JPH09180002A - Finite element model preparing method for composite materials - Google Patents

Finite element model preparing method for composite materials

Info

Publication number
JPH09180002A
JPH09180002A JP7337437A JP33743795A JPH09180002A JP H09180002 A JPH09180002 A JP H09180002A JP 7337437 A JP7337437 A JP 7337437A JP 33743795 A JP33743795 A JP 33743795A JP H09180002 A JPH09180002 A JP H09180002A
Authority
JP
Japan
Prior art keywords
composite material
finite element
element model
divided
phase material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7337437A
Other languages
Japanese (ja)
Inventor
Yoshinori Tokunaga
嘉則 徳永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP7337437A priority Critical patent/JPH09180002A/en
Publication of JPH09180002A publication Critical patent/JPH09180002A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To improve micro static stress in composite materials by longitudinally and laterally dividing the rectangle of micro image of composite materials, finding the ratio of area occupied by a 2nd phase material in that divided area and generating a finite element model by quantifying the dispersibility of 2nd phase material corresponding to the relation of average value, standard deviation and number of divided areas. SOLUTION: The rectangle of micro observation image of composite materials of matrix materals 1 and 2nd phase materials 2 is divided into longitudinal (n) × lateral (n) pieces of areas by several kinds of integers (n). In each divided area, the ratio of area occupied by the 2nd phase materials 2 such as fibers or fillers is found the dispersibility of the 2nd phase materials 2 is quantified corresponding to the relation of average value, standard deviation and number (n) of divided areas, and the finite element model depending on this dispersibility is generated. Thus, analytic precision for the miro static stress, thermal stress and transient temperature distribution, etc., can be improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、複合材料の微視的
構造の有限要素モデル作成方法に関するものであり、複
合材料内部の微視的熱応力の解析、巨視的弾性係数、ポ
アソン比の予測を行ったり、複合材料内部の微視的熱応
力の解析、線膨張係数の予測を行う、あるいは、複合材
料内部の非定常熱伝導時の過渡的温度分布、熱衝撃応力
の解析、熱伝導率の予測を行う用途に利用されるもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for creating a finite element model of a microscopic structure of a composite material, which includes analysis of microscopic thermal stress inside the composite material, prediction of macroscopic elastic coefficient and Poisson's ratio. Or analyze the microscopic thermal stress inside the composite material, predict the linear expansion coefficient, or analyze the transient temperature distribution during transient thermal conduction inside the composite material, thermal shock stress analysis, thermal conductivity It is used for the purpose of predicting.

【0002】[0002]

【従来の技術】従来の複合材料の微視的構造の有限要素
モデル作成方法としては、例えば”Advances
in Electronic Packaging 1
992”における文献”Mechanical Pro
perty Estimation of Encap
sulants by Microstructura
l Analysis using F.E.M.”に
見られるように、マトリックス材料に対し、第2相材料
の粒子等が均一に分散していることを仮定し、その均一
化された単位構造に対し、要素分割を行うものが一般的
である。
2. Description of the Related Art As a conventional method of creating a finite element model of a microscopic structure of a composite material, for example, "Advances
in Electronic Packaging 1
992 “Technical Pro
party Estimation of Encap
sulants by Microstructura
l Analysis using F.I. E. FIG. M. As shown in “,” it is general that particles of the second phase material are uniformly dispersed in the matrix material, and element division is performed on the homogenized unit structure. is there.

【0003】[0003]

【発明が解決しようとする課題】ところが、実際の材料
における第2相材料の分散形態は、上記従来の有限要素
モデルで表されるような理想的な均質分散では有り得な
い。また、材料の破壊等の各種物性・現象は分散性の良
否により大きく影響を受ける。すなわち、複合材料の各
種物性・現象予測には第2相材料の分散不均質性を考慮
した解析モデルが必要である。
However, the dispersion form of the second phase material in an actual material cannot be an ideal homogeneous dispersion as represented by the above-mentioned conventional finite element model. Also, various physical properties and phenomena such as material destruction are greatly affected by the quality of dispersibility. That is, in order to predict various physical properties and phenomena of the composite material, an analytical model in consideration of the dispersion heterogeneity of the second phase material is required.

【0004】一方、電子顕微鏡等により観察した複合材
料内部の微視的な画像を忠実にモデル化することは非常
に骨の折れる作業である。また、観察位置により全く違
う画像が観察されるため、微視的観察画像の忠実なモデ
ル化は無意味である。つまり、均一化された単位構造で
は、実際の現象等をとらえることができず、また、実際
の材料の分散不均質性を有する部分的観察画像の忠実な
モデル化は無意味であるという、矛盾した問題がある。
On the other hand, faithfully modeling a microscopic image of the inside of a composite material observed with an electron microscope or the like is a very laborious operation. Further, since a completely different image is observed depending on the observation position, faithful modeling of the microscopically observed image is meaningless. In other words, the homogenized unit structure cannot capture the actual phenomenon, and the faithful modeling of the partial observation image having the dispersion heterogeneity of the actual material is meaningless. I have a problem.

