JPH09179037A - Method for imaging of specific material by transmission type laser microscope - Google Patents

Method for imaging of specific material by transmission type laser microscope

Info

Publication number
JPH09179037A
JPH09179037A JP7333136A JP33313695A JPH09179037A JP H09179037 A JPH09179037 A JP H09179037A JP 7333136 A JP7333136 A JP 7333136A JP 33313695 A JP33313695 A JP 33313695A JP H09179037 A JPH09179037 A JP H09179037A
Authority
JP
Japan
Prior art keywords
light
laser
wavelength
specific substance
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7333136A
Other languages
Japanese (ja)
Other versions
JP2869479B2 (en
Inventor
Hiroshi Koike
博 小池
Shoji Suzuki
尚二 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOIKE SEIKI KK
Original Assignee
KOIKE SEIKI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOIKE SEIKI KK filed Critical KOIKE SEIKI KK
Priority to JP7333136A priority Critical patent/JP2869479B2/en
Publication of JPH09179037A publication Critical patent/JPH09179037A/en
Application granted granted Critical
Publication of JP2869479B2 publication Critical patent/JP2869479B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To reduce operation labor, to pick up an image in a short time, and to obtain an image of a specific material excellently without requiring laser light of large output or using a light receiving element which has specially high sensitivity. SOLUTION: This transmission type laser microscope makes a scan by irradiation with the laser spot light, obtained by converging the laser light from a light source 1 through an irradiation-side objective 4 from a material surface side, passes the transmitted light of the laser spot light to the reverse side of the material through a transmission-side objective 6 similar to the irradiation-side objective 4 and reflects it to a concave mirror 8 provided where the transmitted light is imaged by the lens so that the light travels backward, and photodetects the backward traveling light by the light receiving element. Then the light source 1 emits a 1st laser light with wavelength in an absorption band of spectral transmission characteristics of the specific material to be measured and a 2nd laser light with wavelength which is outside the said absorption band and close to that of the 1st laser light at the same time, and the backward traveling lights of both the laser lights are photodetected by different light receiving elements 11 and 12 to pick up an image of the specific material by making use of differences in variation between both the laser lights.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、資料からの透過光
像を撮像する透過型レーザー顕微鏡を用いて資料中の特
定物質を撮像する特定物質撮像方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a specific substance imaging method for imaging a specific substance in a material by using a transmission laser microscope which images a transmitted light image from the material.

【0002】[0002]

【従来の技術】従来、資料中に存在する例えば、カルシ
ウム等の特定の物質をレーザー顕微鏡により撮像する際
には、透過型ではなく蛍光型レーザー顕微鏡を使用して
いる。
2. Description of the Related Art Conventionally, when a specific substance such as calcium present in a material is imaged by a laser microscope, a fluorescent laser microscope is used instead of a transmission type.

【0003】この従来の撮像方法は、撮像しようとする
特定の物質とのみ作用する蛍光色素(試薬)で資料を染
色する。この色素は、或る波長の励起光で蛍光を発する
が、特定物質と作用した場合には異なった波長の励起光
で蛍光を発するものが使用されている。そして資料染色
後、特定物質と作用した場合に蛍光を発する波長のレー
ザー光を励起光として資料を走査し、蛍光発光部分の存
在位置を疑似カラーで作り、蛍光に無関係な波長に切り
換えて再度走査し、得られた白黒(濃淡)像に前記疑似
カラー像を重ね合わせて位置、形状、分布等をディスプ
レイ上に表示させるようにしている。
In this conventional imaging method, a material is dyed with a fluorescent dye (reagent) that acts only on a specific substance to be imaged. This dye emits fluorescence with excitation light of a certain wavelength, but when it interacts with a specific substance, it emits fluorescence with excitation light of a different wavelength. After dyeing the material, the material is scanned by using laser light of a wavelength that emits fluorescence when it interacts with a specific substance as excitation light, the location of the fluorescence emitting portion is made in pseudo color, and the wavelength is switched to a wavelength unrelated to the fluorescence and scanning is performed again. Then, the pseudo-color image is superimposed on the obtained black and white (grayscale) image so that the position, shape, distribution and the like are displayed on the display.

