JPH09179056A - Narrow laser beam transmission device - Google Patents

Narrow laser beam transmission device

Info

Publication number
JPH09179056A
JPH09179056A JP7351880A JP35188095A JPH09179056A JP H09179056 A JPH09179056 A JP H09179056A JP 7351880 A JP7351880 A JP 7351880A JP 35188095 A JP35188095 A JP 35188095A JP H09179056 A JPH09179056 A JP H09179056A
Authority
JP
Japan
Prior art keywords
laser
image
target
laser beam
telescope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7351880A
Other languages
Japanese (ja)
Other versions
JP2764567B2 (en
Inventor
Masahiro Toyoda
雅宏 豊田
Kenichi Araki
賢一 荒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Communications Research Laboratory
Original Assignee
Communications Research Laboratory
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Communications Research Laboratory filed Critical Communications Research Laboratory
Priority to JP7351880A priority Critical patent/JP2764567B2/en
Publication of JPH09179056A publication Critical patent/JPH09179056A/en
Application granted granted Critical
Publication of JP2764567B2 publication Critical patent/JP2764567B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Lasers (AREA)
  • Optical Communication System (AREA)

Abstract

PROBLEM TO BE SOLVED: To speedily and precisely transmit a laser beam which has a small spread to a remote target body. SOLUTION: The narrow beam laser transmission device consists of a telescope direction controller, a laser device 8, a telescope 2 for transmission and an internal optical device 7, and an telescope 3 for observation, a camera 5, and a camera output image monitor for picking up an image of the target body 9 and the scattered light of the laser. The laser beam 1 is transmitted to the target body 9 by adjusting the image 14 of the target body to the position at a specific distance from the maximum intensity point 19 of a wedgelike back scattered light image on the bisector 18 of the back scattered light image.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、ビーム 幅を狭
めた狭ビームレーザーを遠距離の目標物に向けて送信す
る狭ビームレーザー光学装置に関し、光学機器の技術分
野に属するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a narrow beam laser optical apparatus for transmitting a narrow beam laser having a reduced beam width toward a target at a long distance, and belongs to the technical field of optical instruments.

【0002】[0002]

【従来の技術】従来より、レーザービームを目標物に送
信することは空間レーザー通信の分野等で行なわれてき
た。これらは、目標物までの距離が短く容易に送信でき
るか、または、レーザービームの拡がりが大きく、レー
ザービームの出射方向の精度が要求されない場合が多か
った。また、目標物までの距離が遠く、かつ、レーザー
ビームの拡がりを絞って送信する必要がある場合には、
一般には、ビームの拡がりを大きくしてから目標物に向
けて送信し、その後、序々に拡がりを小さくしていく方
法、あるいは、ビームの方向を順次変えて、目標物の方
向を走査する方法が取られていた。
2. Description of the Related Art Conventionally, transmitting a laser beam to a target has been performed in the field of spatial laser communication and the like. In many cases, the distance to the target is short and can be easily transmitted, or the spread of the laser beam is large, and the accuracy of the emission direction of the laser beam is not required in many cases. Also, if the distance to the target is long and it is necessary to transmit while narrowing the spread of the laser beam,
In general, a method of transmitting a beam to a target after increasing the beam spread, and then gradually reducing the beam spread, or a method of sequentially changing the beam direction and scanning the direction of the target object is used. Had been taken.

【0003】[0003]

【発明が解決しようとする課題】しかし、上述したよう
な従来の技術出は、拡がりの制御機構や走査のための機
能を整備する必要があり、また、所望のパワーのレーザ
ー送信の完了までに時間が掛かり、目標物が移動してい
る場合などには、より迅速なレーザー送信が要求されて
いた。解決しようとする問題点は、拡がりの小さいレー
ザービームを遠方の目標物に精度よく、かつ、迅速に送
信するという点にある。 そこで、本発明は、ビーム幅
の拡がりの小さい狭レーザービームを遠方の目標物に精
度良く送信できる狭ビームレーザー送信装置の提供を目
的とするものである。
However, according to the above-mentioned conventional technology, it is necessary to provide a spread control mechanism and a function for scanning, and it is necessary to complete the laser transmission with a desired power by the time. For example, when time is required and a target is moving, faster laser transmission is required. The problem to be solved is that a laser beam having a small spread is accurately and promptly transmitted to a distant target. Accordingly, it is an object of the present invention to provide a narrow beam laser transmitting apparatus capable of transmitting a narrow laser beam having a small beam width to a target at a long distance with high accuracy.