【0005】本発明はこのような問題点に鑑みてなされ
たものであり、その目的とするところは、複合材料中の
繊維やフィラー等の第2相材料の分散性を定量化し、こ
れを考慮した有限要素モデルの簡便な作成方法を提供す
ることにある。
The present invention has been made in view of the above problems, and an object thereof is to quantify the dispersibility of the second phase material such as fibers and fillers in the composite material, and to consider this. It is to provide a simple method for creating the finite element model.

【0006】[0006]

【課題を解決するための手段】請求項1の発明にあって
は、上記の課題を解決するために、本発明の有限要素モ
デル作成方法は、複合材料の微視的観察画像の長方形を
何種類かの整数nで縦n×横nの領域に分割し、分割さ
れた各領域において繊維やフィラー等の第2相材料が占
める面積比率を求め、その平均値および標準偏差と分割
数nの関係より、第2相材料の分散性を定量化し、これ
に依存する有限要素モデルを生成するものである。
According to the invention of claim 1, in order to solve the above-mentioned problems, the finite element model creating method of the present invention uses a rectangular shape of a microscopically observed image of a composite material. It is divided into vertical n × horizontal n regions by some kind of integer n, and the area ratio occupied by the second phase material such as fiber or filler in each divided region is calculated. From the relationship, the dispersibility of the second phase material is quantified, and a finite element model depending on this is generated.

【0007】本発明の方法により、複合材料中の繊維や
フィラー等の第2相材料の分散性を考慮した簡便なモデ
ル化および解析が可能となる。また、その解析結果か
ら、材料中の微視的な応力集中度等を、第2相材料の体
積比率と分散性との関係として捉える等の知見を得るこ
とができる。
The method of the present invention enables simple modeling and analysis in consideration of dispersibility of the second phase material such as fibers and fillers in the composite material. Further, from the analysis result, it is possible to obtain knowledge such as grasping the microscopic stress concentration degree in the material as a relationship between the volume ratio of the second phase material and the dispersibility.

【0008】[0008]

【発明の実施の形態】以下、本発明を図1乃至図6に基
づいて説明する。図1は、電子顕微鏡等により観察した
複合材料内部の微視的な画像の概念図である。図中、1
はマトリックス材料、2は繊維やフィラー等の第2相材
料を示す。図2は、例えば、”Advances in
Electronic Packaging 199
2”における文献”Mechanical Prope
rty Estimationof Encapsul
ants by MicrostructuralAn
alysis using F.E.M.”に見られる
ような、従来の複合材料の微視的構造のモデル化のため
の概念図であり、1のマトリックス材料に対し、2の第
2相材料の粒子等が均一に分散していることを仮定し、
その均一化された単位構造に対し、要素分割を行う。
DETAILED DESCRIPTION OF THE INVENTION The present invention will be described below with reference to FIGS. FIG. 1 is a conceptual diagram of a microscopic image inside the composite material observed by an electron microscope or the like. In the figure, 1
Denotes a matrix material, and 2 denotes a second phase material such as a fiber or a filler. FIG. 2 shows, for example, "Advances in
Electronic Packaging 199
2 ”,“ Mechanical Prope ”
rty Estimation of Encapsul
Ants by MicrostructuralAn
alysis using F. E. FIG. M. FIG. 1 is a conceptual diagram for modeling a microscopic structure of a conventional composite material as seen in FIG. 1, wherein particles of a second phase material and the like are uniformly dispersed in one matrix material. Assuming that
Element division is performed on the uniformed unit structure.

【0009】ところが、図1に示したように、一般の複
合材料において、マトリックス材料に対する、第2相材
料の分散状態は、図2のような規則的な均一分散では有
り得ない。一方、電子顕微鏡等により観察した複合材料
内部の微視的な画像を忠実にモデル化することは非常に
骨の折れる作業である。また、観察位置により全く違う
画像が観察されるため、微視的観察画像の忠実なモデル
化は無意味である。よって、第2相材料の分散状態を定
量化し、この定量指標を用いて簡便に代用的な有限要素
モデル化を行う。
However, as shown in FIG. 1, in a general composite material, the dispersed state of the second phase material in the matrix material cannot be the regular uniform dispersion as shown in FIG. On the other hand, faithfully modeling a microscopic image inside a composite material observed with an electron microscope or the like is a very laborious operation. Further, since a completely different image is observed depending on the observation position, faithful modeling of the microscopically observed image is meaningless. Therefore, the dispersion state of the second phase material is quantified, and a substitute finite element model is simply formed using this quantitative index.