【0004】[0004]

【発明が解決しようとする課題】このような従来の方式
では、資料を蛍光色素にて染色する必要があり、その作
業に手間と時間を要するという問題があった。
In such a conventional method, there is a problem that it is necessary to dye the material with a fluorescent dye, which requires labor and time.

【0005】また、蛍光型レーザー顕微鏡の場合、発光
する蛍光は励起光の1割弱の強さしかなく、このためレ
ーザー光の出力を大きくする必要があるとともに、受光
素子も感度の高いものが必要になり、高価になるという
問題がある。
Further, in the case of a fluorescence type laser microscope, the emitted fluorescence has only a little less than 10% of the excitation light intensity. Therefore, it is necessary to increase the output of the laser light and the light receiving element is also one having high sensitivity. It is necessary and expensive.

【0006】更に、蛍光を発光させる波長の励起光と、
これに無関係な波長のレーザー光とによって2回の走査
が必要になり、得られる二つの画像を合成するためのシ
ステムも必要になりシステムが複雑であるという問題が
あった。
Further, excitation light having a wavelength for emitting fluorescence,
There is a problem in that the scanning is required twice with a laser beam having an irrelevant wavelength, a system for synthesizing two obtained images is also required, and the system is complicated.

【0007】本発明はこれらの各種問題を解決すること
を目的としてなされたものである。
The present invention has been made for the purpose of solving these various problems.

【0008】[0008]

【課題を解決するための手段】上述の如き従来の問題を
解決し、所期の目的を達成するための本発明方法の特徴
は、第1に、光源からのレーザー光を照射側対物レンズ
を通して集光させたレーザースポット光を資料表面側か
ら照射して走査させ、該レーザースポット光の該資料の
裏側への透過光を、前記照射側対物レンズと同等の透過
側対物レンズに通し、該レンズで結像させた位置に設け
た凹面鏡に反射させて逆行させ、その逆行光を受光素子
に受光させるようにしてなる透過型レーザー顕微鏡を使
用し、前記光源からは測定しようとする特定物質の分光
透過率特性における吸収帯域にある波長の第1のレーザ
ー光と、前記吸収帯域外にあって第1のレーザー光に近
い波長の第2のレーザー光とを同時に発光させ、その両
レーザー光の逆行光を別々の受光素子に受光させ、両レ
ーザー光の変化の違いにより特定物質を撮像すること、
第2に、上記各受光素子に受光される第1のレーザー光
の逆行光の変化と、第2のレーザー光の逆行光の変化に
差のない部分と差のある部分とを異なった色、例えば差
のない部分を白黒で、差のある部分をカラーで表示さ
せ、白黒画像中に特定物質部分を類似カラーで表示させ
ること、第3に、上記吸収帯域にある波長を特定物質に
指示薬を作用させることにより得られる波長とし、予め
前記指示薬にて処理した資料を使用することにある。
The features of the method of the present invention for solving the above-mentioned conventional problems and achieving the intended object are as follows. Firstly, laser light from a light source is passed through an irradiation side objective lens. The condensed laser spot light is irradiated from the front side of the material to be scanned, and the transmitted light of the laser spot light to the back side of the material is passed through a transmission side objective lens equivalent to the irradiation side objective lens, and the lens is passed through the lens. Using a transmission laser microscope that reflects the light on a concave mirror provided at the position where the image was formed and makes it go backwards, and makes the retrograde light be received by a light receiving element. A first laser beam having a wavelength in the absorption band in the transmittance characteristic and a second laser beam having a wavelength outside the absorption band and close to the first laser beam are simultaneously emitted, and the two laser beams are reversed. Was received in separate receiving element, for imaging a specific substance by the difference in the change of both the laser beam that,
Secondly, the change of the retrograde light of the first laser light received by each of the light receiving elements and the part having no difference in the change of the retrograde light of the second laser light are different from each other, For example, displaying a part having no difference in black and white and a part having difference in color and displaying a specific substance part in a similar color in a black and white image. Thirdly, an indicator for a specific substance having a wavelength in the absorption band is displayed. The wavelength obtained by the action is used and the material previously treated with the indicator is used.

【0009】[0009]

【発明の実施の形態】次に本発明の実施の一形態を図面
について説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Next, an embodiment of the present invention will be described with reference to the drawings.