【0004】[0004]

【課題を解決するための手段】大気中のような、レーザ
ー光を散乱させる物質が存在する媒質中において、レー
ザービームを伝搬させ、それを後方から見ると、後方散
乱光の画像がくさび状に観測できる。本発明は、この、
くさび状の散乱光の画像からレーザービームの送信方向
を特定できる特性を利用するものである。すなわち、
レーザー送信用の望遠鏡と、目標物とレーザーの散乱光
の像を捉える観測用望遠鏡を同一の指向制御装置上に設
置し、また、レーザーの送信方向を内部光学装置により
微小角変えられるように設定する。目標物とレーザービ
ームの散乱光の像を同時に撮像し、くさび状のレーザー
ビームの散乱光像の二等分線上で、散乱光強度の最高点
から所定の距離に目標物の像が位置するように、レーザ
ーの送信方向を調整するのである。
Means for Solving the Problems When a laser beam is propagated in a medium in which a substance that scatters laser light exists, such as in the atmosphere, and the image is viewed from behind, the image of the backscattered light becomes wedge-shaped. Observable. The present invention provides
This utilizes the characteristic that the transmission direction of the laser beam can be specified from the image of the wedge-shaped scattered light. That is,
The laser transmission telescope and the observation telescope that captures the image of the scattered light of the target and the laser are installed on the same pointing control device, and the laser transmission direction is set to be able to change the micro-angle by the internal optical device. I do. The target object and the image of the scattered light of the laser beam are simultaneously imaged, and the image of the target object is located at a predetermined distance from the highest point of the scattered light intensity on the bisector of the scattered light image of the wedge-shaped laser beam. Then, the laser transmission direction is adjusted.

【0005】[0005]

【発明の実施形態】次に、本発明に係る狭ビームレーザ
ー送信装置の一実施形態を、添付図面に基づいて詳細に
説明する。図1は、本発明に係わる狭ビームレーザー送
信装置の概略構成を示すもので、例えば、レーザー装置
8、送信用望遠鏡2および内部光学装置7とからなるレ
ーザー送信手段と、望遠鏡指向制御装置4上に配置さ
れ、遠方にある目標物とレーザーの散乱光の像を捉える
観測用望遠鏡3とカメラ5およびカメラ出力画像モニタ
ー6で構成される。また、送信用望遠鏡2が観測用望遠
鏡3の斜め上側に、両望遠鏡の光軸がほぼ平行になるよ
うに配置されている。使用法は、目標物とレーザービー
ムの散乱光の像を同時に撮像し、散乱光像の二等分線上
で、散乱光強度の最高点から所定の距離に目標物の像が
位置するように、レーザーの送信方向を内部光学装置7
を用いて調整するだけで、容易に拡がり角の狭いレーザ
ービーム1を目標物に送信することができ、従来の走査
方式やビーム拡がり可変方式に比べて短時間でビームの
送信が図れる。レーザー光の強度や散乱を発生させる物
質の種類や密度によって、送信ビームの像の強度が異な
るが、レーザービームの散乱光像の二等分線上を目標物
像を走査することにより送信が可能になる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, an embodiment of a narrow beam laser transmitting apparatus according to the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 shows a schematic configuration of a narrow beam laser transmission device according to the present invention. For example, a laser transmission means including a laser device 8, a transmission telescope 2 and an internal optical device 7 and a telescope pointing control device 4 are provided. And an observation telescope 3 for capturing an image of scattered light of a laser and a target located at a distance, a camera 5, and a camera output image monitor 6. Further, the transmission telescope 2 is disposed obliquely above the observation telescope 3 so that the optical axes of the two telescopes are substantially parallel. Usage is to simultaneously capture the image of the target and the scattered light of the laser beam, on the bisector of the scattered light image, so that the image of the target is located at a predetermined distance from the highest point of the scattered light intensity, Laser transmission direction to internal optical device 7
The laser beam 1 having a narrow divergence angle can be easily transmitted to the target simply by making adjustments using the laser beam, and the beam can be transmitted in a shorter time as compared with the conventional scanning system and the variable beam divergence system. The intensity of the transmitted beam varies depending on the intensity of the laser light and the type and density of the substance that generates the scattering, but transmission is possible by scanning the target image on the bisector of the scattered light image of the laser beam. Become.