【0010】図1および図3により、文献「複合材料内
部のフィラー分散状態評価へのフラクタル次元の応用
(材料Vol.42、No.478、pp・836−8
42)」に見られる、複合材料における、マトリックス
材料1に対する、第2相材料2の分散状態を定量化する
方法の一例を示す。
1 and 3, the document "Application of Fractal Dimension to Evaluation of Filler Dispersion State in Composite Material (Material Vol. 42, No. 478, pp. 836-8).
42) shows an example of a method for quantifying the dispersion state of the second phase material 2 with respect to the matrix material 1 in the composite material.

【0011】1)図1の、電子顕微鏡等により観察した
複合材料内部の微視的な画像を、図3に示すように、各
辺をn分割した合計n×n個の領域に分割する。 2)分割された各領域において、領域全体の面積に対す
る第2相材料が占める面積の割合を求め、これをA
(i,j);i=1〜n、j=1〜nとする。 3)A
(i,j)の平均値をAm、標準偏差をσ(A)とし、
各辺を分割するnの値をパラメータとし、各n分割ごと
のσ(A)を求める。
1) The microscopic image of the inside of the composite material observed with an electron microscope or the like in FIG. 1 is divided into n × n areas in which each side is divided into n, as shown in FIG. 2) In each of the divided regions, the ratio of the area occupied by the second phase material to the entire area of the region is determined, and this is calculated as A
(I, j); i = 1 to n and j = 1 to n. 3) A
Let Am be the average value of (i, j) and σ (A) be the standard deviation,
Using the value of n dividing each side as a parameter, σ (A) is calculated for each n division.

【0012】複合材料断面での第2相材料の面積比率お
よび分散性は、第2相材料2の単位構造の、マトリック
ス材料1に対する配置によって表される。有限要素法解
析モデルにおける第2相材料の配置を、画像の一辺の分
割数nと、分割された各領域における、領域全体の面積
に対する第2相材料が占める面積割合A(i,j);i
=1〜n,j=1〜nの標準偏差値σ(A)を用いて決
定する。
The area ratio and dispersibility of the second phase material in the cross section of the composite material are represented by the arrangement of the unit structure of the second phase material 2 with respect to the matrix material 1. Arrangement of the second phase material in the finite element method analysis model is performed by dividing the number n of one side of the image and the area ratio A (i, j) of the second phase material to the total area of each divided area; i
= 1 to n, j = 1 to n standard deviation value σ (A).

【0013】A(i,j)の平均値Amは、下の式で表
される。 Am=ΣA(i,j)/n2 =Vf ・・・式1 Amは、nに依存せず、Am=Vf(Vf:観測領域全
体に占める第2相材料の面積比率)により求めることが
できる。
The average value Am of A (i, j) is expressed by the following equation. Am = ΣA (i, j) / n 2 = Vf Equation 1 Am can be obtained by Am = Vf (Vf: area ratio of the second phase material in the entire observation area), without depending on n. it can.

【0014】一方、標準偏差σ(A)は、下の式で表さ
れる。 σ(A)=√(A2 m−Am2 ) ・・・式2 (A2 mはA(i,j)2 の平均値) また、分散V(A)は、下の式で表される。 V(A)=σ(A)2 =A2 m−Am2 =(ΣA(i,j)2 /n2 )−Am2 ・・・式3
On the other hand, the standard deviation σ (A) is expressed by the following equation. σ (A) = √ (A 2 m−Am 2 ) ... Equation 2 (A 2 m is the average value of A (i, j) 2 ). The variance V (A) is expressed by the following equation. It V (A) = σ (A) 2 = A 2 m-Am 2 = (ΣA (i, j) 2 / n 2 ) -Am 2 ... Equation 3

【0015】図4に示すように、n=2として、それぞ
れの分割された領域における第2相材料が占める面積率
をA(i,j);i=1〜2,j=1〜2とする。各領
域におけるA(i,j)を簡単に求めるため、i=jの
場合はA(i,j)=Am、すなわち A11=A22=Am ・・・式4 また、 A12=(1+α)Am、A21=(1−α)Am ・・・式5 とする。ただし、α≧0とする。
As shown in FIG. 4, when n = 2, the area ratio occupied by the second phase material in each divided region is A (i, j); i = 1 to 2, j = 1 to 2 To do. In order to easily obtain A (i, j) in each region, when i = j, A (i, j) = Am, that is, A 11 = A 22 = Am (Equation 4) and A 12 = (1 + α ) Am, A 21 = (1−α) Am ... Note that α ≧ 0.