【0010】図1は、本発明を実施する装置の光路系を
示しており、図において、1は波長の異なったλ1 ,λ
2 波長の2種類のレーザー光を同時に同軸で発光する光
源であり、2は光源1からの照射光aを透過し、同光軸
を逆行して来る反射光bを反射させる偏光ビームスプリ
ッター、3は光源からの照射光をX方向、Y方向に走査
させるための走査系、4は照射側対物レンズ、5は資料
台に支持させた資料、6は照射側対物レンズと同等の透
過側対物レンズ、7は1/4λ波長板、8は凹面鏡であ
る。
FIG. 1 shows an optical path system of an apparatus for carrying out the present invention. In the figure, 1 is λ 1 , λ having different wavelengths.
A light source that simultaneously emits two types of laser light of two wavelengths coaxially, and 2 is a polarization beam splitter that transmits the irradiation light a from the light source 1 and reflects the reflected light b that travels in the opposite direction of the optical axis. Is a scanning system for scanning the irradiation light from the light source in the X and Y directions, 4 is an irradiation side objective lens, 5 is a material supported by a data base, and 6 is a transmission side objective lens equivalent to the irradiation side objective lens. , 7 is a quarter-wave plate, and 8 is a concave mirror.

【0011】光源1から発光された照射光aは偏光ビー
ムスプリッター2を透過してX,Y走査系3に到り、こ
こでX方向、Y方向の走査方向に動作される。次いで照
射側対物レンズ4でレーザー光を集束させ、資料5上に
結像させてスポット光によって資料上を走査させる。
尚、資料5の厚さ方向に対する結像位置は資料台を動作
させることにより調節できる。資料台5を透過したレー
ザー光は透過側対物レンズ6を通り、ここで再度集束さ
せて凹面鏡8の表面に結像させ、ここで反射させる。
Irradiation light a emitted from the light source 1 passes through the polarization beam splitter 2 and reaches an X, Y scanning system 3, where it is operated in the X and Y scanning directions. Next, the laser light is focused by the irradiation side objective lens 4, and an image is formed on the material 5, and the material is scanned by the spot light.
The image forming position of the material 5 in the thickness direction can be adjusted by operating the material table. The laser light transmitted through the sample table 5 passes through the transmission-side objective lens 6, where it is focused again to form an image on the surface of the concave mirror 8 and is reflected there.

【0012】反射光(図中点線で示す)は照射光(図中
実線で示す)と同じ経路を逆行し、資料背面側から照射
光の結像位置と同じ位置に結像し、資料5を再度透過し
て偏光ビームスプリッター2に到る。
The reflected light (indicated by a dotted line in the figure) travels backward along the same path as that of the illuminating light (indicated by a solid line in the figure), and forms an image at the same position as the image forming position of the illuminating light from the back side of the material, and the material 5 It passes through again and reaches the polarization beam splitter 2.

【0013】偏光ビームスプリッター2では1/4λ波
長板7を2回通過した反射光のみが反射されて直角方向
に曲げられる。この偏光ビームスプリッター2からの反
射光軸上にはダイクロミラー9及びミラー10が置か
れ、ダイクロミラー9によりλ1 波長のレーザー光が反
射されて直角方向に曲げられ、ダイクロミラー9を透過
したλ2 波長のレーザー光がミラー10に反射されて直
角方向に曲げられ、それぞれ、別々の受光素子11,1
2に到る。受光素子11,12はそれぞれ、光電変換し
て電気信号をメモリに送り込むようにしている。尚図に
おいて、13は調整器(増幅器)、14はデータ作成部
(CPU)である。
In the polarization beam splitter 2, only the reflected light that has passed through the quarter-wave plate 7 twice is reflected and bent in the perpendicular direction. A dichroic mirror 9 and a mirror 10 are placed on the reflection optical axis from the polarization beam splitter 2, the laser light of λ 1 wavelength is reflected by the dichroic mirror 9 and bent in a right angle direction, and the λ transmitted through the dichroic mirror 9 is transmitted. The laser light of two wavelengths is reflected by the mirror 10 and bent in a right angle direction.
Two. Each of the light receiving elements 11 and 12 is adapted to photoelectrically convert and send an electric signal to the memory. In the figure, 13 is an adjuster (amplifier), and 14 is a data creation unit (CPU).