【0006】また、図2には、目標物9に対してレーザ
ー送信を行なった狭ビームレーザー送信装置の概略構成
を併せて、カメラ出力画像13を示してある。このと
き、狭ビームレーザー送信装置から目標物9の間に大気
のようなレーザービーム1が散乱される媒質が満たされ
ているとする。
FIG. 2 also shows a camera output image 13 together with a schematic configuration of a narrow beam laser transmitting apparatus that transmits laser light to the target 9. At this time, it is assumed that a medium, such as the atmosphere, in which the laser beam 1 is scattered is filled between the target 9 and the narrow beam laser transmitter.

【0007】目標物9からは、目標物自体が発する光
か、または、ある光源から伝搬した光が目標物9におい
て散乱反射し、観測用望遠鏡3の方向に伝搬して来る場
合を想定している。レーザービーム1の散乱は、伝搬路
上の各位置で発生するが、ここでは、送信望遠鏡からの
距離L110,送信望遠鏡からの距離 L211, 送信望遠鏡
からの距離L312における、散乱光について考える。こ
のとき、カメラ出力画像13の画面上では、目標物の像
14とレーザービーム1のL1からの後方散乱光の像1
5, L2からの後方散乱光の像16, L3からの後方散乱光
の像17を同時に見ることができる。送信望遠鏡2から
レーザービーム1の散乱が発生する地点までの距離がL
1, L2, L3と長いほど、各地点で発生した散乱光の画面
上での像は小さくなり、像の位置は目標物の像14に近
くなる。実際にレーザービーム1の散乱光を撮映した場
合のカメラ画像は、レーザービーム1の伝搬路上の各位
置での後方散乱光像を重ね合せることになり、最も遠方
からの散乱光像を頂点とした、くさび状に見える。
From the target 9, it is assumed that light emitted from the target itself or light propagated from a certain light source is scattered and reflected by the target 9 and propagates in the direction of the observation telescope 3. I have. The scattering of the laser beam 1 occurs at each position on the propagation path. Here, scattered light at a distance L110 from the transmission telescope, a distance L211 from the transmission telescope, and a distance L312 from the transmission telescope will be considered. At this time, the image 14 of the target and the image 1 of the backscattered light from L1 of the laser beam 1 are displayed on the screen of the camera output image 13.
5, an image 16 of the backscattered light from L2 and an image 17 of the backscattered light from L3 can be simultaneously viewed. The distance from the transmitting telescope 2 to the point where the scattering of the laser beam 1 occurs is L
As the length becomes longer as 1, L2, L3, the image of the scattered light generated at each point on the screen becomes smaller, and the position of the image becomes closer to the image 14 of the target. The camera image when the scattered light of the laser beam 1 is actually captured is obtained by superimposing the backscattered light images at each position on the propagation path of the laser beam 1, and the scattered light image from the farthest point is defined as the top. It looks like a wedge.

【0008】図3に実際に撮影したときの、目標物の像
14とレーザービームの後方散乱光像20のカメラ出力
画像13を示す。くさび状の後方散乱光像の二等分線1
8上に、後方散乱光像の最高強度点19がある。また、
レーザービームの伝搬方向が、くさび状の後方散乱光像
の二等分線18上にあることから、目標物の像14を後
方散乱光像の二等分線18上に位置させ、後方散乱光像
の最高強度点19と目標物の像14距離を調整すること
によって、目標物へのレーザービームの送信が可能とな
る。
FIG. 3 shows a camera output image 13 of a target image 14 and a laser beam backscattered light image 20 when actually photographed. Bisection line 1 of wedge-shaped backscattered light image
On 8 is the highest intensity point 19 of the backscattered light image. Also,
Since the propagation direction of the laser beam is on the bisector 18 of the wedge-shaped backscattered light image, the image 14 of the target is positioned on the bisector 18 of the backscattered light image, and the backscattered light is By adjusting the distance between the highest intensity point 19 of the image and the image 14 of the target, the laser beam can be transmitted to the target.

【0009】後方散乱光像の最高強度点と目標物の像の
最適な位置関係を求めるために、後方散乱光像の二等分
線上での強度分布の算出を行なった。図4に示すような
目標物9、レーザービーム1、観測用望遠鏡開口21、
カメラ受光面22の位置関係とし、観測用望遠鏡開口2
1の中心を原点としてレーザービーム1の伝搬方向と平
行な方向にZ軸、垂直な方向にX軸とY軸を、カメラ受光
面22の中心を原点としてX軸に平行な方向にξ軸、Y軸
に平行な方向にη軸をとり、幾何光学的な解析をした。
In order to determine the optimal positional relationship between the highest intensity point of the backscattered light image and the image of the target, the intensity distribution on the bisector of the backscattered light image was calculated. As shown in FIG. 4, the target 9, the laser beam 1, the observation telescope aperture 21,
The positional relationship between the camera light receiving surface 22 and the observation telescope aperture 2
The center of 1 is the origin, the Z axis is in a direction parallel to the propagation direction of the laser beam 1, the X axis and the Y axis are perpendicular, and the center of the camera light receiving surface 22 is the origin, the 原点 axis is in a direction parallel to the X axis. The η axis was set in a direction parallel to the Y axis, and geometrical optics analysis was performed.

【0010】散乱発生位置(x,y,z)における、レーザー
ビーム1の放射強度をI(x,y,z)、散乱媒質による後方散
乱係数をσb(x,y,z)とする。レーザービーム1の後方散
乱光の一部が観測用望遠鏡で受光され、カメラ受光面2
2に像を作る。この像の受光面上の二次元強度分布D
(ξ,η)は、数式1で与えられる。
The emission intensity of the laser beam 1 at the scattering occurrence position (x, y, z) is represented by I (x, y, z), and the backscattering coefficient by the scattering medium is represented by σb (x, y, z). A part of the backscattered light of the laser beam 1 is received by the observation telescope,
Make an image on 2. Two-dimensional intensity distribution D on the light receiving surface of this image
(ξ, η) is given by Equation 1.

【0011】[0011]

【数1】 [Equation 1]

【0012】ここで、Tは散乱発生地点までの透過率、B
(ξ,η|x,y,z)はカメラ受光面22での散乱光像の分布
を表す関数、fは観測用望遠鏡の焦点距離である。B(ξ,
η|x,y,z)は、fと(x,y,z)および観測用望遠鏡開口21
の形状によって定まる。B(ξ,η|x,y,z)は、観測用望
遠鏡開口21での強度分布を与える瞳関数A(x,y)で表す
と数式2 で与えられる。
Here, T is the transmittance to the scattering occurrence point, B
(ξ, η | x, y, z) is a function representing the distribution of the scattered light image on the camera light receiving surface 22, and f is the focal length of the observation telescope. B (ξ,
η | x, y, z) is f and (x, y, z) and the observation telescope aperture 21
Is determined by the shape of B (ξ, η | x, y, z) is given by Expression 2 when represented by a pupil function A (x, y) that gives an intensity distribution at the observation telescope aperture 21.

【0013】[0013]

【数2】 [Equation 2]

【0014】σbは一次の後方散乱のみを考慮して、大
気分子とエアロゾルによる散乱係数σmとσaの和として
数式3で与えられる。
Σb is given by Equation 3 as the sum of the scattering coefficients σm and σa due to atmospheric molecules and aerosol taking into account only the first-order backscattering.

【0015】[0015]

【数3】 (Equation 3)

【0016】ここで、gm、ga は大気分子とエアロゾル
の散乱の角度依存性を表す位相関数である。
Here, gm and ga are phase functions representing the angle dependence of scattering of atmospheric molecules and aerosol.

【0017】目標物が仰角48゜の上空の宇宙空間に存在
し、レーザービームを地上から大気中に伝搬させて、目
標物に送信する場合の数値計算を行なった。大気の高度
分布として、U.S.標準大気モデルを仮定し、数式1、数
式2、数式3を用いて、レーザービームの後方散乱光像
のくさびの二等分線上での強度分布を算出した。図5に
計算結果のグラフを示す。レーザービームの伝搬方向か
らの角度を横軸に、相対受光強度を縦軸にとった。σb
は、エアロゾルの散乱の割合を変えて3種類の値につい
て算出した。エアロゾルの散乱の割合が大きくσbが0.1
3σm+0.03σaとした場合には、計算結果1のグラフよう
にレーザービームの伝搬方向から400μrad付近に最高点
を有し、ga(π)の値を小さくして、エアロゾルによる後
方散乱の割合を低下させていくと、計算結果2のグラ
フ、計算結果3のグラフのようにレーザービームの伝搬
方向から100〜150μradに最高強度をもつ分布となっ
た。
Numerical calculations were performed in the case where the target was present in outer space above the elevation angle of 48 °, and the laser beam was transmitted from the ground to the atmosphere and transmitted to the target. Assuming the US standard atmospheric model as the altitude distribution of the atmosphere, the intensity distribution on the wedge bisector of the backscattered light image of the laser beam was calculated using Equations 1, 2, and 3. FIG. 5 shows a graph of the calculation result. The horizontal axis indicates the angle from the propagation direction of the laser beam, and the vertical axis indicates the relative received light intensity. σb
Was calculated for three different values by changing the aerosol scattering ratio. Aerosol scattering ratio is large and σb is 0.1
In the case of 3σm + 0.03σa, as shown in the graph of calculation result 1, there is a maximum point near 400 μrad from the propagation direction of the laser beam, and the value of ga (π) is reduced to reduce the rate of backscattering by the aerosol. As the temperature was reduced, the distribution had the highest intensity in the range of 100 to 150 μrad from the propagation direction of the laser beam as shown in the graph of calculation result 2 and the graph of calculation result 3.

【0018】大気の状態は場所や時刻により変化するた
め、狭ビームレーザーを送信する環境に応じて散乱光像
の二等分線上で、最高強度点と目標物の像の位置関係を
調整する必要がある。例えば、人工衛星などの宇宙空間
にある目標物に対して、地上からレーザーを送信する場
合には、図5での計算結果から、最高強度点と目標物の
像の角度間隔はエアロゾルの散乱係数の値によって百か
ら数百μradの角度になり、図3に示した実際に人工衛
星へレーザー送信をしたときには約150μradであった。
Since the state of the atmosphere changes depending on the place and time, it is necessary to adjust the positional relationship between the highest intensity point and the image of the target on the bisector of the scattered light image according to the environment in which the narrow beam laser is transmitted. There is. For example, when a laser is transmitted from the ground to a target in space such as an artificial satellite, from the calculation results in FIG. 5, the angular interval between the highest intensity point and the image of the target is determined by the scattering coefficient of the aerosol. The angle becomes one hundred to several hundreds of μrad depending on the value of 、. When the laser is actually transmitted to the artificial satellite shown in FIG. 3, the angle is about 150 μrad.

【0019】最高強度点と目標物の像の位置関係を調整
する手段には2つの方法があり、望遠鏡指向制御装置を
動作させる方法ではカメラ出力画像上で目標物の像が動
き、内部光学装置を動作させる方法では散乱光の像が動
く。この2方法のうちで、便利な方法を用いればよい。
There are two methods for adjusting the positional relationship between the highest intensity point and the image of the target. In the method of operating the telescope pointing control device, the image of the target moves on the camera output image and the internal optical device Moves the image of the scattered light. Of these two methods, a convenient method may be used.

【0020】レーザーの散乱媒質は、レーザー送信装置
から目標物までの全てに渡って満たされている必要は無
く、地上から宇宙空間にように、レーザー送信点から、
ある程度の距離まで散乱媒質が存在していれば十分であ
る。
The scattering medium of the laser does not need to be filled over the entire area from the laser transmission device to the target.
It is sufficient if the scattering medium is present to a certain distance.

【0021】レーザー送信装置と目標物が相対的に運動
している場合には、光行差角を考慮した方向調整によっ
て、最大の強度で送信できる。光行差角φとは、慣性系
において、相対速度ベクトルのうち視線方向に対して垂
直な成分vと光速cを用いて数式4で与えられる。
When the laser transmitter and the target are relatively moving, transmission can be performed with the maximum intensity by adjusting the direction in consideration of the optical path difference angle. The optical path difference angle φ is given by Expression 4 using a component v and a light speed c of the relative velocity vector perpendicular to the line of sight in the inertial system.

【0022】[0022]

【数4】 (Equation 4)

【0023】この角度分だけ、vの方向に送信方向をず
らして送信することにより、最大の強度で送信される。
By transmitting by shifting the transmission direction in the v direction by this angle, the maximum intensity is transmitted.

【0024】この狭ビームレーザー送信装置では、レー
ザービームの散乱光の像をリアルタイムで観測しながら
送信しているため、散乱光像のぼやけ具合から、ビーム
の拡がりや収差の状態を観測することができる。
In this narrow beam laser transmitting apparatus, since the image of the scattered light of the laser beam is transmitted while being observed in real time, it is possible to observe the spread of the beam and the state of the aberration from the degree of blurring of the scattered light image. it can.

【0025】観測用望遠鏡カメラの視野範囲は、ビーム
の拡がり角、レーザー送信用望遠鏡と観測用望遠鏡の光
軸の間隔、レーザー散乱媒質の分布によって決まり、例
えば、人工衛星に対して数十μradの拡がり角のレーザ
ービームを伝送する場合には、数百μradが適当であ
る。
The field of view of the observation telescope camera is determined by the divergence angle of the beam, the distance between the optical axis of the laser transmission telescope and the optical axis of the observation telescope, and the distribution of the laser scattering medium. When transmitting a divergent laser beam, several hundred μrad is appropriate.

【0026】[0026]

【発明の効果】以上説明したように、本発明に係る狭ビ
ームレーザー送信装置によれば、ビーム幅の拡がりの小
さい狭レーザービームを遠方の目標物に精度良く送信す
ることができる。しかも、大気や水中のようなレーザー
ビームを散乱させる媒質中においてレーザー送信を行な
う場合に好適であることから、応用性に富んだものとな
る。また、レーザー送信中にレーザービームの状態が観
測できるため便利である。
As described above, the narrow beam laser transmitting apparatus according to the present invention can transmit a narrow laser beam having a small beam width to a distant target with high accuracy. Moreover, since it is suitable for laser transmission in a medium such as the atmosphere or water that scatters a laser beam, it is highly applicable. It is also convenient because the state of the laser beam can be observed during laser transmission.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る狭ビームレーザー送信方法に用い
る狭ビームレーザー送信装置の概略構成図である。
FIG. 1 is a schematic configuration diagram of a narrow beam laser transmission device used in a narrow beam laser transmission method according to the present invention.

【図2】カメラ出力画像を示して狭ビームレーザー送信
装置の動作原理の説明した図である。
FIG. 2 is a diagram illustrating an operation principle of a narrow beam laser transmission device by showing a camera output image.

【図3】人工衛星を目標物として実際にレーザービーム
を送信したときのカメラ出力画像である。
FIG. 3 is a camera output image when a laser beam is actually transmitted using an artificial satellite as a target.

【図4】くさび状散乱光像の二等分線上の強度分布を算
出するための、目標物、レーザービーム、観測用望遠鏡
開口、カメラ受光面の位置関係を表した図である。
FIG. 4 is a diagram illustrating a positional relationship among a target, a laser beam, an observation telescope aperture, and a camera light receiving surface for calculating an intensity distribution on a bisector of a wedge-shaped scattered light image.

【図5】くさび状散乱光像の二等分線上での相対受光強
度分布を、レーザービームの伝搬方向からの角度を横軸
にして、3種類のエアロゾルの後方散乱の割合について
算出したグラフである。
FIG. 5 is a graph in which the relative received light intensity distribution on the bisector of the wedge-shaped scattered light image is calculated with respect to the ratio of the backscattering of the three types of aerosols, with the angle from the propagation direction of the laser beam as the horizontal axis. is there.

【符号の説明】[Explanation of symbols]

1 レーザービーム 2 送信用望遠鏡 3 観測用望遠鏡 4 望遠鏡指向制御装置 5 カメラ 6 カメラ出力画像モニター 7 内部光学装置 8 レーザー装置 9 目標物 10 送信望遠鏡からの距離L1 11 送信望遠鏡からの距離L2 12 送信望遠鏡からの距離L3 13 カメラ出力画像 14 目標物の像 15 L1からの後方散乱光の像 16 L2からの後方散乱光の像 17 L3からの後方散乱光の像 18 後方散乱光像の二等分線 19 後方散乱光像の最高強度点 20 レーザービームの後方散乱光像 21 観測用望遠鏡開口 22 カメラ受光面 L1 送信望遠鏡からの距離 L2 送信望遠鏡からの距離 L3 送信望遠鏡からの距離 X 観測用望遠鏡開口の中心を原点としてレーザービー
ムの伝搬方向と垂直方向にとった座標軸 Y 観測用望遠鏡開口の中心を原点としてレーザービー
ムの伝搬方向と垂直方向で、X軸と垂直な方向にとった
座標軸 Z 観測用望遠鏡開口の中心を原点としてレーザービー
ムの伝搬方向と平行な方向にとった座標軸 ξ カメラ受光面の中心を原点としてX軸に平行な方向
な座標軸 η カメラ受光面の中心を原点としてY軸に平行な方向
な座標軸 σb(x,y,z) 散乱発生位置での散乱媒質による後方散乱
係数 σm 大気分子による散乱係数 σa エアロゾルによる散乱係数
REFERENCE SIGNS LIST 1 laser beam 2 transmission telescope 3 observation telescope 4 telescope pointing control device 5 camera 6 camera output image monitor 7 internal optical device 8 laser device 9 target 10 distance from transmission telescope L1 11 distance from transmission telescope L2 12 transmission telescope Distance L3 from camera 13 Camera output image 14 Target image 15 Backscattered light image from L1 16 Backscattered light image from L2 17 Backscattered light image from L3 18 Bisection line of backscattered light image 19 Highest intensity point of backscattered light image 20 Backscattered light image of laser beam 21 Observation telescope aperture 22 Camera light receiving surface L1 Distance from transmission telescope L2 Distance from transmission telescope L3 Distance from transmission telescope X Distance from observation telescope aperture Coordinate axis taken perpendicular to laser beam propagation direction with center as origin Y perpendicular to laser beam propagation direction and perpendicular to laser beam propagation direction with center of observation telescope aperture as origin Coordinate axes taken in different directions Z Coordinate axes taken in the direction parallel to the propagation direction of the laser beam with the origin at the center of the observation telescope aperture ξ Coordinate axes parallel to the X axis with the origin at the center of the camera light receiving surface η Camera light receiving surface原点 b (x, y, z) Backscattering coefficient due to scattering medium at scattering position σm Scattering coefficient due to atmospheric molecules σa Scattering coefficient due to aerosol

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】レーザー光を散乱させる物質が存在する媒
質を介して、レーザー光の送信対象である目標物と対峙
させたレーザー光送信手段と、該レーザー光送信手段の
光軸と平行な光軸を有するように配した観測用望遠鏡
と、上記レーザー光送信手段の光軸と目標物と観測用望
遠鏡の光軸とに相対的な変化を与えることなく両光軸の
指向方向を変化させ得る指向方向可変手段とを備え、上
記レーザー光送信手段から送信されたレーザービームの
散乱光のくさび状の像を上記観測用望遠鏡によって取得
し、上記指向方向可変手段によって、くさび状の像の二
等分線上で、かつ、最高光強度点を基準として、散乱媒
質の状態で決まる所定の位置に、目標物の像を位置させ
るようにレーザーの送信方向を調整することで、狭ビー
ムレーザーを目標物へ送信することを特徴とする狭ビー
ムレーザー送信装置。
1. A laser light transmitting means facing a target to be transmitted of laser light through a medium in which a substance that scatters laser light exists, and a light parallel to an optical axis of the laser light transmitting means. An observation telescope arranged to have an axis, and the pointing directions of both optical axes can be changed without giving a relative change between the optical axis of the laser light transmitting means and the optical axis of the target and the observation telescope. A pointing direction changing means, wherein a wedge-shaped image of the scattered light of the laser beam transmitted from the laser light transmitting means is obtained by the observation telescope, and the wedge-shaped image is obtained by the pointing direction changing means. By adjusting the transmission direction of the laser so that the image of the target is located at a predetermined position determined by the state of the scattering medium with reference to the highest light intensity point on the branch line, the narrow beam laser is adjusted to the target. Narrow beam laser transmission device and transmits.
JP7351880A 1995-12-27 1995-12-27 Narrow beam laser transmitter Expired - Lifetime JP2764567B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7351880A JP2764567B2 (en) 1995-12-27 1995-12-27 Narrow beam laser transmitter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7351880A JP2764567B2 (en) 1995-12-27 1995-12-27 Narrow beam laser transmitter

Publications (2)

Publication Number Publication Date
JPH09179056A true JPH09179056A (en) 1997-07-11
JP2764567B2 JP2764567B2 (en) 1998-06-11

Family

ID=18420246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7351880A Expired - Lifetime JP2764567B2 (en) 1995-12-27 1995-12-27 Narrow beam laser transmitter

Country Status (1)

Country Link
JP (1) JP2764567B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017526287A (en) * 2014-08-20 2017-09-07 レイセオン カンパニー Apparatus and method for reducing signal fading due to atmospheric turbulence

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017526287A (en) * 2014-08-20 2017-09-07 レイセオン カンパニー Apparatus and method for reducing signal fading due to atmospheric turbulence

Also Published As

Publication number Publication date
JP2764567B2 (en) 1998-06-11

Similar Documents

Publication Publication Date Title
EP2097715B1 (en) Three-dimensional optical radar method and device which use three rgb beams modulated by laser diodes, in particular for metrological and fine arts applications
EP2946365B1 (en) Method and arrangement for developing a three dimensional model of an environment
US5231401A (en) Imaging lidar system
US6512518B2 (en) Integrated system for quickly and accurately imaging and modeling three-dimensional objects
CA2554955C (en) Gated imaging
EP1595162B1 (en) Laser gated camera imaging system and method
US8934097B2 (en) Laser beam centering and pointing system
CN104412125B (en) Measuring device, system and method
CN104316443A (en) PM2.5 concentration monitoring method based on CCD back scattering
US11204424B2 (en) Method for capturing a 3D scene by means of a LIDAR system and a LIDAR system for this purpose
US20140009611A1 (en) Camera System and Method for Observing Objects at Great Distances, in Particular for Monitoring Target Objects at Night, in Mist, Dust or Rain
CN105824011A (en) Unmanned aerial vehicle automated guided landing relative position measuring device and method
JP2764567B2 (en) Narrow beam laser transmitter
CN104237167A (en) Correction method and system for distortion of scanning device during OCT sectional image scanning
CN115903547A (en) Photoelectric countermeasure efficiency evaluation semi-physical simulation system and method
KR20170088113A (en) Method for real time measurement on meteorological and environmental parameters based on the convergence of TOF Lidar and camera, and measuring system
Nebylov et al. Verification of the relative distance measurement method for pico-satellites in constellation
KR102149494B1 (en) Structure inspection system and method using dron
Jalui et al. Advanced military helmet aided with wireless live video transmission, sensor integration and augmented reality headset
WO2021148522A1 (en) A method and system for generating a colored tridimensional map
Kulp et al. Development and testing of a backscatter absorption gas imaging (BAGI) system capable of imaging at a range of 300 m
JP2021027437A (en) Spatial optical communication device and spatial optical communication method
JP7026300B2 (en) Spatial optical communication device
JPH10253319A (en) Position measuring device
Sanzone et al. A Single Pixel Infrared Camera for Atmospheric Extinction Measurements

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term