【0016】n=2のときのA(i,j)の分散および
標準偏差をV(A2 )、σ(A2 )とする。これらを式
3に代入すると、 V(A2 )={2Am2 +(1+α)2A2 +(1−α)2A2 }/4−Am2 =α2 Am2 /2 故に、 σ(A2 )=α・Am/√2 α=(√2)・σ(A2 )/Am ・・・式6 観察した複合材料内部の微視的画像より、Amおよびσ
(A2 )は既知であるから、αが求められ、式4、式5
より、それぞれの分割された領域における第2相材料が
占める面積率A(i,j);i=1〜2、j=1〜2を
求めることができる。
Let V (A 2 ) and σ (A 2 ) be the variance and standard deviation of A (i, j) when n = 2. When these are substituted into Equation 3, V (A 2) = {2Am 2 + (1 + α) 2A 2 + (1-α) 2A 2} / 4-Am 2 = α 2 Am 2/2 Therefore, σ (A 2 ) = Α · Am / √2 α = (√2) · σ (A 2 ) / Am (Equation 6) From the observed microscopic image inside the composite material, Am and σ
Since (A 2 ) is known, α is obtained, and equations 4 and 5 are used.
Thus, the area ratio A (i, j); i = 1 to 2, j = 1 to 2 occupied by the second phase material in each of the divided regions can be obtained.

【0017】次に、n=4として分割された各領域を更
に4分割し、同様の手順で、各領域における第2相材料
が占める面積率を決定する。細分化された各領域の第2
相材料が占める面積率は、図5に示すようになる。図中
のβ≧0である。n=4のときのA(i,j)の分散お
よび標準偏差をV(A4 )、σ(A4 )とする。n=2
のときと同様に、n=4として、これらを式3に代入す
ると、 V(A4 )={2(1+α)2 Am2 +2(1−α)2 Am2 +2(1+β)2 Am2 +2(1−β)2 Am2 +(1+β)2 (1−α)2 Am2 +(1−β)2 (1−α)2 Am2 +(1+β)2 (1+α)2 Am2 +(1−β)2 (1+α)2 Am2 +4Am2 }/16−Am2 =[2Am2 {(1+α)2 +(1−α)2 } +2Am2 {(1+β)2 +(1−β)2 } +Am2 {(1+β)2 +(1−β)2 }(1−α)2 +Am2 {(1+β)2 +(1−β)2 }(1+α)2 +4Am2 ]/16−Am2 ={4Am2 (1+α2 ) +4Am2 (1+β2 ) +2Am2 (1+β2 )(1−α)2 +2Am2 (1+β2 )(1+α)2 +4Am2 }/16−Am2 ={4Am2 (2+α2 +β2 ) +4Am2 (1+β2 )(1+α2 ) +4Am2 }/16−Am2 ={4Am2 (2+α2 +β2 ) +4Am2 (1+β2 +α2 +β2 α2 ) +4Am2 }/16−Am2 ={4Am2 (α2 +β2 ) +4Am2 (β2 +α2 +β2 α2 )}/16 =Am2 {2α2 +β2 (α2 +2)}/4 故に、β2 =(4V(A4 )/Am2 −2α2 )/(α
2 +2) 式6を代入して、 β2 ={4(σ(A4 )/Am)2 −4(σ(A2 )/Am)2 } /{2(σ(A2 )/Am)2 +2} =2{(σ(A4 )/Am)2 −(σ(A2 )/Am)2 } /{(σ(A2 )/Am)2 +1} ・・・式7 観察した複合材料内部の微視的画像より、σ(A4 )、
σ(A2 )、Amは既知であるから、式7によりβが求
められ、図5に示す分割された領域における第2相材料
が占める面積率A(i,j):i=1〜4、j=1〜4
を求めることができる。必要に応じ、更に細分割された
領域に対し同様の手順を繰り返す。
Next, each region divided with n = 4 is further divided into four regions, and the area ratio occupied by the second phase material in each region is determined by the same procedure. Second of each subdivided area
The area ratio occupied by the phase material is as shown in FIG. Β ≧ 0 in the figure. The variance and standard deviation of A (i, j) when n = 4 are V (A 4 ) and σ (A 4 ). n = 2
Substituting these into Equation 3 with n = 4 as in the case of, V (A 4 ) = {2 (1 + α) 2 Am 2 +2 (1-α) 2 Am 2 +2 (1 + β) 2 Am 2 +2 (1-β) 2 Am 2 + (1 + β) 2 (1-α) 2 Am 2 + (1-β) 2 (1-α) 2 Am 2 + (1 + β) 2 (1 + α) 2 Am 2 + (1 −β) 2 (1 + α) 2 Am 2 + 4Am 2 } / 16-Am 2 = [2Am 2 {(1 + α) 2 + (1-α) 2 } + 2Am 2 {(1 + β) 2 + (1-β) 2 } + Am 2 {(1 + β) 2 + (1-β) 2 } (1-α) 2 + Am 2 {(1 + β) 2 + (1-β) 2 } (1 + α) 2 + 4Am 2 ] / 16-Am 2 = { 4Am 2 (1 + α 2) + 4Am 2 (1 + β 2) + 2Am 2 (1 + β 2) (1-α) 2 + 2Am 2 (1 + β 2) (1 + α) 2 + 4Am 2} / 16-Am 2 = {4Am 2 (2 + α 2 + 2) + 4Am 2 (1 + β 2) (1 + α 2) + 4Am 2} / 16-Am 2 = {4Am 2 (2 + α 2 + β 2) + 4Am 2 (1 + β 2 + α 2 + β 2 α 2) + 4Am 2} / 16-Am 2 = {4Am 22 + β 2 ) + 4Am 22 + α 2 + β 2 α 2 )} / 16 = Am 2 {2α 2 + β 22 +2)} / 4 Therefore, β 2 = (4V (A 4 ) / Am 2 -2α 2 ) / (α
2 +2) Substituting the equation 6, β 2 = {4 (σ (A 4 ) / Am) 2 -4 (σ (A 2 ) / Am) 2 } / {2 (σ (A 2 ) / Am) 2 + 2} = 2 {(σ (A 4 ) / Am) 2 − (σ (A 2 ) / Am) 2 } / {(σ (A 2 ) / Am) 2 +1} ・ ・ ・ Equation 7 Observed composite From the microscopic image inside the material, σ (A 4 ),
Since σ (A 2 ) and Am are known, β is obtained by Equation 7, and the area ratio A (i, j) of the second phase material in the divided regions shown in FIG. 5 is i = 1 to 4 , J = 1 to 4
Can be requested. If necessary, the same procedure is repeated for the subdivided area.

【0018】以上のようにして決定した各分割領域にお
けるA(i,j)に対応させて第2相材料を配置し、要
素分割を行った後、対応する各要素に対し材料物性を定
義する。すなわち、観察した複合材料内部の微視的画像
の長方形を何種類かの整数nで縦n×横nの領域に分割
し、分割された各領域の第2相材料の面積比率の標準偏
差を求めることにより、複合材料中の第2相材料の分散
性を定量化し、上記の手順を通じてその代用的な配置を
決定することにより、これと等価な第2相材料分散性を
有する有限要素モデルの簡便な作成が可能である。
After the second phase material is arranged in correspondence with A (i, j) in each divided area determined as described above and element division is performed, material physical properties are defined for each corresponding element. . That is, the rectangle of the microscopic image inside the observed composite material is divided into vertical n × horizontal n regions by some integer n, and the standard deviation of the area ratio of the second phase material in each divided region is calculated. By quantifying the dispersibility of the second phase material in the composite by determining it and determining its alternative placement through the above procedure, a finite element model having a second phase material dispersibility equivalent to this is obtained. Simple creation is possible.

【0019】この複合材料内部の第2相材料の不均質分
散を考慮した有限要素モデルに対する各種解析の境界条
件の例を図6に基づいて説明する。弾性範囲における複
合材料内部の微視的静的応力解析を行う場合、モデル内
の各要素には、対応する箇所に複合材料を構成する各材
料の物性(弾性係数、ポアソン比)を定義する。X軸上
の節点はY方向の変位を0とし、Y軸上の節点はX方向
の変位を0とする。初期のY座標がY=bの直線上にあ
る節点に対し、所望のY方向ひずみεYに対応した同一
のY方向変位を与える。初期のX座標がX=aの直線上
にある節点に対しては全節点が同一のX方向変位を生ず
るようX方向変位の自由度に条件を設定する。以上の境
界条件により一軸方向の引っ張り荷重に対する複合材料
内部での微視的な応力解析が可能となる。
An example of boundary conditions of various analyzes for a finite element model considering the heterogeneous dispersion of the second phase material inside the composite material will be described with reference to FIG. When performing microscopic static stress analysis inside the composite material in the elastic range, the physical properties (elastic modulus, Poisson's ratio) of each material forming the composite material are defined at the corresponding locations in each element in the model. A node on the X axis has a displacement of 0 in the Y direction, and a node on the Y axis has a displacement of 0 in the X direction. The same Y-direction displacement corresponding to the desired Y-direction strain εY is applied to a node whose initial Y coordinate is on the straight line of Y = b. For nodes having initial X coordinates on a straight line of X = a, the degree of freedom of displacement in the X direction is set so that all nodes have the same displacement in the X direction. The above boundary conditions enable microscopic stress analysis inside the composite material against a uniaxial tensile load.

【0020】また、このときの巨視的Y方向ひずみと節
点反力の関係より巨視的弾性係数が求められ、巨視的Y
方向ひずみと巨視的X方向ひずみの関係より巨視的ポア
ソン比を求めることができる。
Further, the macroscopic elastic coefficient is obtained from the relationship between the macroscopic Y-direction strain and the nodal reaction force at this time, and the macroscopic Y
The macroscopic Poisson's ratio can be obtained from the relationship between the directional strain and the macroscopic X-direction strain.

【0021】複合材料内部の微視的熱応力解析、および
線膨張係数の予測を行う場合、モデル内の各要素には、
対応する箇所に複合材料を構成する各材料の物性(弾性
係数、ポアソン比、線膨張係数)を定義する。
When performing microscopic thermal stress analysis inside the composite material and predicting the linear expansion coefficient, each element in the model is
Physical properties (elasticity coefficient, Poisson's ratio, linear expansion coefficient) of each material constituting the composite material are defined at corresponding positions.

【0022】境界条件としては、X軸上の節点はY方向
の変位を0とし、Y軸上の節点はX方向の変位を0とす
る。初期のY座標がY=bの直線上にある節点に対し、
全節点が同一のY方向変位dYを生ずるようY方向変位
の自由度に条件を設定する。初期のX座標がX=aの直
線上にある節点に対しては全節点が同一のX方向変位d
Xを生ずるようX方向変位の自由度に条件を設定する。
この境界条件のもとに、モデル全体に対し初期温度T0
を与え、温度変化量dTを与える。
As a boundary condition, a node on the X axis has a displacement of 0 in the Y direction, and a node on the Y axis has a displacement of 0 in the X direction. For nodes with an initial Y coordinate on the straight line of Y = b,
The condition is set to the degree of freedom of the Y-direction displacement so that all nodes generate the same Y-direction displacement dY. With respect to the nodes whose initial X coordinate is on the straight line of X = a, all nodes are the same in the X direction displacement d.
A condition is set for the degree of freedom of displacement in the X direction so as to generate X.
Under this boundary condition, the initial temperature T 0 is set for the entire model.
To give the temperature change amount dT.

【0023】以上により、温度変化に対する複合材料内
部での物性ミスマッチに起因する微視的な熱応力解析が
可能となる。また、解析結果を用いた下の式により、複
合材料の巨視的線膨張係数の予測が可能となる。 αx=dx/a/dT αy=dy/b/dT αx:複合材料のX方向の巨視的線膨張係数(/℃) αy:複合材料のY方向の巨視的線膨張係数(/℃) dx:解析モデルのX方向変位量 dy:解析モデルのY方向変位量 a:解析モデルの初期X方向寸法 b:解析モデルの初期Y方向寸法 dT:温度変化量(℃) 複合材料内部の熱衝撃時の微視的な過渡的温度分布、熱
衝撃応力の解析および熱伝導率の予測を行う場合、モデ
ル内の各要素には、対応する箇所に複合材料を構成する
各材料の物性(熱伝導率、密度、比熱)を定義する。モ
デル全体に対し初期温度T0 を与え、Y軸上の節点に温
度変化量dTを与え、非定常熱伝導解析を行う。これに
より熱衝撃時の複合材料内部の微視的な過渡的温度分布
の解析が可能となる。
As described above, a microscopic thermal stress analysis due to a physical property mismatch inside the composite material with respect to temperature change becomes possible. In addition, the following equation using the analysis results enables the prediction of the macroscopic linear expansion coefficient of the composite material. αx = dx / a / dT αy = dy / b / dT αx: Macroscopic linear expansion coefficient of composite material in X direction (/ ° C.) αy: Macroscopic linear expansion coefficient of composite material in Y direction (/ ° C.) dx: Amount of displacement in the X direction of the analytical model dy: Amount of displacement in the Y direction of the analytical model a: Initial X direction dimension of the analytical model b: Initial Y direction dimension of the analytical model dT: Temperature change (° C) During thermal shock inside the composite material When performing microscopic transient temperature distribution, thermal shock stress analysis, and thermal conductivity prediction, each element in the model includes physical properties (thermal conductivity, thermal conductivity, Density, specific heat). An initial temperature T 0 is given to the entire model, and a temperature change amount dT is given to a node on the Y axis, and unsteady heat conduction analysis is performed. This makes it possible to analyze the microscopic transient temperature distribution inside the composite material during thermal shock.

【0024】また、各要素に、各材料の物性(熱伝導
率、密度、比熱、弾性係数、ポアソン比、線膨張係数)
を定義し、前記熱応力解析と同様の境界条件のもとに、
温度変位連成要素を用いて同様の解析を行う等の方法に
より、熱衝撃応力の解析を行うことができる。これらの
解析時の、Y軸上の節点に温度変化量dTを与えてから
直線Y=b上の各節点の温度がT0 +dTに達するまで
の時間を用いて、複合材料のY方向の巨視的熱伝導率の
予測が可能となる。X方向についての熱伝導挙動につい
ては、X軸上の節点に温度変化量dTを与え、非定常熱
伝導解析を行うことにより、同様に求める。
Further, each element has physical properties of each material (heat conductivity, density, specific heat, elastic coefficient, Poisson's ratio, linear expansion coefficient).
Under the same boundary conditions as the thermal stress analysis,
The thermal shock stress can be analyzed by a method such as the same analysis using the temperature-displacement coupled element. In these analyzes, the time from when the temperature change amount dT is given to the node on the Y axis until the temperature of each node on the straight line Y = b reaches T 0 + dT is used as a macroscopic view of the composite material in the Y direction. It is possible to predict the thermal conductivity. The heat conduction behavior in the X direction is similarly obtained by giving a temperature change amount dT to a node on the X axis and performing unsteady heat conduction analysis.

【0025】[0025]

【発明の効果】本発明は、上記のように、複合材料の微
視的観察画像の長方形を何種類かの整数nで縦n×横n
の領域に分割し、分割された各領域において繊維やフィ
ラー等の第2相材料が占める面積比率を求め、その平均
値および標準偏差と分割数nの関係より、第2相材料の
分散性を定量化し、これに依存する有限要素モデルを生
成するものであるから、複合材料中の繊維やフィラー等
の第2相材料の分散性を定量化し、これと等価な分散性
を有する有限要素モデルを簡便に作成することができ
る。よって、実際の複合材料中の微視的な静的応力、熱
応力、過渡的温度分布等の解析精度を向上させることが
できる。
As described above, according to the present invention, a rectangle of a microscopically observed image of a composite material is represented by several integers n, vertical n × horizontal n.
The area ratio occupied by the second phase material such as fiber or filler in each of the divided areas is obtained, and the dispersibility of the second phase material is determined from the relationship between the average value and standard deviation and the number of divisions n. Since it quantifies and generates a finite element model that depends on this, the dispersibility of the second phase material such as fibers and fillers in the composite material is quantified, and a finite element model having equivalent dispersibility is created. It can be created easily. Therefore, the accuracy of analysis of microscopic static stress, thermal stress, transient temperature distribution, etc. in the actual composite material can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】電子顕微鏡等により観察した複合材料内部の微
視的な画像の概念図である。
FIG. 1 is a conceptual diagram of a microscopic image inside a composite material observed with an electron microscope or the like.

【図2】第2相材料の均一分散を仮定した、従来の複合
材料の微視的構造の概念図である。
FIG. 2 is a conceptual diagram of a microstructure of a conventional composite material assuming uniform dispersion of a second phase material.

【図3】第2相材料の面積比率の標準偏差算出のため図
1の各辺をn分割した図である。
FIG. 3 is a diagram in which each side of FIG. 1 is divided into n for calculating a standard deviation of an area ratio of a second phase material.

【図4】n=2としたときの分割された各領域における
第2相材料が占める面積率を示す説明図である。
FIG. 4 is an explanatory diagram showing an area ratio occupied by a second phase material in each divided region when n = 2.

【図5】n=4としたときの分割された各領域における
第2相材料が占める面積率を示す説明図である。
FIG. 5 is an explanatory diagram showing an area ratio occupied by a second phase material in each divided region when n = 4.

【図6】複合材料内部の微視的な各種解析方法の境界条
件の一例を示す説明図である。
FIG. 6 is an explanatory diagram showing an example of boundary conditions of various microscopic analysis methods inside the composite material.

【符号の説明】[Explanation of symbols]

1 マトリックス材料 2 第2相材料 1 Matrix material 2 Second phase material

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 複合材料の微視的観察画像の長方形を
何種類かの整数nで縦n×横nの領域に分割し、分割さ
れた各領域において第2相材料が占める面積比率を求
め、その平均値および標準偏差と分割数nの関係より、
材料中の繊維やフィラー等の第2相材料の分散性を定量
化し、この標準偏差の算出式より、各領域における第2
相材料の配置を決定することによる、第2相材料の不均
質分散を考慮した複合材料の微視的構造の有限要素モデ
ル作成方法。
1. A rectangular of a microscopically observed image of a composite material is divided into vertical n × horizontal n regions by some integer n, and an area ratio occupied by a second phase material in each divided region is obtained. , The average value and standard deviation and the number of divisions n,
The dispersibility of the second phase material such as fibers and fillers in the material is quantified, and the second deviation in each region is calculated from this standard deviation calculation formula.
A method for creating a finite element model of a microscopic structure of a composite material that considers the heterogeneous dispersion of the second phase material by determining the placement of the phase material.
【請求項2】 請求項1の解析モデルを用いて、複合
材料内部の微視的応力の解析、巨視的弾性係数、ポアソ
ン比の予測を行うことを特徴とする複合材料の微視的構
造の有限要素モデル作成方法。
2. The analysis model of claim 1 is used to analyze the microscopic stress inside the composite material, predict the macroscopic elastic modulus, and the Poisson's ratio. Finite element model creation method.
【請求項3】 請求項1の解析モデルを用いて、複合
材料内部の微視的熱応力の解析、線膨張係数の予測を行
うことを特徴とする複合材料の微視的構造の有限要素モ
デル作成方法。
3. A finite element model of a microscopic structure of a composite material, characterized by analyzing microscopic thermal stress inside a composite material and predicting a linear expansion coefficient using the analytical model according to claim 1. How to make.
【請求項4】 請求項1の解析モデルを用いて、複合
材料内部の非定常熱伝導時の過渡的温度分布、熱衝撃応
力の解析、熱伝導率の予測を行うことを特徴とする複合
材料の微視的構造の有限要素モデル作成方法。
4. A composite material characterized by using the analytical model of claim 1 to analyze transient temperature distribution during transient heat conduction in the composite material, analyze thermal shock stress, and predict thermal conductivity. Method for Creating Finite Element Model of Microscopic Structures of.
JP7337437A 1995-12-25 1995-12-25 Finite element model preparing method for composite materials Pending JPH09180002A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7337437A JPH09180002A (en) 1995-12-25 1995-12-25 Finite element model preparing method for composite materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7337437A JPH09180002A (en) 1995-12-25 1995-12-25 Finite element model preparing method for composite materials

Publications (1)

Publication Number Publication Date
JPH09180002A true JPH09180002A (en) 1997-07-11

Family

ID=18308630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7337437A Pending JPH09180002A (en) 1995-12-25 1995-12-25 Finite element model preparing method for composite materials

Country Status (1)

Country Link
JP (1) JPH09180002A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005250767A (en) * 2004-03-03 2005-09-15 Yokohama Rubber Co Ltd:The Dynamic characteristic simulation method for composite material and dynamic behavior simulation device for composite material
JP2006193560A (en) * 2005-01-11 2006-07-27 Sumitomo Rubber Ind Ltd Method for producing simulation model of filler-compounded material
JP2009003747A (en) * 2007-06-22 2009-01-08 Yokohama Rubber Co Ltd:The Method of generating simulation model of composite material and simulation method
CN106777562A (en) * 2016-11-29 2017-05-31 南京航空航天大学 A kind of method for determining ceramic matric composite intensity

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005250767A (en) * 2004-03-03 2005-09-15 Yokohama Rubber Co Ltd:The Dynamic characteristic simulation method for composite material and dynamic behavior simulation device for composite material
JP2006193560A (en) * 2005-01-11 2006-07-27 Sumitomo Rubber Ind Ltd Method for producing simulation model of filler-compounded material
JP4695399B2 (en) * 2005-01-11 2011-06-08 住友ゴム工業株式会社 Simulation model generation method for filler compounding materials
JP2009003747A (en) * 2007-06-22 2009-01-08 Yokohama Rubber Co Ltd:The Method of generating simulation model of composite material and simulation method
CN106777562A (en) * 2016-11-29 2017-05-31 南京航空航天大学 A kind of method for determining ceramic matric composite intensity

Similar Documents

Publication Publication Date Title
Mellouli et al. Free vibration analysis of FG-CNTRC shell structures using the meshfree radial point interpolation method
Park et al. Effective mechanical properties of lattice material fabricated by material extrusion additive manufacturing
Tabiei et al. Comparative study of predictive methods for woven fabric composite elastic properties
Fritzen et al. Nonuniform transformation field analysis of materials with morphological anisotropy
Rahman et al. A stochastic micromechanical model for elastic properties of functionally graded materials
Siu et al. Modeling the material grading and structures of heterogeneous objects for layered manufacturing
Liu et al. A wavelet multiresolution interpolation Galerkin method for targeted local solution enrichment
Lee et al. A microstructure based numerical method for constitutive modeling of composite and porous materials
Alijani et al. Theoretical approaches for bending analysis of founded Euler–Bernoulli cracked beams
Baeza et al. Adaptive mesh refinement techniques for high‐order shock capturing schemes for multi‐dimensional hydrodynamic simulations
Serpik Development of a new finite element for plate and shell analysis by application of generalized approach to patch test
Pivovarov et al. Modified SFEM for computational homogenization of heterogeneous materials with microstructural geometric uncertainties
JPH1011613A (en) Method for preparing three-dimensional finite element model for micro structure of composite material
Roshanbakhsh et al. Free vibration of functionally graded thick circular plates: An exact and three-dimensional solution
Yang et al. Prediction on nonlinear mechanical performance of random particulate composites by a statistical second-order reduced multiscale approach
Li et al. Two-dimensional elasticity solution for free vibration of simple-supported beams with arbitrarily and continuously varying thickness
JPH09180002A (en) Finite element model preparing method for composite materials
Chasapi et al. Geometrically nonlinear analysis of solids using an isogeometric formulation in boundary representation
Zhang et al. Development of stochastic isogeometric analysis (SIGA) method for uncertainty in shape
Fouaidi et al. Numerical analysis of single-layered graphene sheets by a mesh-free approach
DE112004000199T5 (en) Method for estimating the relationship between the element distortion and the analysis method
Manca et al. Dual cohesive elements for 3D modelling of synthetic fibre-reinforced concrete
JPH09288689A (en) Finite element model preparation method for microperspective structure of composite material
Suzuki Multiscale seamless‐domain method for linear elastic analysis of heterogeneous materials
Ban et al. A linear smoothed meshfree method with intrinsic enrichment functions for 2D crack analysis