JPH09178958A - Production of preform for distributed refractive index plastic optical fiber - Google Patents

Production of preform for distributed refractive index plastic optical fiber

Info

Publication number
JPH09178958A
JPH09178958A JP7340653A JP34065395A JPH09178958A JP H09178958 A JPH09178958 A JP H09178958A JP 7340653 A JP7340653 A JP 7340653A JP 34065395 A JP34065395 A JP 34065395A JP H09178958 A JPH09178958 A JP H09178958A
Authority
JP
Japan
Prior art keywords
refractive index
polymerization
preform
optical fiber
plastic optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7340653A
Other languages
Japanese (ja)
Inventor
Tetsuya Nakamura
哲也 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Wiring Systems Ltd
Original Assignee
Sumitomo Wiring Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Wiring Systems Ltd filed Critical Sumitomo Wiring Systems Ltd
Priority to JP7340653A priority Critical patent/JPH09178958A/en
Publication of JPH09178958A publication Critical patent/JPH09178958A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To easily produce a preform for a distributed refractive index plastic optical fiber suitable for high-speed transmission. SOLUTION: A layer of a clad part polymer is formed on the inside wall of a cylindrical vessel. A layer of a core part polymer contg. a compd. having a high refractive index is formed on the inner side of the clad part polymer. A gel of the core part polymer contg. the compd. having the high refractive index is then packed into the hollow part at the center and is solidified by polymn. or one end of the hollow part is sealed and while the pressure in the hollow part is reduced, the hollow part is closed by heating from the circumference.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、屈折率分布型プラ
スチック光ファイバ用プリフォームの製造方法に関し、
さらに詳しくは、光の高速伝送に適した屈折率分布型プ
ラスチック光ファイバ用プリフォームの製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a preform for a gradient index plastic optical fiber,
More specifically, it relates to a method for manufacturing a preform for a gradient index plastic optical fiber suitable for high-speed transmission of light.

【0002】[0002]

【従来の技術】屈折率分布型プラスチック光ファイバ用
プリフォームの製造方法として、特開昭60−1195
09号公報および特開昭60−119510号公報は、
重合後の屈折率または重合後の屈折率と重合前後の比重
が異なる2種以上のモノマーを所定比で混合し、水平に
配置した円筒状容器を回転させながら、屈折率の低い溶
液から順に円筒状容器に供給し、同心円状に重合させる
方法を開示している。この方法によれば、階段状に変化
する屈折率分布が形成される。
2. Description of the Related Art As a method for producing a preform for a gradient index plastic optical fiber, Japanese Patent Application Laid-Open No. 60-1195.
No. 09 and JP-A-60-119510 disclose
A mixture of two or more kinds of monomers having different refractive index after polymerization or after polymerization and specific gravity before and after polymerization at a predetermined ratio, and while rotating a horizontally arranged cylindrical container, a cylindrical solution in order from a solution having a lower refractive index is used. Disclosed is a method of supplying the same to a cylindrical container and polymerizing them concentrically. According to this method, a refractive index distribution that changes stepwise is formed.

【0003】この方法では、連続的な滑らかな屈折率分
布を形成するために、より多くの層を重ねていかなけれ
ばならないが、層が多くなればなる程、プリフォームの
製造に時間がかかり、製造コストが上昇する。また、各
層に用いるポリマーを、屈折率の異なる2種類以上のモ
ノマーの共重合により調製しているが、2種以上のモノ
マーの仕込み比を変えて屈折率を調製する方法では、共
重合体の連鎖分布に応じて相分離し、散乱損失が大きく
なる。
In this method, more layers must be stacked in order to form a continuous and smooth refractive index distribution. However, the more layers, the longer it takes to manufacture the preform. , The manufacturing cost rises. Further, the polymer used for each layer is prepared by copolymerization of two or more kinds of monomers having different refractive indexes. However, in the method of adjusting the refractive index by changing the charging ratio of the two or more kinds of monomers, the copolymer Phase separation occurs according to the chain distribution, and scattering loss increases.

【0004】特開平4−29043号公報は、中空管中
にて、コア部となるモノマー溶液を重合固化してプラス
チック光ファイバ用プラスチックを製造する方法を開示
する。コア部となるモノマー溶液には相互に屈折率が異
なる2種類以上のモノマーを用い、モノマー溶液の重合
は中空管の内壁表面から進行する。この方法では、連続
的に変化する屈折率分布を形成するために、反応性比の
差を利用している。すなわち、高反応性比のモノマーと
して低屈折率のモノマーを用い、低反応性比のモノマー
として高屈折率のモノマーを用いると、中空管内表面か
ら反応が起こるので、中空管内表面近くでは反応性比の
高い低屈折率モノマーが優先的に重合し、反応性比が低
い高屈折率のモノマーは中心部に向けて順次濃縮され、
全体として屈折率分布が形成される。しかしながら、反
応性比の低いモノマーは、重合せずにモノマーとして残
存してしまうことがあり、その結果、次の線引き工程で
残存モノマーが気化し、気泡を発生させる。気泡は、光
ファイバの散乱損失を大きくするため、そのような光フ
ァイバは、実用性がない。
Japanese Unexamined Patent Publication (Kokai) No. 4-29043 discloses a method for producing a plastic for a plastic optical fiber by polymerizing and solidifying a monomer solution serving as a core portion in a hollow tube. Two or more kinds of monomers having mutually different refractive indexes are used for the monomer solution forming the core portion, and the polymerization of the monomer solution proceeds from the inner wall surface of the hollow tube. This method utilizes the difference in reactivity ratios to form a continuously varying refractive index profile. That is, when a monomer having a low refractive index is used as a monomer having a high reactivity ratio and a monomer having a high refractive index is used as a monomer having a low reactivity ratio, a reaction occurs from the inner surface of the hollow tube, so that the reactivity ratio is close to the inner surface of the hollow tube. The high-refractive-index monomer with a high reactivity is preferentially polymerized, and the high-refractive-index monomer with a low reactivity ratio is gradually concentrated toward the center,
A refractive index distribution is formed as a whole. However, a monomer having a low reactivity ratio may remain as a monomer without being polymerized, and as a result, the residual monomer is vaporized in the next drawing step to generate bubbles. Bubbles increase the scattering loss of optical fibers, and such optical fibers are impractical.

【0005】特開平5−173026号公報は、中空管
を作製し、その中でコア部となるモノマー溶液を重合固
化してプラスチック光ファイバ用プリフォームを製造す
る方法を開示している。重合が中空管内表面から中心に
向かって進行し、連続的に変化する屈折率分布を形成す
る点は特開平4−29043号公報に開示の方法と同じ
であり、モノマー溶液として相互に屈折率が異なる2種
類以上のモノマーを混合して用いる点も同じであるが、
利用するモノマーの性質に相違がある。すなわち、特開
平4−29043号公報に開示の方法では、反応性比の
差を利用して屈折率分布を形成させたのに対し、この方
法では、反応性比はほぼ同じで、分子径の差を利用して
屈折率を形成させている。しかし、この方法も、特開昭
60−119509号公報および特開昭60−1195
10号公報に記載された方法と同様の欠点を有してい
る。
Japanese Unexamined Patent Publication No. 5-173026 discloses a method for producing a preform for a plastic optical fiber by producing a hollow tube and polymerizing and solidifying a monomer solution to be a core portion therein. The point that the polymerization proceeds from the inner surface of the hollow tube toward the center to form a continuously changing refractive index distribution is the same as the method disclosed in Japanese Patent Laid-Open No. 4-29043. The same applies to the use of a mixture of two or more different monomers,
There are differences in the properties of the monomers used. That is, in the method disclosed in Japanese Patent Application Laid-Open No. 4-29043, the refractive index distribution is formed by utilizing the difference in reactivity ratio, whereas in this method, the reactivity ratio is almost the same, and The difference is used to form the refractive index. However, this method is also disclosed in JP-A-60-119509 and JP-A-60-1195.
It has the same drawbacks as the method described in Japanese Patent No.

【0006】[0006]

【発明が解決しようとする課題】本発明は、上記の従来
技術が有する欠点を解決することができる屈折率分布型
プラスチック光ファイバ用プリフォームの製造方法を提
供しようとするものである。
SUMMARY OF THE INVENTION The present invention is intended to provide a method of manufacturing a preform for a gradient index plastic optical fiber, which can solve the above-mentioned drawbacks of the prior art.

【0007】[0007]

【課題を解決するための手段】本発明の屈折率分布型プ
ラスチック光ファイバ用プリフォームの製造方法は、円
筒状容器の内壁にクラッド部ポリマーの層を形成し、該
クラッド部ポリマー層の内側に高屈折率を有する化合物
を含むコア部ポリマーの層を形成し、次いで、中央の中
空部に、高屈折率を有する化合物を含むコア部ポリマー
のゲルを充填して重合固化させるか、または中空部の一
端を封止し中空部を減圧にしながら周囲から加熱して中
空部を塞ぐことを含んでなる。
A method of manufacturing a preform for a gradient index plastic optical fiber according to the present invention comprises forming a layer of a clad polymer on the inner wall of a cylindrical container and arranging the clad polymer layer inside the clad polymer layer. A layer of a core polymer containing a compound having a high refractive index is formed, and then the central hollow part is filled with a gel of a core polymer containing a compound having a high refractive index to polymerize or solidify the hollow part. And sealing the hollow portion at one end and heating the surrounding portion while reducing the pressure in the hollow portion to close the hollow portion.

【0008】これにより、濃度と屈折率が調節された複
数のモノマー溶液を用意する必要がなく、屈折率を階段
状に変化させることがないので製造時間の短縮が図れる
とともに、段階的に屈折率が異なる溶液をいくつも調製
しなくもよい。
With this, it is not necessary to prepare a plurality of monomer solutions whose concentrations and refractive indexes are adjusted, and the refractive index is not changed stepwise, so that the manufacturing time can be shortened and the refractive index can be gradually increased. It is not necessary to prepare a number of different solutions.

【0009】[0009]

【発明の実施の形態】本発明の製造方法で用いる重合の
ための装置を図1に示す。この装置は、重合容器1を保
持できるチャック部2と、それにつながるモータ3と、
重合容器全体を加熱することができる加熱装置4を備え
ておればよい。重合容器の回転速度を制御するため、モ
ータ3とチャック部2の間に、変速ギア(図示せず)を設
けてもよい。重合容器は、通常ガラス製であるが、他の
材料、例えば金属から作られていてもよい。重合容器の
サイズは、製造するプリフォーマの大きさに合わせて適
宜選択すればよい。
BEST MODE FOR CARRYING OUT THE INVENTION An apparatus for polymerization used in the production method of the present invention is shown in FIG. This apparatus comprises a chuck portion 2 capable of holding a polymerization container 1, a motor 3 connected to the chuck portion 2,
A heating device 4 capable of heating the entire polymerization container may be provided. A speed change gear (not shown) may be provided between the motor 3 and the chuck portion 2 in order to control the rotation speed of the polymerization container. The polymerization vessel is usually made of glass, but may be made of other materials, such as metal. The size of the polymerization container may be appropriately selected according to the size of the preformer to be manufactured.

【0010】このような装置を用いて、まずコア部を重
合容器の内壁上に形成する。コア部を形成するポリマー
としては、従来からプラスチック光ファイバに用いられ
ている無色で透明度の高いプラスチックを用いることが
できる。このようなプラスチックを与えるモノマーとし
ては、以下のようなメタクリル酸エステル、スチレン系
化合物、フッ素化アクリル酸エステル、フッ素化メタク
リル酸エステル等を例示することができる: (a)メタクリル酸エステル メタクリル酸メチル、メタクリル酸エチル、メタクリル
酸イソプロピル、メタクリル酸t−ブチル、メタクリル
酸ベンジル、メタクリル酸フェニル、メタクリル酸シク
ロヘキシル、メタクリル酸ジフェニルメチル等; (b)スチレン系化合物 スチレン、α−メチルスチレン、クロロスチレン、ブロ
モスチレン、ジクロロスチレン、ジブロモスチレン等; (c)フッ素化アクリル酸エステル 2,2,2−トリフルオロエチルアクリレート等; (d)フッ素化メタクリル酸エチル 1,1,2−トリフルオロエチルメタクリレート等。
Using such a device, first, the core portion is formed on the inner wall of the polymerization container. As the polymer forming the core portion, a colorless and highly transparent plastic conventionally used for plastic optical fibers can be used. Examples of monomers that give such plastics include the following methacrylic acid esters, styrenic compounds, fluorinated acrylic acid esters, and fluorinated methacrylic acid esters: (a) Methacrylic acid ester Methyl methacrylate , Ethyl methacrylate, isopropyl methacrylate, t-butyl methacrylate, benzyl methacrylate, phenyl methacrylate, cyclohexyl methacrylate, diphenylmethyl methacrylate, etc .; (b) Styrene-based compounds Styrene, α-methylstyrene, chlorostyrene, bromo Styrene, dichlorostyrene, dibromostyrene, etc .; (c) Fluorinated acrylate ester 2,2,2-trifluoroethyl acrylate, etc .; (d) Fluorinated ethyl methacrylate 1,1,2-trifluoroethyl methacrylate, etc.

【0011】このようなモノマーに、重合開始剤や、所
望により添加剤(たとえば、連鎖移動剤)を加え、適当量
を重合容器に入れる。重合容器をモータで回転しなが
ら、加熱装置により加熱して重合容器の内壁上でモノマ
ーを重合させて、クラッド部を形成する。モノマーの量
は、重合容器の大きさとクラッド部の厚さにから決定す
ればよい。また、過剰量のモノマーを入れ、所望の厚さ
のクラッド部が形成された時点で重合を止め、不要なモ
ノマーを重合容器から排出してもよい。
A polymerization initiator and, if desired, an additive (for example, a chain transfer agent) are added to such a monomer, and an appropriate amount is placed in a polymerization vessel. While the polymerization container is being rotated by a motor, the monomer is polymerized on the inner wall of the polymerization container by heating with a heating device to form a clad portion. The amount of the monomer may be determined based on the size of the polymerization container and the thickness of the clad portion. Alternatively, an excessive amount of monomer may be added, polymerization may be stopped when a clad portion having a desired thickness is formed, and unnecessary monomer may be discharged from the polymerization container.

【0012】コア部を形成するポリマーの原料となる溶
液は、クラッド部の形成に用いたモノマーに、屈折率が
そのモノマーから形成されるポリマーより大きい化合物
を混合して調節する。そのような化合物は、下記の条件
を考慮してクラッド部のポリマーの屈折率に応じて容易
に選択することができる。 (1)屈折率がクラッド部のポリマーより大きい。 (2)溶解度パラメータがクラッド部のポリマーとほぼ等
しい。溶解性パラメータに差があるほど両者は分離しや
すくなる。分離すると白濁し、光の散乱損失が大きくな
る。
The solution used as the raw material of the polymer forming the core portion is prepared by mixing the monomer used for forming the cladding portion with a compound having a refractive index higher than that of the polymer formed from the monomer. Such a compound can be easily selected according to the refractive index of the polymer in the clad portion in consideration of the following conditions. (1) The refractive index is larger than that of the polymer in the clad part. (2) The solubility parameter is almost equal to that of the polymer in the clad part. The greater the difference in solubility parameter, the easier the two will separate. When separated, it becomes cloudy and the light scattering loss increases.

【0013】たとえばクラッド部のポリマーとしてポリ
メタクリル酸メチルを用いた場合、屈折率の高い化合物
として、ジオクチルフタレートなどのフタル酸エステ
ル、硫黄化合物、安息香酸エステル、ハロゲン化化合物
を用いることができる。
For example, when polymethylmethacrylate is used as the polymer of the clad portion, a phthalate ester such as dioctyl phthalate, a sulfur compound, a benzoate ester, or a halogenated compound can be used as a compound having a high refractive index.

【0014】コア部を形成するには、上記のようなモノ
マーと高屈折率化合物の混合物に、重合開始剤や連鎖移
動剤などを加え、クラッド部を形成した重合容器に入
れ、重合容器を回転させながら、加熱して、重合させ
る。所定厚さのコア部が形成された時点で重合を終了す
る。
To form the core part, a polymerization initiator, a chain transfer agent, etc. are added to the mixture of the monomer and the high refractive index compound as described above, and the mixture is put into the polymerization container having the clad part and the polymerization container is rotated. While heating, heat to polymerize. The polymerization is terminated when a core having a predetermined thickness is formed.

【0015】この時点で、コア部の内側に中空部が残
る。この中空部を塞ぐには、2つの方法がある。一方
は、コア部を形成するポリマーのゲルを充填する方法で
あり、他方は、中空部を減圧にしながらクラッド部/コ
ア部複合体を加熱してコラプスして中空部を塞ぐ方法で
ある。
At this point, the hollow portion remains inside the core portion. There are two methods for closing this hollow portion. One is a method of filling a gel of a polymer forming the core portion, and the other is a method of heating the collapsed portion / core portion composite while depressurizing the hollow portion to collapse the hollow portion.

【0016】ポリマーのゲルを充填する方法では、コア
部を形成するモノマー混合物を別に重合してポリマーの
ゲルを調製しておき、中空部に充填する。中空部を減圧
により塞ぐ方法では、中空部の一端を封止し、周囲から
加熱すると共に、中空部を減圧脱気する。加熱は、封止
した末端から他端に向けて行うのがよい。減圧は、加熱
温度やプラスチックの種類などの他の条件に応じて、大
気圧より低い圧力にすればよい。過度に減圧する必要は
ない。
In the method of filling the polymer gel, the monomer mixture for forming the core portion is separately polymerized to prepare a polymer gel, which is then filled in the hollow portion. In the method of closing the hollow portion by decompression, one end of the hollow portion is sealed and heated from the surroundings, and the hollow portion is deaerated under reduced pressure. The heating is preferably performed from the sealed end to the other end. The depressurization may be a pressure lower than the atmospheric pressure depending on other conditions such as the heating temperature and the type of plastic. There is no need to decompress excessively.

【0017】[0017]

【発明の効果】本発明の製造方法によれば、高速伝送に
適した屈折率分布型プラスチック光ファイバプリフォー
ムが、簡単に製造できる。
According to the manufacturing method of the present invention, a gradient index plastic optical fiber preform suitable for high-speed transmission can be easily manufactured.

【0018】[0018]

【実施例】以下、実施例を示して、本発明をより具体的
に説明する。実施例1 (1)内径19mm、長さ200mmのガラス製円筒容器に、
メタクリル酸メチル(MMA)25g、開始剤として過
酸化ベンゾイル0.2重量%、連鎖移動剤0.2重量%を
入れ、窒素置換した後、容器の両端を封管した。図1の
装置を用いて、円筒容器を2500rpmにて回転させな
がら、90℃に加熱して24時間重合すると、厚さ2mm
のPMMAの層がガラス容器内壁上に形成された。この
後、PMMA層がガラス管に入れたまま110℃で24
時間熱処理した。
EXAMPLES Hereinafter, the present invention will be described more specifically by showing examples. Example 1 (1) In a glass cylindrical container having an inner diameter of 19 mm and a length of 200 mm,
25 g of methyl methacrylate (MMA), 0.2% by weight of benzoyl peroxide as an initiator, and 0.2% by weight of a chain transfer agent were added, and after purging with nitrogen, both ends of the container were sealed. Using the apparatus shown in FIG. 1, while rotating the cylindrical container at 2500 rpm and heating at 90 ° C. for 24 hours for polymerization, the thickness is 2 mm.
Of PMMA was formed on the inner wall of the glass container. After this, the PMMA layer is kept in the glass tube at 110 ° C. for 24 hours.
Heat treated for hours.

【0019】(2)コア部の原料となる溶液は、MMAに
安息香酸ベンジルを溶解して調製した。コア部の形成に
あたり、2種類の溶液を用意した。すなわち、第1の溶
液は、MMAに対して安息香酸ベンジル15重量%、重
合開始剤として過酸化ベンゾイル0.1重量%、連鎖移
動剤0.2重量%を混合して調製し、第2の溶液は、M
MAに対して安息香酸ベンジル25重量%、重合開始剤
として過酸化ベンゾイル0.1重量%、連鎖移動剤0.2
重量%を混合して調製した。
(2) The solution used as the raw material for the core part was prepared by dissolving benzyl benzoate in MMA. Two types of solutions were prepared for forming the core portion. That is, the first solution was prepared by mixing 15% by weight of benzyl benzoate with MMA, 0.1% by weight of benzoyl peroxide as a polymerization initiator, and 0.2% by weight of a chain transfer agent. The solution is M
25% by weight of benzyl benzoate based on MA, 0.1% by weight of benzoyl peroxide as a polymerization initiator, 0.2 of a chain transfer agent
Prepared by mixing wt%.

【0020】第1の溶液30gを容器に注入し、窒素置
換してから容器の両側を密閉し、図1の装置に取り付け
た。これを温度80℃、回転速度2500rpmで24時
間重合した。その後、110℃で24時間熱処理した。
重合により、2層構造を持つ内径6mmの中空管が得られ
た。積層体の屈折率分布を干渉顕微鏡により測定した。
屈折率分布を図2に示す。中空管の内側の層(コア部)
は、連続的に屈折率が変化するGI型の分布形態を示し
た。
30 g of the first solution was poured into a container, the atmosphere was replaced with nitrogen, and both sides of the container were sealed and attached to the apparatus shown in FIG. This was polymerized at a temperature of 80 ° C. and a rotation speed of 2500 rpm for 24 hours. Then, it heat-processed at 110 degreeC for 24 hours.
By polymerization, a hollow tube having an inner diameter of 6 mm having a two-layer structure was obtained. The refractive index distribution of the laminate was measured by an interference microscope.
The refractive index distribution is shown in FIG. Inner layer of hollow tube (core part)
Shows a GI type distribution morphology in which the refractive index changes continuously.

【0021】(3)別容器中で、第2の溶液を80℃で3
時間重合したゲルを調製し、中空部に注入し、真空で十
分に脱気してから容器を密閉し、5rpmで回転させなが
ら、温度80℃で24時間ゲルを重合して固化した。そ
の後、重合を完結するために110℃で24時間熱処理
した。このように作製したプリフォームの屈折率分布を
干渉顕微鏡により測定すると図3に示すように、高速伝
送に適した屈折率分布を形成していた。
(3) In a separate container, add the second solution at 80 ° C. to 3
A gel that was polymerized for a period of time was prepared, poured into a hollow portion, sufficiently deaerated under vacuum, the container was closed, and the gel was polymerized and solidified at a temperature of 80 ° C. for 24 hours while rotating at 5 rpm. After that, heat treatment was performed at 110 ° C. for 24 hours to complete the polymerization. When the refractive index distribution of the preform thus manufactured was measured by an interference microscope, a refractive index distribution suitable for high speed transmission was formed as shown in FIG.

【0022】実施例2 実施例1の工程(2)で得た中空管の一端を密閉し、もう
一端からロータリーポンプにて管の中空部を減圧しなが
ら、円筒状の加熱装置により150℃に加熱した。加熱
は、密閉端部から解放端部に向けて徐々に行い、隙間な
く加熱溶融した。加熱した中空を塞いだものは直径18
mmのロッド状のものであった。屈折率分布を干渉顕微鏡
により測定すると、図4に示すように、高速伝送に適し
た屈折率分布を形成していた。
Example 2 One end of the hollow tube obtained in the step (2) of Example 1 was sealed, and the hollow part of the tube was depressurized from the other end by a rotary pump while being heated to 150 ° C. by a cylindrical heating device. Heated to. The heating was gradually performed from the closed end toward the open end, and was heated and melted without a gap. The diameter of the closed hollow is 18
It was a rod shape of mm. When the refractive index distribution was measured by an interference microscope, a refractive index distribution suitable for high speed transmission was formed as shown in FIG.

【0023】実施例3 内径19mm、長さ200mmのガラス製円筒容器に、メチ
ルメタクリレート(MMA)15g、開始剤として過酸化
ベンゾイル0.2重量%、連鎖移動剤0.2重量%を入
れ、窒素置換した後、容器の両端を封管した。これを2
500rpmにて回転させながら80℃で24時間加熱重
合すると、遠心力によりPMMAの管がガラス容器内に
作製できる。重合した管の厚さは1mmであった。これを
ガラス管に入れたまま110℃にて24時間熱処理し、
コア部の溶液を注入した。コア部の原料となる溶液は、
MMAをベースに、屈折率がPMMAより大きい化合物
を混合したものである。この実施例では、屈折率分布を
形成する化合物として安息香酸ベンジルを用いた。
Example 3 A glass cylindrical container having an inner diameter of 19 mm and a length of 200 mm was charged with 15 g of methyl methacrylate (MMA), 0.2% by weight of benzoyl peroxide as an initiator and 0.2% by weight of a chain transfer agent, and charged with nitrogen. After replacement, both ends of the container were sealed. This is 2
By heating and polymerizing at 80 ° C. for 24 hours while rotating at 500 rpm, a PMMA tube can be produced in a glass container by centrifugal force. The thickness of the polymerized tube was 1 mm. This is heat-treated at 110 ° C. for 24 hours in a glass tube,
The solution of the core part was injected. The solution used as the raw material of the core part is
It is a mixture of MMA and a compound having a refractive index higher than PMMA. In this example, benzyl benzoate was used as the compound forming the refractive index profile.

【0024】コア部の重合にあたり、MMAに屈折率の
高い化合物を徐々に添加した。重合の進行とともにポリ
マーが管内壁に堆積することから屈折率の高い化合物を
連続して供給すれば、中心に向かうにしたがい濃度が高
くなる。MMA溶液は、安息香酸ベンジルが15重量%
の濃度になるまで、8時間かけて徐々に添加した。溶液
は、重合開始剤として過酸化ベンゾイル0.1重量%、
連鎖移動剤0.2重量%を混合したもので、これを重合
して中空管を作製した。MMA溶液30gを容器に注入
し、窒素置換してから両端を密閉し回転装置に取り付け
た。これを温度80℃、回転速度2500rpmで重合し
た。その際、屈折率の高い化合物を0.56g/時間の
速度で供給した。8時間後、供給を停止し、そのまま1
2時間(合計20時間)回転と重合を続行した。20時間
後、110℃で24時間熱処理し、中空管を作製した。
重合により、2層構造をもつ内径6mmの中空管が得ら
れ、各層の屈折率分布は図2と同じであった。屈折率分
布の測定は干渉顕微鏡により行った。中空管の内側の層
は、連続的に屈折率が変化するGI型の分布形態を示し
てあった。
Upon polymerization of the core part, a compound having a high refractive index was gradually added to MMA. Since the polymer is deposited on the inner wall of the tube as the polymerization progresses, if a compound having a high refractive index is continuously supplied, the concentration becomes higher toward the center. MMA solution contains 15% by weight of benzyl benzoate
Was gradually added over 8 hours until the concentration reached. The solution contains 0.1% by weight of benzoyl peroxide as a polymerization initiator,
A mixture of 0.2% by weight of a chain transfer agent was polymerized to prepare a hollow tube. 30 g of the MMA solution was poured into a container, the atmosphere was replaced with nitrogen, and both ends were sealed and attached to a rotating device. This was polymerized at a temperature of 80 ° C. and a rotation speed of 2500 rpm. At that time, a compound having a high refractive index was supplied at a rate of 0.56 g / hour. After 8 hours, supply was stopped and 1
The rotation and polymerization were continued for 2 hours (total 20 hours). After 20 hours, heat treatment was performed at 110 ° C. for 24 hours to produce a hollow tube.
By the polymerization, a hollow tube having an inner diameter of 6 mm having a two-layer structure was obtained, and the refractive index distribution of each layer was the same as in FIG. The refractive index distribution was measured with an interference microscope. The inner layer of the hollow tube showed a GI type distribution morphology in which the refractive index changed continuously.

【0025】中空管の一端を密閉した後、その中にポリ
マーゲルを注入した。ゲルの調製は、MMAとMMAに
対して安息香酸ベンジル25重量%、重合開始剤として
過酸化ベンゾイル0.1重量%、連鎖移動剤0.2重量%
を混合し、80℃で3時間重合して行った。別容器で調
製したポリマーゲルを中空部に注入し、真空で十分に脱
気してから密閉し、5rpmで回転させながら中空部中で
ポリマーゲルを重合固化した。重合条件は、温度80℃
で24時間重合し、そ後重合を完結するために110℃
で24時間熱処理した。このようにして作製したプリフ
ォームの屈折率分布を干渉顕微鏡により測定すると、図
3のように、高速伝送に適した2次分布を形成してい
た。以上、この製造により高速伝送に適した、屈折率が
連続的に変化するプラスチック光ファイバを得ることが
できた。
After sealing one end of the hollow tube, a polymer gel was injected into it. The gel was prepared by using MMA and 25% by weight of benzyl benzoate based on MMA, 0.1% by weight of benzoyl peroxide as a polymerization initiator and 0.2% by weight of a chain transfer agent.
Were mixed and polymerized at 80 ° C. for 3 hours. The polymer gel prepared in a separate container was poured into the hollow portion, sufficiently deaerated under vacuum, then sealed, and the polymer gel was polymerized and solidified in the hollow portion while rotating at 5 rpm. The polymerization conditions are a temperature of 80 ° C.
Polymerization for 24 hours and then at 110 ° C to complete the polymerization.
And heat treated for 24 hours. When the refractive index distribution of the preform thus manufactured was measured by an interference microscope, a secondary distribution suitable for high speed transmission was formed as shown in FIG. As described above, a plastic optical fiber whose refractive index continuously changes, which is suitable for high-speed transmission, can be obtained by this manufacturing.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の製造方法で使用する装置の1例の模
式図。
FIG. 1 is a schematic view of an example of an apparatus used in the manufacturing method of the present invention.

【図2】 実施例1の工程(3)で得たプラスチック光フ
ァイバ用プリフォーム中間体の屈折率分布を示す図。
FIG. 2 is a diagram showing a refractive index distribution of a plastic optical fiber preform intermediate obtained in the step (3) of Example 1.

【図3】 実施例1の最終工程で得たプラスチック光フ
ァイバ用プリフォームの屈折率分布を示す図。
FIG. 3 is a diagram showing a refractive index distribution of a plastic optical fiber preform obtained in the final step of Example 1.

【図4】 実施例2で得たプラスチック光ファイバ用プ
リフォームの屈折率分布を示す図。
FIG. 4 is a diagram showing a refractive index distribution of the plastic optical fiber preform obtained in Example 2.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 円筒状容器の内壁にクラッド部ポリマー
の層を形成し、該クラッド部ポリマー層の内側に高屈折
率を有する化合物を含むコア部ポリマーの層を形成し、
次いで、中央の中空部に、高屈折率を有する化合物を含
むコア部ポリマーのゲルを充填して重合固化させるか、
または中空部の一端を封止し中空部を減圧にしながら周
囲から加熱して中空部を塞ぐことを含んでなる屈折率分
布型プラスチック光ファイバ用プリフォームの製造方
法。
1. A layer of a clad polymer is formed on an inner wall of a cylindrical container, and a layer of a core polymer containing a compound having a high refractive index is formed inside the clad polymer layer,
Then, in the central hollow portion, a gel of a core polymer containing a compound having a high refractive index is filled and polymerized or solidified,
Alternatively, a method of manufacturing a preform for a gradient index plastic optical fiber, which comprises sealing one end of the hollow portion and heating the surrounding portion while reducing the pressure of the hollow portion to close the hollow portion.
JP7340653A 1995-12-27 1995-12-27 Production of preform for distributed refractive index plastic optical fiber Pending JPH09178958A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7340653A JPH09178958A (en) 1995-12-27 1995-12-27 Production of preform for distributed refractive index plastic optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7340653A JPH09178958A (en) 1995-12-27 1995-12-27 Production of preform for distributed refractive index plastic optical fiber

Publications (1)

Publication Number Publication Date
JPH09178958A true JPH09178958A (en) 1997-07-11

Family

ID=18339038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7340653A Pending JPH09178958A (en) 1995-12-27 1995-12-27 Production of preform for distributed refractive index plastic optical fiber

Country Status (1)

Country Link
JP (1) JPH09178958A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100433905B1 (en) * 2002-08-26 2004-06-04 삼성전자주식회사 Plastic optical fiber and method for fabricating thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100433905B1 (en) * 2002-08-26 2004-06-04 삼성전자주식회사 Plastic optical fiber and method for fabricating thereof

Similar Documents

Publication Publication Date Title
US5614253A (en) Plastic optical fiber preform, and process and apparatus for producing the same
JPH0497302A (en) Method for producing optical transmission body made of synthetic resin
EP1116577B1 (en) Method for fabricating a preform for a plastic optical fibre.
US4775590A (en) Optical fiber
US5382448A (en) Method of manufacturing optical transmission medium from synthetic resin
JP3005808B2 (en) Manufacturing method of synthetic resin optical transmission body
US6054069A (en) Method of manufacturing a preform for a refractive index distributed type plastic optical fiber
JPS60119510A (en) Manufacture of preform for plastic optical fiber
JPH09178958A (en) Production of preform for distributed refractive index plastic optical fiber
KR100387096B1 (en) Process for the preparation and apparatus of plastic optical fiber preform having refractive index grade and optical fiber preform and optical fiber obtained therefrom
KR100460720B1 (en) Plastic optical fiber preform and method for preparing the same
JP3652390B2 (en) Manufacturing method of plastic optical fiber preform
JPH0854520A (en) Production of plastic optical fiber preform
JPH08227019A (en) Production of plastic optical fiber preform
JPS6225706A (en) Resin optical fiber and its production
JPH09138313A (en) Production of distributed refractive index plastic optical fiber
JP3574478B2 (en) Manufacturing method of plastic optical fiber preform
JPH10221542A (en) Manufacture of preform for refraction index distribution type plastic optical fiber
JP2000501196A (en) Method of manufacturing graded index polymer optical fiber
JP2001215345A (en) Manufacturing method for plastic optical fiber preform with refractive index inclination
JPH10221541A (en) Manufacture of pre-form for refractive-index-distribution-type plastic optical fiber
KR100543531B1 (en) Graded index polymer optical fiber preform and fabrication method thereof
JP3444317B2 (en) Plastic optical fiber
JPH11337746A (en) Production of preform for plastic optical fiber
JP2003114342A (en) Cavity-preventing type reactor and method for manufacturing plastic optical fiber preform using the same