【0014】次に上述した装置を使用し、薬剤処理を行
ってない生の資料を使用した撮像方法について説明す
る。
Next, an image pickup method using the above-mentioned apparatus and using raw material which has not been subjected to drug treatment will be described.

【0015】資料としては染色作業や指示薬処理を行わ
ない生のままのものを使用する。光源1から発光させる
二種類の波長のレーザー光は、λ1 として資料中から撮
像させようとする特定物質の分光透過率特性の吸収帯域
にある波長を選択し、λ2 として上記吸収帯域外であっ
てλ1 に近い波長を選択する。
As the material, raw materials which are not subjected to dyeing work or indicator treatment are used. For the two types of laser light emitted from the light source 1, λ 1 is selected from the material in the absorption band of the spectral transmittance characteristic of the specific substance to be imaged, and λ 2 is outside the absorption band. Select a wavelength close to λ 1 .

【0016】分光透過率特性の吸収帯はその物質に特有
のものであり、図2に示すように物質に波長を変化させ
て光を透過させると、ある帯域において透過率が低下す
る部分があり、その時の波長域が吸収帯域cであり、こ
の範囲内の波長のものをλ1とする。尚、物質毎にこの
吸収帯域が複数あるが、その選択は資料中に含まれると
思われる他の物質と紛わしくない部分を使用する。
The absorption band of the spectral transmittance characteristic is peculiar to the substance, and as shown in FIG. 2, when light is transmitted by changing the wavelength of the substance, there is a portion where the transmittance decreases in a certain band. The wavelength band at that time is the absorption band c, and the wavelength band within this range is λ 1 . Although there are multiple absorption bands for each substance, use a part that is not confused with other substances that are likely to be included in the material.

【0017】例えば、特定物質がカリウムである場合は
λ1 として583mμ、λ2 として633mμ、ナトリ
ウムである場合にはλ1 として589mμ、λ2 として
633mμの各波長のレーザー光を使用する。
For example, when the specific substance is potassium, λ 1 is 583 mμ, λ 2 is 633 mμ, and when it is sodium, λ 1 is 589 mμ and λ 2 is 633 mμ.

【0018】このようにして、資料をλ1 、λ2 の両レ
ーザー光で走査すると、1走査線における透過率曲線は
図3のようになる。即ち、λ1 は特定物質の存在する部
分で透過率が低下するとともに、その低下程度が特定物
質の密度や厚さに応じて変化する。一方λ2 は資料全般
の要因によって透過率が変化し、特定物質が存在しない
位置ではλ1 もλ2 と略平行となる。
In this way, when the material is scanned with both λ 1 and λ 2 laser beams, the transmittance curve for one scanning line is as shown in FIG. That is, the transmittance of λ 1 is reduced in the portion where the specific substance is present, and the degree of reduction is changed according to the density and thickness of the specific substance. On the other hand, the transmittance of λ 2 changes depending on the factors of the whole material, and λ 1 becomes substantially parallel to λ 2 at the position where no specific substance exists.

【0019】各位置におけるλ1 、λ2 の各透過率をT
(λ1 ,X),T(λ2 ,X)で表し、両者の差ΔT=
T(λ2 ,X)−T(λ1 ,X)とし、特定物質のない
部分でΔT=0となるように調整器13(可変増幅器)
により調整しておく。従ってΔT>0の位置には特定物
質が存在することを示し、その濃度、厚さ等によりΔT
の値が変化する。一方、ΔT=0の位置ではλ1 、λ2
とも同じ変化を示し、資料全体の濃度や厚さにより変化
する。
The transmittance of λ 1 and λ 2 at each position is T
1 , X), T (λ 2 , X), and the difference ΔT =
T (λ 2 , X) −T (λ 1 , X), and adjuster 13 (variable amplifier) so that ΔT = 0 in a portion without a specific substance
Adjust according to. Therefore, it is shown that the specific substance exists at the position of ΔT> 0, and ΔT is determined by its concentration, thickness, etc.
Changes. On the other hand, at the position of ΔT = 0, λ 1 and λ 2
Both show the same change, and change depending on the concentration and thickness of the entire material.

【0020】このようにして得られるλ1 、λ2 のレー
ザー光変化による電気信号をデータ作成部14(CP
U)に送る。データ作成部では、λ2 による透過率T
(λ2 ,X)に対応する明暗度(白黒)をその位置のデ
ータとするが、ΔT>0の位置ではこれに代えてΔTに
比例した濃さの疑似カラー(例えば赤)をデータとすれ
ば1走査線毎に白黒の明暗線をバックグラウンドとし、
特定物質位置では疑似カラーとなる。これを図3のグラ
フに合わせて仮の実数を当てはめて示すと第1表の如く
である。所定数の走査線を並べた1走査面では白黒画像
のバックグラウンドに疑似カラーの特定物質画像が得ら
れる。
The electric signal obtained by the change of the laser light of λ 1 and λ 2 thus obtained is used as a data preparation unit 14 (CP
Send to U). In the data preparation section, the transmittance T by λ 2
The intensity (black and white) corresponding to (λ 2 , X) is used as the data at that position, but at a position where ΔT> 0, a pseudo color (for example, red) having a darkness proportional to ΔT is used as the data instead. For example, the black and white bright and dark lines are used as the background for each scanning line,
It becomes pseudo color at the specific substance position. This is shown in Table 1 by applying a temporary real number to the graph of FIG. In one scanning plane in which a predetermined number of scanning lines are arranged, a pseudo color specific substance image is obtained in the background of the black and white image.

【0021】次に資料として指示薬にて処理したものを
使用する場合について説明すると、この場合には、ある
薬剤に特定物質が作用することにより、その薬剤の光吸
収帯が変化することが判明している薬剤を指示薬として
使用するものであり、例えば、カルシウムの指示薬とし
て提供されている米国蛍光研究センター開発の「PDA
A」(PURPURATE−1,1´−DIACETI
C ACID TRIPOTASSIUM SALTの
略)(ORGANIC PREPARATIONS A
ND PROCEDURES INT. 21(4)4
93−500(1989))は、通常の吸収帯波長が4
86mμであり、これとカルシウムとが作用する(カル
シウムイオンと結びつく)と吸収帯が524mμに変化
する。
Next, the case of using the material treated with the indicator as the data will be explained. In this case, it was found that the light absorption band of the medicine is changed by the action of the specific substance on the medicine. Existing drug is used as an indicator, for example, “PDA developed by the US fluorescent research center, which is provided as an indicator of calcium.
A "(PURPRATE-1, 1'-DIACETI
C ACID TRIPOTASSIUM SALT) (ORGANIC PREPARATIONS A
ND PROCEDURES INT. 21 (4) 4
93-500 (1989)) has a normal absorption band wavelength of 4
It is 86 mμ, and when this acts with calcium (combines with calcium ion), the absorption band changes to 524 mμ.

【0022】そこで「PDAA」を作用させた資料を使
用し、前述したλ1 として524mμ波長のレーザー光
を使用し、λ2 として556mμ波長のレーザー光を使
用して前述と同様に走査することにより、前述と同様に
T(λ1 ,X)及びT(λ2,X)を基にし、T
(λ2 ,X)及びΔTをデータとした画像を得ることが
できる。
Then, by using the data on which "PDAA" is actuated and using the laser light having the wavelength of 524 mμ as λ 1 and the laser light having the wavelength of 556 mμ as λ 2 , the same scanning as described above is performed. , Based on T (λ 1 , X) and T (λ 2 , X) as described above, T
An image can be obtained using (λ 2 , X) and ΔT as data.

【0023】[0023]

【発明の効果】上述したように本発明においては、透過
型レーザー顕微鏡を使用し、照射側、透過側の往復工程
において資料を2回透過させたレーザー光の変化を受光
素子にて感知させるものであるため、その変化率が大き
く、従って低出力の光源を使用し、しかも高感度の受光
素子を要することなく、良好な画像を得ることができ
る。
As described above, in the present invention, the transmission laser microscope is used, and the light receiving element senses the change of the laser light that has transmitted the material twice in the reciprocating process of the irradiation side and the transmission side. Therefore, the rate of change is large, and therefore, a good image can be obtained without using a light source with low output and a light receiving element with high sensitivity.

【0024】また、1回の走査で特定物質特有の分光透
過率特性における吸収帯域もしくは指示薬の特定物質が
作用した際の吸収帯にある波長のレーザー光と、これ以
外で近い波長のレーザー光とを使用し、これらの吸収率
変化によって画像用の信号を得るようにすることにより
1回の走査でバックグラウンドと特定物質とを同時に表
示させることができる。
Laser light having a wavelength in the absorption band in the spectral transmittance characteristic of the specific substance or absorption band when the specific substance of the indicator acts in one scan, and laser light of other wavelengths other than this , And the signal for the image is obtained by these changes in the absorptance, the background and the specific substance can be simultaneously displayed by one scanning.

【0025】更に、指示薬を使用しない場合には、染色
等の作業が不要なため、その作業が不要となり、手間と
時間が省かれ、生の資料をそのまま直ちに見ることがで
きる。
Further, when the indicator is not used, the work such as dyeing is not necessary, so that the work is unnecessary, the labor and time are saved, and the raw material can be viewed immediately as it is.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る装置の一実施形態を示す線図であ
る。
FIG. 1 is a diagram showing an embodiment of the device according to the invention.

【図2】物質の分光透過特性を示すグラブである。FIG. 2 is a grab showing the spectral transmission characteristics of a substance.

【図3】本発明方法に係る一実施形態における1走査線
の光透過率を示すグラフである。
FIG. 3 is a graph showing the light transmittance of one scanning line in an embodiment according to the method of the present invention.

【符号の説明】[Explanation of symbols]

a 照射光 b 反射光 c 吸収帯域 1 光源 2 ビームスプリッター 3 走査系 4 照射側対物レンズ 5 資料 6 透過側対物レンズ 7 波長板 8 凹面鏡 9 ダイクロミラー 10 ミラー 11,12 受光素子 13 調整器 14 データ作成部 a irradiation light b reflected light c absorption band 1 light source 2 beam splitter 3 scanning system 4 irradiation side objective lens 5 material 6 transmission side objective lens 7 wavelength plate 8 concave mirror 9 dichroic mirror 10 mirror 11, 12 light receiving element 13 adjuster 14 data creation Department

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 光源からのレーザー光を照射側対物レン
ズを通して集光させたレーザースポット光を資料表面側
から照射して走査させ、該レーザースポット光の該資料
の裏側への透過光を、前記照射側対物レンズと同等の透
過側対物レンズに通し、該レンズで結像させた位置に設
けた凹面鏡に反射させて逆行させ、その逆行光を受光素
子に受光させるようにしてなる透過型レーザー顕微鏡を
使用し、前記光源からは測定しようとする特定物質の分
光透過率特性における吸収帯域にある波長の第1のレー
ザー光と、前記吸収帯域外にあって第1のレーザー光に
近い波長の第2のレーザー光とを同時に発光させ、その
両レーザー光の逆行光を別々の受光素子に受光させ、両
レーザー光の変化の違いにより特定物質を撮像すること
を特徴としてなる透過型レーザー顕微鏡による特定物質
撮像方法。
1. A laser spot light obtained by condensing laser light from a light source through an irradiation-side objective lens is irradiated from the front surface side of the material to be scanned, and the transmitted light of the laser spot light to the back side of the material is A transmission laser microscope that passes through a transmission-side objective lens equivalent to the irradiation-side objective lens, reflects the light on a concave mirror provided at the position where the image is formed by the lens to make it go backward, and causes the light-receiving element to receive the backward light. From the light source, the first laser light having a wavelength in the absorption band in the spectral transmittance characteristic of the specific substance to be measured, and the first laser light having a wavelength outside the absorption band and close to the first laser light are used. The two laser beams are emitted at the same time, the retrograde light of the two laser beams is received by different light receiving elements, and a specific substance is imaged by the difference in the changes of the two laser beams. Imaging method for specific substances with a laser microscope.
【請求項2】 各受光素子に受光される第1のレーザー
光の逆行光の変化と、第2のレーザー光の逆行光の変化
に差のない部分と差のある部分とを異なった色で表示さ
せる請求項1に記載の透過型レーザー顕微鏡による特定
物質撮像方法。
2. A change in the retrograde light of the first laser light received by each light receiving element and a part in which there is no difference in the change in the retrograde light of the second laser light are different in color. The method for imaging a specific substance using the transmission laser microscope according to claim 1, wherein the image is displayed.
【請求項3】 吸収帯域にある波長を特定物質に指示薬
を作用させることにより得られる波長とし、予め前記指
示薬にて処理した資料を使用する請求項1ももしくは2
に記載の透過型レーザー顕微鏡による特定物質撮像方
法。
3. The method according to claim 1 or 2, wherein a wavelength in the absorption band is set to a wavelength obtained by causing an indicator to act on a specific substance, and a material previously treated with the indicator is used.
The method for imaging a specific substance using the transmission laser microscope according to [4].
JP7333136A 1995-12-21 1995-12-21 Specific substance imaging method by transmission laser microscope Expired - Fee Related JP2869479B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7333136A JP2869479B2 (en) 1995-12-21 1995-12-21 Specific substance imaging method by transmission laser microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7333136A JP2869479B2 (en) 1995-12-21 1995-12-21 Specific substance imaging method by transmission laser microscope

Publications (2)

Publication Number Publication Date
JPH09179037A true JPH09179037A (en) 1997-07-11
JP2869479B2 JP2869479B2 (en) 1999-03-10

Family

ID=18262703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7333136A Expired - Fee Related JP2869479B2 (en) 1995-12-21 1995-12-21 Specific substance imaging method by transmission laser microscope

Country Status (1)

Country Link
JP (1) JP2869479B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001108910A (en) * 1999-09-09 2001-04-20 Carl Zeiss Jena Gmbh Microscope of projected light and transmitted light observing type
JP2008298833A (en) * 2007-05-29 2008-12-11 Ricoh Co Ltd Laser microscope and specimen used in laser microscope
EP2112543A1 (en) 2008-04-21 2009-10-28 Rinsoken Co., Ltd. Three-dimensional image obtaining device and processing apparatus using the same
JP2013511025A (en) * 2009-11-10 2013-03-28 コーニング インコーポレイテッド Tunable light source for label-independent optical reader

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001108910A (en) * 1999-09-09 2001-04-20 Carl Zeiss Jena Gmbh Microscope of projected light and transmitted light observing type
JP2008298833A (en) * 2007-05-29 2008-12-11 Ricoh Co Ltd Laser microscope and specimen used in laser microscope
EP2112543A1 (en) 2008-04-21 2009-10-28 Rinsoken Co., Ltd. Three-dimensional image obtaining device and processing apparatus using the same
US8237797B2 (en) 2008-04-21 2012-08-07 Rinsoken Co., Ltd. Three-dimensional image obtaining device and processing apparatus using the same
JP2013511025A (en) * 2009-11-10 2013-03-28 コーニング インコーポレイテッド Tunable light source for label-independent optical reader

Also Published As

Publication number Publication date
JP2869479B2 (en) 1999-03-10

Similar Documents

Publication Publication Date Title
US7217573B1 (en) Method of inspecting a DNA chip
US4284897A (en) Fluorescence determining microscope utilizing laser light
EP1650551B1 (en) Biochip Reader
US9360426B2 (en) Optical microscopy with phototransformable optical labels
US6441379B1 (en) Imaging system for an optical scanner
US6070096A (en) Fluorescence detecting apparatus
US5097135A (en) Method of forming a two-dimensional distribution image of ion concentration in a cell
US7999935B2 (en) Laser microscope with a physically separating beam splitter
JP2000056244A (en) Laser scanning microscope, and illuminator or detector
JPH09179034A (en) Top-light fluorescence microscope
JP2004170977A (en) Method and arrangement for optically grasping sample with depth of resolution
US6674573B2 (en) Laser microscope
US6903869B2 (en) Illumination system for microscopy and observation or measuring method using the same
EP1157268B1 (en) Imaging system for an optical scanner
JPH09179037A (en) Method for imaging of specific material by transmission type laser microscope
JP3326881B2 (en) Scanning optical microscope
JPH09304701A (en) Confocal laser scanning microscope
JP3539436B2 (en) Scanning laser microscope
JP2907571B2 (en) Laser scanning fluorescence microscope
JPH0862123A (en) Scanning optical measuring apparatus
JP3684564B2 (en) microscope
JP3999324B2 (en) Fluorescence microscope device
JPH11326051A (en) Detecting device for fluorescence pigment
JPH1195114A (en) Scanning optical microscope device
JP2004021008A (en) Light source device for microscope and confocal microscope

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090108

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100108

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees