of the received beam spot position detection unit coincide with the optical axis of the light projection unit, the light is accurately projected to the other device and the transmission state is stabilized. Can be made.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1の実施例の透過型ホログラムによる空間光
受信装置の構成図である。
FIG. 1 is a configuration diagram of a spatial light receiving device using a transmission hologram according to a first embodiment.

【図2】光軸方向制御部の斜視図である。FIG. 2 is a perspective view of an optical axis direction control unit.

【図3】光軸方向制御部の断面図である。FIG. 3 is a sectional view of an optical axis direction control unit.

【図4】ホログラムの作成方法の説明図である。FIG. 4 is an explanatory diagram of a hologram creating method.

【図5】ホログラムの回折現像の説明図である。FIG. 5 is an explanatory diagram of diffraction development of a hologram.

【図6】回折素子による受光ビームスポットの正面図で
ある。
FIG. 6 is a front view of a received light beam spot formed by a diffraction element.

【図7】受光ビームスポット位置検出誤差の説明図であ
る。
FIG. 7 is an explanatory diagram of a received beam spot position detection error.

【図8】回折素子による受光ビームスポットの正面図で
ある。
FIG. 8 is a front view of a light receiving beam spot formed by a diffraction element.

【図9】受光ビームスポット位置検出誤差の説明図であ
る。
FIG. 9 is an explanatory diagram of a received beam spot position detection error.

【図10】回折素子による受光ビームスポットの正面図
である。
FIG. 10 is a front view of a light receiving beam spot formed by a diffraction element.

【図11】受光ビームスポット位置検出誤差の説明図で
ある。
FIG. 11 is an explanatory diagram of a received beam spot position detection error.

【図12】反射型ホログラムによる空間光受信装置の構
成図である。
FIG. 12 is a configuration diagram of a spatial light receiving device using a reflection hologram.

【図13】第2の実施例の空間光伝送装置の構成図であ
る。
FIG. 13 is a configuration diagram of a spatial light transmission device according to a second embodiment.

【図14】回折素子の複数開口部の正面図である。FIG. 14 is a front view of a plurality of openings of the diffraction element.

【図15】回折素子による回折光の強度分布のグラフ図
である。
FIG. 15 is a graph showing an intensity distribution of diffracted light by a diffractive element.

【図16】回折素子による回折光の強度分布のグラフ図
である。
FIG. 16 is a graph showing an intensity distribution of light diffracted by the diffractive element.

【図17】回折素子による回折現像の説明図である。FIG. 17 is an explanatory diagram of diffractive development using a diffractive element.

【図18】回折素子による受光ビームスポットの正面図
である。
FIG. 18 is a front view of a light receiving beam spot formed by a diffraction element.

【図19】球面収差のあるレンズ群の光路の説明図であ
る。
FIG. 19 is an explanatory diagram of an optical path of a lens group having spherical aberration.

【図20】回折素子の複数開口部の正面図である。FIG. 20 is a front view of a plurality of openings of the diffraction element.

【図21】回折素子による回折光の強度分布のグラフ図
である。
FIG. 21 is a graph showing an intensity distribution of diffracted light by a diffraction element.

【図22】回折素子の正面図である。FIG. 22 is a front view of the diffraction element.

【図23】回折素子による回折現像の説明図である。FIG. 23 is an illustration of diffractive development with a diffractive element.

【図24】回折素子による回折現像の説明図である。FIG. 24 is an illustration of diffractive development with a diffractive element.

【図25】回折素子による受光ビームスポットの正面図
である。
FIG. 25 is a front view of a light receiving beam spot formed by a diffraction element.

【図26】第3の実施例の空間光伝送装置の構成図であ
る。
FIG. 26 is a configuration diagram of a spatial light transmission device according to a third embodiment.

【図27】回折素子の複数開口部の正面図である。FIG. 27 is a front view of a plurality of openings of the diffraction element.

【図28】回折素子の複数開口部の正面図である。FIG. 28 is a front view of a plurality of openings of the diffraction element.

【図29】第4の実施例の空間光受信装置の構成図であ
る。
FIG. 29 is a configuration diagram of a spatial light receiving device according to a fourth embodiment.

【図30】空間光受信装置の構成図である。FIG. 30 is a configuration diagram of a spatial light receiving device.

【図31】空間光受信装置の構成図である。FIG. 31 is a configuration diagram of a spatial light receiving device.

【図32】従来例の空間光伝送装置の構成図である。FIG. 32 is a block diagram of a conventional spatial light transmission device.

【図33】光軸方向制御部の斜視図である。FIG. 33 is a perspective view of an optical axis direction control unit.

【図34】位置検出用受光素子の正面図である。FIG. 34 is a front view of a position detecting light receiving element.

【図35】位置検出用受光素子の正面図である。FIG. 35 is a front view of a position detection light receiving element.

【図36】大気のミクロゆらぎの説明図である。FIG. 36 is an explanatory diagram of micro fluctuations in the atmosphere.

【図37】位置検出用受光素子の正面図である。FIG. 37 is a front view of a position detecting light receiving element.

【図38】受光ビームスポット位置検出誤差の説明図で
ある。
FIG. 38 is an explanatory diagram of a received beam spot position detection error.

【符号の説明】[Explanation of symbols]

20 光軸方向可変部 21、31 ホログラム 22 位置検出用受光素子 23 信号処理部 24 光軸方向制御部 33 投受光分岐素子 36 発光素子 37、41 複数開口部材 39 レンズ群 42 本信号検出用受光素子 20 Optical axis direction variable section 21, 31 Hologram 22 Position detection light receiving element 23 Signal processing section 24 Optical axis direction control section 33 Light emitting and receiving branching element 36 Light emitting element 37, 41 Multiple aperture member 39 Lens group 42 Main signal detecting light receiving element

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 受光光学系と、受光ビームスポット位置
検出部と、受光ビームスポット基準位置からの位置ずれ
情報に基づいて受信光に対する自装置の受光光軸の光軸
ずれを検出する光軸ずれ検出手段と、光軸方向可変手段
と、前記光軸ずれ検出手段により検出される光軸ずれ情
報に基づいて前記光軸方向可変手段へ光軸ずれ補正信号
を送信して自装置の受光光軸の方向を制御する光軸方向
制御手段とを有する光軸ずれ補正装置において、前記受
光光学系に回折素子を設けて1つの受光ビームから複数
の回折光を発生させて、前記受光ビームスポット位置検
出部の受光面上に複数の回折光スポットを形成させるこ
とを特徴とする光軸ずれ補正装置。
1. A light-receiving optical system, a light-receiving beam spot position detection unit, and an optical axis shift for detecting an optical axis shift of a light-receiving optical axis of its own device with respect to received light based on position shift information from a light-receiving beam spot reference position. A detecting means, an optical axis direction changing means, and an optical axis deviation correction signal to the optical axis direction changing means based on the optical axis deviation information detected by the optical axis deviation detecting means, and the light receiving optical axis of the device itself. In the optical axis shift correction device having an optical axis direction control means for controlling the direction of the received light beam, a diffractive element is provided in the light receiving optical system to generate a plurality of diffracted light beams from one received light beam to detect the received light beam spot position. A plurality of diffracted light spots are formed on the light receiving surface of the optical section, which is an optical axis deviation correcting device.
【請求項2】 前記回折素子は、受光ビームが入射した
ときに前記受光ビームスポット位置検出部の受光面上に
複数の回折光スポットを形成するホログラムとした請求
項1に記載の光軸ずれ補正装置。
2. The optical axis shift correction according to claim 1, wherein the diffractive element is a hologram that forms a plurality of diffracted light spots on the light receiving surface of the received light beam spot position detection unit when a received light beam is incident. apparatus.
【請求項3】 前記回折素子は、反射又は遮光を主とす
る面に複数の透過部を二次元の周期的に配列した開口部
を有し、該開口部を透過した透過光を前記受光ビームス
ポット位置検出部に導く請求項1に記載の光軸ずれ補正
装置。
3. The diffractive element has an opening in which a plurality of transmissive portions are two-dimensionally arranged periodically on a surface mainly reflecting or blocking light, and the transmitted light transmitted through the opening is the received beam. The optical axis shift correction device according to claim 1, which is guided to a spot position detection unit.
【請求項4】 前記回折素子は、透過を主とする面に複
数の反射部を二次元の周期的に配列した遮光部を有し、
該遮光部を反射した反射光を前記受光ビームスポット位
置検出部に導く請求項1に記載の光軸ずれ補正装置。
4. The diffractive element has a light-shielding portion in which a plurality of reflecting portions are two-dimensionally arranged periodically on a surface mainly for transmission,
The optical axis deviation correction device according to claim 1, wherein the reflected light reflected by the light shielding portion is guided to the received light beam spot position detection portion.
【請求項5】 前記受信光の受光ビームスポット径を
T、回折光スポット径をδとしたときに、δ≦T/2な
る条件を満足する請求項1に記載の光軸ずれ補正装置。
5. The optical axis deviation correcting device according to claim 1, wherein a condition of δ ≦ T / 2 is satisfied, where T is a received light beam spot diameter of the received light and δ is a diffracted light spot diameter.
【請求項6】 前記受光ビームスポット位置検出部は位
置検出用受光素子に面分割型センサを使用し、受光ビー
ムスポット径をT、回折光スポット径をδ、前記面分割
型センサの分割素子間の分離帯幅をtとしたときに、t
≦δ≦T/2なる条件を満足する請求項1に記載の光軸
ずれ補正装置。
6. The light receiving beam spot position detection unit uses a surface-divided sensor as a light receiving element for position detection. The light receiving beam spot diameter is T, the diffracted light spot diameter is δ, and the distance between the divided elements of the surface divided sensor. Let t be the separation band width of
The optical axis deviation correction device according to claim 1, wherein a condition of ≦ δ ≦ T / 2 is satisfied.
【請求項7】 投光光学系と信号発生部とから成る投光
手段と、投受光分岐手段とを有し、前記光軸方向可変手
段において投光光軸と受光光軸とを一致させるようにし
た請求項1に記載の光軸ずれ補正装置。
7. A light projecting means comprising a light projecting optical system and a signal generating section, and a light projecting / receiving light branching means, so that the light projecting optical axis and the light receiving optical axis coincide with each other in the optical axis direction varying means. The optical axis deviation correction device according to claim 1,
【請求項8】 前記受光光学系と本信号検出部とから成
る本信号検出手段を有し、前記光軸方向可変手段におい
て受光ビームスポット位置検出用光学系の光軸と本信号
検出用光学系の光軸とを一致させ、前記回折素子からの
回折光を前記受光ビームスポット位置検出部へ導き、非
回折光を前記本信号検出部へ導くようにした請求項1に
記載の光軸ずれ補正装置。
8. A main signal detecting means comprising the light receiving optical system and a main signal detecting section, wherein the optical axis of the light receiving beam spot position detecting optical system in the optical axis direction varying means and the main signal detecting optical system. 2. The optical axis shift correction according to claim 1, wherein the optical axis of the diffractive element is guided to the received beam spot position detection unit, and the non-diffracted light is guided to the main signal detection unit. apparatus.
JP35028395A 1995-12-22 1995-12-22 Optical axis deviation correction device Expired - Fee Related JP3368128B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35028395A JP3368128B2 (en) 1995-12-22 1995-12-22 Optical axis deviation correction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35028395A JP3368128B2 (en) 1995-12-22 1995-12-22 Optical axis deviation correction device

Publications (2)

Publication Number Publication Date
JPH09181340A true JPH09181340A (en) 1997-07-11
JP3368128B2 JP3368128B2 (en) 2003-01-20

Family

ID=18409451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35028395A Expired - Fee Related JP3368128B2 (en) 1995-12-22 1995-12-22 Optical axis deviation correction device

Country Status (1)

Country Link
JP (1) JP3368128B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006319924A (en) * 2005-05-16 2006-11-24 Victor Co Of Japan Ltd Collimator
US7379674B2 (en) 2003-03-27 2008-05-27 Canon Kabushiki Kaisha Optical transmission device
US8019209B2 (en) 2005-09-30 2011-09-13 Hoya Corporation Optical axis correction apparatus of an imaging device, and optical axis correction method for an imaging device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7379674B2 (en) 2003-03-27 2008-05-27 Canon Kabushiki Kaisha Optical transmission device
DE102004014465B4 (en) * 2003-03-27 2010-05-12 Canon K.K. Optical transmission device
JP2006319924A (en) * 2005-05-16 2006-11-24 Victor Co Of Japan Ltd Collimator
US8019209B2 (en) 2005-09-30 2011-09-13 Hoya Corporation Optical axis correction apparatus of an imaging device, and optical axis correction method for an imaging device

Also Published As

Publication number Publication date
JP3368128B2 (en) 2003-01-20

Similar Documents

Publication Publication Date Title
JP2004212209A (en) Angle detecting apparatus, light signal switching system, and information recording and reproducing system
KR100370790B1 (en) Optical head apparatus
JP3368128B2 (en) Optical axis deviation correction device
CN111090223B (en) Optical measurement system
JPS6352342A (en) Optical pickup
JPS61122944A (en) Optical information reading device
JPH079698A (en) Multibeam light source
US20060013535A1 (en) Optical communication device
JPH0721581A (en) Optical pickup
JPH0482032A (en) Optical information recording and reproducing head
JP3490128B2 (en) Photoelectric encoder
JPH08334700A (en) Focus detector of optical microscope and its designing method
KR100252944B1 (en) Device for picking-up light
JPH02193333A (en) Optical pickup
JPH01185844A (en) Focus error detecting device
JPH10269613A (en) Optical head device
JPS6337827A (en) Optical pickup device
JPH06215413A (en) Optical pickup device
RU2346393C1 (en) Terminal for clear optical communication
JPH03292644A (en) Optical pickup device
JP2002236262A (en) Optical switch
JPS63309815A (en) Optical interference device
JPH09329414A (en) Focus detecting device
JPH03209639A (en) Optical head device
JPH08161761A (en) Detection device of focus error

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081108

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081108

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091108

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101108

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees