JPH09178635A - Cross-sectional-shape detector for material-hardness measuring and evaluating apparatus - Google Patents

Cross-sectional-shape detector for material-hardness measuring and evaluating apparatus

Info

Publication number
JPH09178635A
JPH09178635A JP7351694A JP35169495A JPH09178635A JP H09178635 A JPH09178635 A JP H09178635A JP 7351694 A JP7351694 A JP 7351694A JP 35169495 A JP35169495 A JP 35169495A JP H09178635 A JPH09178635 A JP H09178635A
Authority
JP
Japan
Prior art keywords
cross
measurement
measured
stylus
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7351694A
Other languages
Japanese (ja)
Inventor
Mitsuo Murakami
光男 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Akashi Corp
Original Assignee
Akashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Akashi Corp filed Critical Akashi Corp
Priority to JP7351694A priority Critical patent/JPH09178635A/en
Publication of JPH09178635A publication Critical patent/JPH09178635A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a cross-sectional-shape detector by which the shape of a cross section can be detected precisely and efficiently by detecting relative displacements of respective probes which are rocked independently with reference to a support which is fed and moved to a direction along the surface of an object to be measured. SOLUTION: A cross-sectional-shape detector 5 detects the shape of the outline of a cross section 2 whenever a probe 4 is passed in such a way that tip contact parts which are mounted on, and attached to, tips of probes 4a, 4b and which are composed of a rigid material such as a diamond or the like are brought into sliding contact with an object 1 to be measured and that they are moved so as to be overlapped. In this case, the support 12 of the detector 5 is fed and moved to a direction (a) along the average surface of the object 1 to be measured. In addition, arms 14a, 14b are supported by shaft support parts via respective rocking bodies 13a, 13b so as to be rockable independently of each other, the respective probes 4a, 4b are supported at their tip parts, a springy force is given by load springs 16a, 16b, and the probes 4a, 4b are brought into contact with the surface of the object 1 to be measured. Then, relative displacements of the arms 14a, 14b, i.e., the probes 4a, 4b, with reference to the support 12 are detected 18a, 18b at the respective arms. Thereby, by one feed operation by means of one detector 5, the shape of the cross section can be measured efficiently without an irregularity in a measured value.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、測定物の表面に沿
って触針を重複して摺接移動させ、材料の硬さに応じて
触針の通過毎に検出される表面粗さの状態の変化の度合
が異なることを利用して、材料の硬さを判定し評価する
ようにした材料硬さ測定評価装置において使用するのに
好適な断面形状検出器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a state of surface roughness which is detected every time a stylus passes according to the hardness of a material by causing a stylus to slide and move along the surface of an object to be measured. The present invention relates to a cross-sectional shape detector suitable for use in a material hardness measurement / evaluation apparatus that determines and evaluates the hardness of a material by utilizing the fact that the degree of change of the above is different.

【0002】[0002]

【従来の技術】一般に、材料の表面は、その材料の性
質、その材料の表面の加工状況および酸化の度合等によ
り粗さや硬さが異なる。そのうちの粗さについて表現を
する際には、例えば粗さ計の、スタイラスと呼ばれる触
針の先端に装着されたダイヤモンド等の硬質の材料より
なる先端接触部を測定物の表面に接触させ、その先端接
触部に測定圧としてある一定の荷重を加えながら、測定
物の表面上の計測線に沿って測定物の表面の形状を計測
して、種々の表現方法で表面粗さの表現をするようにし
ていた。これに対し、硬さについて表現をする際には、
例えば硬さ試験機の圧子のダイヤモンド等よりなる硬質
の先端部に、一定の試験荷重を加え、そのときの材料表
面の抵抗を、圧子の押し込み深さ、塑性変形した材料の
窪みの大きさ、材料の反発の量等について計測して、種
々の表現方法で硬さの表現をするようにしていた。
2. Description of the Related Art Generally, the surface of a material differs in roughness and hardness depending on the properties of the material, the processing condition of the surface of the material, the degree of oxidation, and the like. When expressing the roughness among them, for example, in a roughness meter, a tip contact portion made of a hard material such as diamond attached to the tip of a stylus called a stylus is brought into contact with the surface of the measurement object, While applying a certain load as the measurement pressure to the tip contact part, measure the surface shape of the measurement object along the measurement line on the surface of the measurement object, and express the surface roughness by various expression methods. I was doing. On the other hand, when expressing hardness,
For example, a hard tip consisting of diamond etc. of the indenter of the hardness tester, a constant test load is applied, the resistance of the material surface at that time, the indentation depth, the size of the depression of the plastically deformed material, The amount of repulsion of the material was measured and the hardness was expressed by various expressions.

【0003】[0003]

【発明が解決しようとする課題】ところで、材料硬さを
計測する際には、材料の粗さによって圧子と材料との接
触状態が異なり、材料の粗さによって圧子を押し込んだ
ときの荷重の分布や材料の表面における微小な変形状態
が異なるため、計測される材料硬さは、測定される材料
の表面の粗さによって大きく影響を受ける。また、同じ
材料であっても、その材料の位置によって組成分布や結
晶分布が異なり、組成や結晶状態が異なればその材料の
硬さも異なるため、測定される位置、すなわち圧子が押
し込まれる位置が異なれば、材料硬さの計測値も一般に
は同一のものとはならない。しかも、同じ材料の同じ位
置で重複して材料硬さを計測した場合、一度硬さの計測
をした部位は測定荷重により変形をして加工硬化を起こ
し、二度目の硬さ計測の際には一度目の計測値と同一の
計測値を得ることができない。このことは、上述の触針
を用いて表面粗さを重複計測する際にも、同様に言うこ
とができる。すなわち、スタイラスと呼ばれる触針の先
端に装着されたダイヤモンド等の硬質の材料よりなる先
端接触部を測定物の表面に接触させ、その先端接触部に
測定圧としてある一定の荷重を加えながら、測定物の表
面上の計測線に沿って測定物の表面の形状を、同じ箇所
について重複して計測した場合には、二度目、三度目と
重複して計測したときの計測値は、触針が測定物の表面
上を摺接する毎にその表面が触針によって加工されてし
まうため、いずれもその前の計測によって得られた計測
値と同一にはならない。そして、一度目と二度目、二度
目と三度目等の互いに重複した計測の間の計測データ間
の差分の大きさは、材料の硬さに依存し、材料の硬さが
高い値を示すものほど、触針により加工される度合が少
なくなるので、上記重複した計測の計測データ間の差分
の大きさは小さくなる。
By the way, when measuring the hardness of a material, the contact state between the indenter and the material differs depending on the roughness of the material, and the load distribution when the indenter is pushed in due to the roughness of the material. The hardness of the material to be measured is greatly affected by the roughness of the surface of the material to be measured because the minute deformation state on the surface of the material is different. In addition, even for the same material, the composition distribution and crystal distribution differ depending on the position of the material, and the hardness of the material also differs if the composition and crystal state differ, so the measured position, that is, the position where the indenter is pushed in differs. For example, the measured values of material hardness are not generally the same. Moreover, when material hardness is measured in duplicate at the same position on the same material, the part whose hardness has been measured once is deformed by work load and causes work hardening, and when measuring the second hardness. The same measurement value as the first measurement value cannot be obtained. This can be said similarly when the surface roughness is measured repeatedly using the above-mentioned stylus. That is, the tip contact part made of a hard material such as diamond attached to the tip of a stylus called a stylus is brought into contact with the surface of the object to be measured, and a certain load as a measurement pressure is applied to the tip contact part for measurement. If the shape of the surface of the object to be measured is duplicated along the measurement line on the surface of the object, the stylus will give the measured value for the second and third measurements. Each time the surface of the object to be measured is slidably contacted, the surface is processed by the stylus, and therefore the measured value obtained by the previous measurement is not the same. The magnitude of the difference between the measurement data between the first and second measurements, the second and third measurements, etc. that overlap with each other depends on the hardness of the material, and the material hardness shows a high value. As the degree of processing by the stylus decreases, the magnitude of the difference between the measurement data of the duplicated measurements decreases.

【0004】そこで、本発明は、材料の表面上の所定の
測定長さにわたって触針により連続的に検出した表面粗
さが、同じ測定部位について重複して検出される毎に、
材料の硬さに応じて異なった計測値を示すことに着目
し、材料の表面上の点状の測定点についての、ばらつき
が伴い易い測定値情報に基づくことなく、より広い範囲
にわたる連続した測定部位についての、ばらつきがはる
かに小さい測定値情報に基づいて、簡単な方法および装
置により、より正確に材料硬さを判定し、評価すること
ができるような、材料硬さ測定評価装置において使用さ
れるのに好適な断面形状検出器を提供することを目的と
している。
Therefore, according to the present invention, every time the surface roughness continuously detected by the stylus over a predetermined measurement length on the surface of the material is detected redundantly for the same measurement site,
Focusing on showing different measurement values depending on the hardness of the material, continuous measurement over a wider range without being based on the measurement value information that tends to vary for point-like measurement points on the surface of the material Used in a material hardness measurement and evaluation device that can more accurately determine and evaluate the material hardness by a simple method and device based on the measurement value information with much smaller variation about the part. It is an object of the present invention to provide a cross-sectional shape detector that is suitable for the purpose.

【0005】[0005]

【課題を解決するための手段】上述の目的を達成するた
め、本発明の材料硬さ測定評価装置用断面形状検出器
は、測定物の表面上を摺接する触針を、上記測定物の平
均的な表面に沿って重複移動させ、上記触針の通過毎に
上記測定物の断面の輪郭形状をそれぞれ断面曲線として
検出し、各断面曲線に基づいて、上記測定物の材料硬さ
を判定する材料硬さ測定評価装置において使用するため
の断面形状検出器であって、同断面形状検出器は、上記
測定物の平均的な表面に沿った方向に送り移動される支
持体と、同支持体に対して互いに独立して揺動可能な複
数の触針と、同各触針の上記支持体に対する相対変位を
検出する変位検出手段とを備えていることを特徴として
いる。また、本発明の材料硬さ測定評価装置用断面形状
検出器は、測定物の表面上を摺接する触針を、上記測定
物の平均的な表面に沿って重複移動させ、上記触針の通
過毎に上記測定物の断面の輪郭形状をそれぞれ断面曲線
として検出し、各断面曲線に基づいて、上記測定物の材
料硬さを判定する材料硬さ測定評価装置において使用す
るための断面形状検出器であって、同断面形状検出器
は、上記測定物の平均的な表面に沿った方向に送り移動
される支持体と、同支持体に対して互いに独立して揺動
可能に支持され、先端部において上記送り方向に相互に
間隔をおいてそれぞれ触針を支持する複数のアームと、
上記各アームの上記支持体に対する変位を各アーム毎に
検出する複数個の変位検出手段とを備えていることを特
徴としている。さらに、本発明の材料硬さ測定評価装置
用断面形状検出器は、測定物の表面上を摺接する触針
を、上記測定物の平均的な表面に沿って重複移動させ、
上記触針の通過毎に上記測定物の断面の輪郭形状をそれ
ぞれ断面曲線として検出し、各断面曲線に基づいて、上
記測定物の材料硬さを判定する材料硬さ測定評価装置に
おいて使用するための断面形状検出器であって、同断面
形状検出器は、上記測定物の平均的な表面に沿った方向
に移動するように駆動される支持体と、同支持体に対し
て上記測定物の平均的な表面に直交する断面が含む面内
で互いに独立して揺動可能に支持され、先端部において
送り方向に相互に間隔をおいてそれぞれ触針を支持する
複数のアームと、上記各触針をそれぞれ一定の測定圧で
上記測定物の表面上に当接させるように上記各アームに
対して個別にばね力を付与する複数個の荷重ばねと、上
記各アームの上記支持体に対する変位を各アーム毎に検
出する複数個の変位検出コイルとを備えていることを特
徴としている。
In order to achieve the above-mentioned object, a cross-sectional shape detector for a material hardness measuring and evaluating apparatus of the present invention comprises a stylus which is in sliding contact with the surface of an object to be measured, and an average of the objects to be measured. Are repeatedly moved along a specific surface, the contour shape of the cross section of the measurement object is detected as a cross-section curve each time the stylus passes, and the material hardness of the measurement object is determined based on each cross-section curve. A cross-sectional shape detector for use in a material hardness measurement / evaluation apparatus, wherein the cross-sectional shape detector is a support body that is fed and moved in a direction along an average surface of the measurement object, and the support body. On the other hand, a plurality of stylus capable of swinging independently of each other and a displacement detecting means for detecting a relative displacement of each stylus with respect to the support body are provided. Further, the cross-sectional shape detector for the material hardness measurement and evaluation device of the present invention, the stylus that is in sliding contact with the surface of the measurement object is moved in duplicate along the average surface of the measurement object, and the stylus passes. A cross-sectional shape detector for use in a material hardness measurement / evaluation apparatus that detects the contour shape of the cross section of the measurement object for each as a cross-section curve and determines the material hardness of the measurement object based on each cross-section curve The cross-section shape detector includes a support body which is fed and moved in a direction along an average surface of the measurement object, and swingably supported independently of each other with respect to the support body. A plurality of arms that respectively support the stylus at intervals with respect to each other in the feeding direction,
A plurality of displacement detecting means for detecting the displacement of each arm with respect to the support body are provided for each arm. Furthermore, the cross-sectional shape detector for material hardness measurement and evaluation device of the present invention, a stylus that is in sliding contact with the surface of the measurement object, is moved repeatedly along the average surface of the measurement object,
For use in a material hardness measurement and evaluation device that detects the contour shape of the cross section of the measured object each time the stylus passes as a sectional curve, and determines the material hardness of the measured object based on each sectional curve The cross-sectional shape detector, wherein the cross-sectional shape detector is a support that is driven to move in a direction along an average surface of the measurement object, and the measurement object with respect to the support. A plurality of arms that are swingably supported independently of each other in a plane including a cross section orthogonal to an average surface and that support the stylus at the distal end with a space therebetween in the feed direction, A plurality of load springs that individually apply a spring force to each arm so that the needles contact the surface of the object to be measured with a constant measurement pressure, and displacement of each arm with respect to the support body. Multiple changes detected for each arm It is characterized in that it comprises a detection coil.

【0006】[0006]

【発明の実施の形態】以下、図面により、本発明の実施
の形態について説明する。図1に示されるように、断面
形状検出器5は、測定物1の平均的な表面に直交する断
面2の輪郭3に追従するようにして測定物1の表面上を
摺接するスタイラスと呼ばれる触針4a、4bを備えて
いる。触針4a,4bは、図7に示されるように、詳細
には送り方向に直列に配列されて互いに独立して運動し
うる複数本、たとえば2本の触針4a,4bを含んでい
る。断面形状検出器5は、触針4a,4bの先端に装着
されたダイヤモンド、サファイア、超硬合金等の硬質の
材料よりなる先端接触部を測定物1の表面に接触させ、
その先端接触部に測定圧としてある一定の荷重を加えな
がら、触針4a,4bを、測定物1の上記平均的な表面
に沿った方向aに、例えば一定の送り速度Vmm/秒で
T秒間だけVTmmの測定長さにわたって重複移動させ
ることにより、例えば図2に示されるように、触針4の
通過毎に、断面2の輪郭3の形状を検出する。
Embodiments of the present invention will be described below with reference to the drawings. As shown in FIG. 1, the cross-sectional shape detector 5 is a touch device called a stylus that slides on the surface of the measurement object 1 so as to follow the contour 3 of the cross section 2 orthogonal to the average surface of the measurement object 1. The needles 4a and 4b are provided. As shown in FIG. 7, the stylus 4a, 4b specifically includes a plurality of, for example, two stylus 4a, 4b which are arranged in series in the feed direction and can move independently of each other. The cross-sectional shape detector 5 causes a tip contact portion made of a hard material such as diamond, sapphire, or cemented carbide attached to the tips of the stylus 4a, 4b to contact the surface of the object to be measured 1,
While applying a certain load as a measurement pressure to the tip contact portion, the stylus 4a, 4b is moved in the direction a along the average surface of the object 1 to be measured, for example, at a constant feed speed Vmm / sec for T seconds. By overlappingly moving over the measurement length of VT mm, the shape of the contour 3 of the cross section 2 is detected each time the stylus 4 passes, as shown in FIG. 2, for example.

【0007】図7に示されるように、断面形状検出器5
は、測定物1の平均的な表面に沿った方向aに送り移動
するように駆動される支持体5と、同支持体5の、図7
においては突起部17の陰になって見えない位置に設け
られた枢支部に、測定物1の平均的な表面に直交する断
面2が含む面内で互いに独立して揺動可能にそれぞれ揺
動体13a,13bを介して支持され、先端部において
送り方向に相互に間隔をおいてそれぞれ1対の触針4
a,4bを支持する複数のアーム14a,14bと、各
触針4a,4bをそれぞれ一定の測定圧で測定物1の表
面上に当接させるように、各揺動体13a,13bの各
アーム14a,14bとは反対側に突接された受圧ばね
15a,15bを上方へ押圧するようにして支持体12
に基端部が支持されて弾発することにより、各アーム1
4a,14bに対して個別にばね力を付与する複数個の
荷重ばね16a,16bと、各アーム14a,14bの
支持体5に対する変位を各アーム14a,14b毎に検
出する複数個の変位検出コイル18a,18bとを備え
ている。
As shown in FIG. 7, the cross-section shape detector 5
Is a support 5 that is driven to move in a direction a along the average surface of the object to be measured 1, and FIG.
In the above, the oscillating body is provided so as to be swingable independently of each other in the plane included in the cross section 2 orthogonal to the average surface of the measured object 1 at the pivotal portion provided at a position hidden behind the projection 17 and not visible. 13a and 13b, and a pair of stylus needles 4 are spaced apart from each other in the feed direction at the tips.
Each arm 14a of each rocking body 13a, 13b is arranged so that the plurality of arms 14a, 14b supporting a, 4b and each stylus 4a, 4b are brought into contact with the surface of the object to be measured 1 at a constant measurement pressure. , 14b so as to press the pressure receiving springs 15a, 15b that are in contact with the support body 12 on the opposite side.
Each arm 1 is supported by the base end of which is elastically ejected.
A plurality of load springs 16a and 16b that individually apply spring force to the arms 4a and 14b, and a plurality of displacement detection coils that detect the displacement of the arms 14a and 14b with respect to the support 5 for each arm 14a and 14b. 18a and 18b.

【0007】一般に、測定物1の断面2の輪郭の形状
は、触針4a,4bが一定の測定圧の下で一度摺接しな
がら通過すると、測定物1の表面、特に断面2の輪郭3
の上方へ突出した突出部の先端部が触針4a,4bによ
り削られたり、あるいは測定物の材質が柔らかい場合に
は塑性変形をしたりして、触針4a,4bにより加工さ
れてしまい、例えば図5に示されるように、触針4a,
4bが順次通過する毎に、断面2の輪郭3の形状は
a,cb,cc,・・・ のように変化してゆく。この断
面2の輪郭3の、触針4a,4bの通過毎の変化の度合
は、測定物1の材質の硬さに依存し、測定物1の材質が
硬い程、触針4a,4bが通過する毎に生じる断面2の
輪郭3の変化の度合は小さい。
In general, the profile of the cross section 2 of the object to be measured 1 has such a shape that once the stylus 4a, 4b passes while slidingly contacting it under a constant measurement pressure, the surface of the object to be measured 1, particularly the profile 3 of the cross section 2.
The tip of the protruding portion that protrudes upwards of the needle is scraped by the stylus 4a, 4b, or is plastically deformed when the material of the measured object is soft, and is processed by the stylus 4a, 4b. For example, as shown in FIG. 5, the stylus 4a,
Each time 4b are sequentially pass, the shape of the contour 3 of section 2 c a, c b, c c , slide into changes as .... The degree of change of the contour 3 of the cross section 2 with each passage of the stylus 4a, 4b depends on the hardness of the material of the measuring object 1, and the stiffer the material of the measuring object 1, the more the stylus 4a, 4b passes. The degree of change in the contour 3 of the cross-section 2 that occurs each time is performed is small.

【0008】断面形状検出器5は、その検出信号を出力
信号として断面曲線読取器6へ送り、断面曲線読取器6
は、断面形状検出器5から送られた検出信号に基づい
て、断面2の輪郭3の形状を、触針4a,4bの通過毎
に、例えば図2の断面曲線cで示されるような断面曲線
の形で読み取る。断面形状検出器5からの検出信号を受
けて作動する断面曲線読取器6は、図2に示されるよう
に、断面2が含む面内において測定物1の上記平均的な
表面に沿った方向に時間軸tを設定し、同時間軸t上の
基点Oからの距離を時間tの大きさに対応させることに
よって、触針4a,4bが通過する毎の各断面曲線を、
例えば断面曲線cのように、時間tの関数として読み取
るようにすることもできる。
The cross-section shape detector 5 sends the detection signal as an output signal to the cross-section curve reader 6, and the cross-section curve reader 6
On the basis of the detection signal sent from the cross-section shape detector 5, the shape of the contour 3 of the cross-section 2 is changed every time the stylus 4a, 4b passes, for example, a cross-section curve as shown by the cross-section curve c in FIG. Read in the form of. As shown in FIG. 2, the cross-section curve reader 6 which operates in response to the detection signal from the cross-section shape detector 5 moves in the direction along the average surface of the measurement object 1 in the plane included in the cross-section 2. By setting the time axis t and making the distance from the base point O on the time axis t correspond to the size of the time t, each cross-sectional curve every time the stylus 4a, 4b passes,
It can also be read as a function of time t, for example the cross-section curve c.

【0009】断面曲線読取器6が触針4a,4bの通過
毎に読み取った例えば断面曲線cのような各断面曲線
は、それぞれ信号に変換されてフーリエ解析器7へ送ら
れ、このフーリエ解析器7において、上記触針4a,4
bの通過毎に、各断面曲線をそれぞれ関数曲線とする関
数のフーリエ変換が演算され、例えば図3においてスペ
クトルsで示されるような各フーリエ変換のスペクトル
が算出される。図4には、フーリエ解析器7の演算によ
り得られたフーリエ変換のスペクトルのいくつかの典型
的な例が示されている。図4において、スペクトルs1
は、測定物の表面の粗さが大きくて粗である場合を示
し、スペクトルs2 は、測定物の表面の粗さが小さくて
粗である場合を示し、スペクトルs3 は、測定物の表面
の粗さが大きくて密である場合を示し、 スペクトルs4
は、測定物の表面の粗さが小さくて密である場合を示し、
また、スペクトルs5 は、測定物の表面の凹凸が一定の間
隔で繰り返されている場合を示している。このように、
スペクトルsには、断面曲線cの波形の位相情報につい
ての情報が正確に含まれている。
Each cross-section curve such as the cross-section curve c read by the cross-section curve reader 6 at each passage of the stylus 4a, 4b is converted into a signal and sent to the Fourier analyzer 7, which then analyzes the signal. 7, the stylus 4a, 4
For each passage of b, the Fourier transform of the function in which each sectional curve is a function curve is calculated, and the spectrum of each Fourier transform as shown by the spectrum s in FIG. 3 is calculated, for example. FIG. 4 shows some typical examples of the spectrum of the Fourier transform obtained by the calculation of the Fourier analyzer 7. In FIG. 4, the spectrum s 1
Shows the case where the surface roughness of the measured object is large and rough, the spectrum s 2 shows the case where the surface roughness of the measured object is small and rough, and the spectrum s 3 shows the surface of the measured object. Shows the case where the roughness is large and dense, and the spectrum s 4
Indicates a case where the surface roughness of the measured object is small and dense,
The spectrum s 5 shows the case where the unevenness of the surface of the measured object is repeated at regular intervals. in this way,
The spectrum s accurately contains the information about the phase information of the waveform of the sectional curve c.

【0010】図5に示されるように第1番目の触針4a
の通過によって検出される輪郭caの断面曲線を関数曲
線とする関数のフーリエ変換のスペクトルが、例えば図
6におけるスペクトルsa であったとすると、第2番目
の触針4bの通過によって検出される輪郭は、図5の輪
郭cb のようになり、この輪郭cb の断面曲線を関数曲
線とする関数のフーリエ変換のスペクトルは、例えば図
6のスペクトルsb のようになり、さらに、第3番目の
触針が備わっている場合にはその第3番目の触針の通過
によって、あるいは触針4a,4bが複数回往復する場
合には第2回目の触針4aの通過によって検出される輪
郭は、図5の輪郭cc のようになり、この輪郭cc の断
面曲線を関数曲線とする関数のフーリエ変換のスペクト
ルは、図6のスペクトルsc のようになる。
As shown in FIG. 5, the first stylus 4a
When the spectrum of the Fourier transform of a function of the profile curve and function curve contour c a detected by passing, and the spectrum had s a in FIG. 6, for example, is detected by the passage of the second probe 4b The contour becomes like the contour c b in FIG. 5, and the spectrum of the Fourier transform of the function having the sectional curve of the contour c b as the function curve becomes like the spectrum s b in FIG. The contour detected by the passage of the third stylus when the second stylus is provided, or by the second passage of the stylus 4a when the stylus 4a, 4b reciprocates a plurality of times. Becomes the contour c c in FIG. 5, and the spectrum of the Fourier transform of the function having the sectional curve of the contour c c as the function curve becomes the spectrum s c in FIG.

【0011】さらに、フーリエ解析器7において、先番
の触針4aの通過後の断面曲線を関数曲線とする関数の
フーリエ変換のスペクトルと次番の触針4bの通過後の
断面曲線を関数曲線とする関数のフーリエ変換のスペク
トルとの間の差分、例えばスペクトルsa とスペクトル
b との差分、同様にスペクトルsb とスペクトルsc
との差分が演算され、触針4a,4bが測定部位を通過
する毎に演算されたスペクトルの差分は信号の形でスペ
クトル差分表示装置8へ送られるとともに、材料硬さ判
定器10へ送られる。スペクトル差分表示装置8におい
ては、各スペクトルの差分が可視化されて、画面表示あ
るいは印刷表示されるが、その際、各スペクトルの差分
を材料硬さに換算して、あるいは材料硬さのスケールで
表示することもできる。
Further, in the Fourier analyzer 7, the spectrum of the Fourier transform of the function in which the cross-sectional curve after passing the previous stylus 4a is a function curve and the cross-sectional curve after passing the next stylus 4b is the functional curve. the difference between the spectrum of the Fourier transform of a function which, for example, the difference between the spectrum s a spectrum s b, likewise the spectrum s b and spectral s c
Is calculated, and the difference between the spectra calculated each time the stylus 4a, 4b passes through the measurement site is sent to the spectrum difference display device 8 in the form of a signal and to the material hardness determination device 10. . In the spectrum difference display device 8, the difference of each spectrum is visualized and displayed on a screen or printed. At that time, the difference of each spectrum is converted into material hardness or displayed on a scale of material hardness. You can also do it.

【0012】評価パターン記憶器9には、フーリエ解析
器7により算出される種々のスペクトルの差分の大きさ
に対応する種々の材料硬さについてのパターン化した評
価が、評価データとしてあらかじめ貯蔵されており、任
意の材料についてのスペクトル差分信号がフーリエ解析
器7から材料硬さ判定機10へ送られると、材料硬さ判
定器10は、評価パターン記憶器9に記憶されている評
価パターンの中から、適合する評価パターンを1つ、あ
るいは複数組み合わせて選択し、選択された評価パター
ンを信号の形で評価パターン表示装置11へ送る。評価
パターン表示装置11は、材料硬さ判定器10から送ら
れた評価パターン信号に基づいて、評価パターンを可視
化して例えば表示画面や印刷紙面上に表示する。材料硬
さ判定器10は、スペクトル差分表示装置8とともにフ
ーリエ解析器7に接続されていても良いし、あるいは、
スペクトル差分表示装置8が各スペクトルの差分を材料
硬さに換算して、あるいは材料硬さのスケールで表示す
るように構成されている場合には、評価パターン記憶器
9、材料硬さ判定器10および評価パターン表示装置1
1を省略することもできる。
The evaluation pattern storage 9 stores in advance patternized evaluations of various material hardnesses corresponding to the magnitudes of various spectral differences calculated by the Fourier analyzer 7, as evaluation data. Then, when the spectrum difference signal for an arbitrary material is sent from the Fourier analyzer 7 to the material hardness determination device 10, the material hardness determination device 10 selects from among the evaluation patterns stored in the evaluation pattern storage device 9. , One or a plurality of matching evaluation patterns are selected, and the selected evaluation pattern is sent to the evaluation pattern display device 11 in the form of a signal. The evaluation pattern display device 11 visualizes the evaluation pattern based on the evaluation pattern signal sent from the material hardness determiner 10 and displays it on, for example, a display screen or a printing paper surface. The material hardness determiner 10 may be connected to the Fourier analyzer 7 together with the spectrum difference display device 8, or
When the spectrum difference display device 8 is configured to convert the difference of each spectrum into material hardness or display the material hardness scale, the evaluation pattern storage device 9, the material hardness determination device 10 And evaluation pattern display device 1
1 can also be omitted.

【0013】[0013]

【発明の効果】以上のように、本発明の材料硬さ測定評
価装置用断面形状検出器によれば、以下のような効果が
得られる。 (1)測定物の表面上を摺接する触針を、上記測定物の
平均的な表面に沿って重複移動させ、上記触針の通過毎
に上記測定物の断面の輪郭形状をそれぞれ断面曲線とし
て検出し、各断面曲線に基づいて、上記測定物の材料硬
さを判定する材料硬さ測定評価装置において使用するた
めの断面形状検出器であって、同断面形状検出器は、上
記測定物の平均的な表面に沿った方向に送り移動される
支持体と、同支持体に対して互いに独立して揺動可能な
複数の触針と、同各触針の上記支持体に対する相対変位
を検出する変位検出手段とを備えているので、1個の断
面形状検出器による1回の送り動作により、測定値のば
らつきがなく、正確にしかも効率良く測定物の断面形状
を検出することができる(請求項1)。 (2)測定物の表面上を摺接する触針を、上記測定物の
平均的な表面に沿って重複移動させ、上記触針の通過毎
に上記測定物の断面の輪郭形状をそれぞれ断面曲線とし
て検出し、各断面曲線に基づいて、上記測定物の材料硬
さを判定する材料硬さ測定評価装置において使用するた
めの断面形状検出器であって、同断面形状検出器は、上
記測定物の平均的な表面に沿った方向に送り移動される
支持体と、同支持体に対して互いに独立して揺動可能に
支持され、先端部において上記送り方向に相互に間隔を
おいてそれぞれ触針を支持する複数のアームと、上記各
アームの上記支持体に対する変位を各アーム毎に検出す
る複数個の変位検出手段とを備えているので、1個の断
面形状検出器による1回の送り動作により、測定値のば
らつきがなく、正確にしかも効率良く測定物の断面形状
を検出することができ、各触針がそれぞれ互いに独立し
て揺動するアームの先端部において支持されているの
で、各触針にかける測定圧力をきめ細かく制御すること
が可能であり、また、各触針が追従した測定物の断面形
状を高い精度で検出することが可能となる(請求項
2)。 (3)測定物の表面上を摺接する触針を、上記測定物の
平均的な表面に沿って重複移動させ、上記触針の通過毎
に上記測定物の断面の輪郭形状をそれぞれ断面曲線とし
て検出し、各断面曲線に基づいて、上記測定物の材料硬
さを判定する材料硬さ測定評価装置において使用するた
めの断面形状検出器であって、同断面形状検出器は、上
記測定物の平均的な表面に沿った方向に移動するように
駆動される支持体と、同支持体に対して上記測定物の平
均的な表面に直交する断面が含む面内で互いに独立して
揺動可能に支持され、先端部において送り方向に相互に
間隔をおいてそれぞれ触針を支持する複数のアームと、
上記各触針をそれぞれ一定の測定圧で上記測定物の表面
上に当接させるように上記各アームに対して個別にばね
力を付与する複数個の荷重ばねと、上記各アームの上記
支持体に対する変位を各アーム毎に検出する複数個の変
位検出コイルとを備えているので、1個の断面形状検出
器による1回の送り動作により、測定値のばらつきがな
く、正確にしかも効率良く測定物の断面形状を検出する
ことができ、各アームに対して個別にばね力を付与する
荷重ばねを設けたので、各アームを個別に最適な測定圧
力下に保つことができ、測定値のばらつきを防止し、測
定の精度を高く維持することができる(請求項3)。
As described above, according to the cross-section shape detector for material hardness measuring and evaluating apparatus of the present invention, the following effects can be obtained. (1) The stylus that is in sliding contact with the surface of the object to be measured is moved in an overlapping manner along the average surface of the object to be measured, and the contour shape of the cross section of the object to be measured is set as a cross-sectional curve each time the probe is passed. A cross-sectional shape detector for use in a material hardness measurement / evaluation device for detecting and measuring the material hardness of the measurement object based on each cross-section curve, wherein the cross-section shape detector is the measurement object. Supports that are moved in the direction along the average surface, a plurality of stylus that can swing independently of each other, and relative displacement of each stylus with respect to the support is detected. Since the displacement detecting means is provided, the cross-sectional shape of the measured object can be detected accurately and efficiently by one feeding operation by one cross-sectional shape detector without variation in measured values ( Claim 1). (2) The stylus that is in sliding contact with the surface of the object to be measured is moved along the average surface of the object to be overlapped, and the contour shape of the cross section of the object to be measured is set as a cross-sectional curve each time the probe is passed. A cross-sectional shape detector for use in a material hardness measurement / evaluation device for detecting and measuring the material hardness of the measurement object based on each cross-section curve, wherein the cross-section shape detector is the measurement object. A support body that is fed and moved in a direction along an average surface and a support body that is swingably supported independently of the support body. Since there are provided a plurality of arms for supporting each arm and a plurality of displacement detection means for detecting the displacement of each arm with respect to the support body, one feeding operation by one sectional shape detector is performed. As a result, the measured values are Moreover, the cross-sectional shape of the object to be measured can be detected efficiently, and since each stylus is supported by the tip of the arm that swings independently of each other, the measurement pressure applied to each stylus is finely controlled. It is possible to detect the cross-sectional shape of the measurement object followed by each stylus with high accuracy (claim 2). (3) The stylus that is in sliding contact with the surface of the object to be measured is moved in duplicate along the average surface of the object to be measured, and the contour shape of the cross section of the object to be measured is taken as a cross-sectional curve each time the probe is passed. A cross-sectional shape detector for use in a material hardness measurement / evaluation device for detecting and measuring the material hardness of the measurement object based on each cross-section curve, wherein the cross-section shape detector is the measurement object. Supports that are driven to move in the direction along the average surface, and can swing independently of each other in the plane including the cross section orthogonal to the average surface of the measurement object with respect to the support. And a plurality of arms that support the stylus and that are spaced apart from each other in the feed direction at the tip end,
A plurality of load springs that individually apply spring force to the arms so that the stylus abuts on the surface of the object to be measured with a constant measurement pressure, and the support of the arms. Since it is equipped with a plurality of displacement detection coils that detect the displacement with respect to each arm, there is no variation in the measured values by one feed operation by one cross-sectional shape detector, and accurate and efficient measurement is possible. Since the sectional shape of an object can be detected and a load spring that applies a spring force individually to each arm is provided, each arm can be individually maintained under the optimum measurement pressure, and the dispersion of measured values And the measurement accuracy can be maintained high (Claim 3).

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の1実施の形態に係る材料硬さ測定評価
装置の全体作動系統図である。
FIG. 1 is an overall operation system diagram of a material hardness measurement / evaluation apparatus according to an embodiment of the present invention.

【図2】図1の材料硬さ測定評価装置により検出された
断面曲線の1例を示す断面曲線図である。
FIG. 2 is a sectional curve diagram showing an example of a sectional curve detected by the material hardness measurement / evaluation apparatus of FIG.

【図3】図1の材料硬さ測定評価装置により算出された
フーリエ変換のスペクトルの1例を示すスペクトル図で
ある。
FIG. 3 is a spectrum diagram showing an example of a Fourier transform spectrum calculated by the material hardness measurement / evaluation apparatus of FIG. 1.

【図4】図1の材料硬さ測定評価装置により算出された
フーリエ変換のスペクトルの典型例を示すスペクトル図
である。
FIG. 4 is a spectrum diagram showing a typical example of a Fourier transform spectrum calculated by the material hardness measurement / evaluation apparatus of FIG. 1.

【図5】触針の重複摺接により測定物の断面の輪郭形状
が変化する様子を示す断面図である。
FIG. 5 is a cross-sectional view showing a state in which a contour shape of a cross section of a measurement object changes due to overlapping sliding contact of stylus.

【図6】触針の重複摺接によりフーリエ変換のスペクト
ルが変化する様子を示すスペクトル図である。
FIG. 6 is a spectrum diagram showing how the spectrum of Fourier transform changes due to overlapping sliding contact of stylus.

【図7】図1の断面形状検出器の要部拡大断面図であ
る。
7 is an enlarged cross-sectional view of a main part of the cross-sectional shape detector of FIG.

【符号の説明】[Explanation of symbols]

1 測定物 2 断面 3 断面の輪郭 4,4a,4b 触針 5 断面形状検出器 6 断面曲線読取器 7 フーリエ解析器 8 スペクトル差分表示装置 9 評価パターン記憶器 10 材料硬さ判定機 11 評価パターン表示装置 12 支持体 13a,13b 揺動体 14a,14b アーム 15a,15b 受圧ばね 16a,16b 荷重ばね 17 突起部 18a,18b 変位検出コイル a 送り方向 c 断面曲線 ca,cb,cc 触針通過後の断面輪郭形状 t 時間 O 基点 T 測定時間1 measurement object 2 cross section 3 cross section contour 4, 4a, 4b stylus 5 cross section shape detector 6 cross section curve reader 7 Fourier analyzer 8 spectrum difference display device 9 evaluation pattern memory 10 material hardness judgment machine 11 evaluation pattern display Device 12 Supports 13a, 13b Oscillators 14a, 14b Arms 15a, 15b Pressure receiving springs 16a, 16b Load springs 17 Protrusions 18a, 18b Displacement detection coils a Feeding direction c Sectional curves c a , c b , c c After passing the stylus Cross-section contour shape t time O base point T measurement time

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 測定物の表面上を摺接する触針を、上記
測定物の平均的な表面に沿って重複移動させ、上記触針
の通過毎に上記測定物の断面の輪郭形状をそれぞれ断面
曲線として検出し、各断面曲線に基づいて、上記測定物
の材料硬さを判定する材料硬さ測定評価装置において使
用するための断面形状検出器であって、同断面形状検出
器は、上記測定物の平均的な表面に沿った方向に送り移
動される支持体と、同支持体に対して互いに独立して揺
動可能な複数の触針と、同各触針の上記支持体に対する
相対変位を検出する変位検出手段とを備えていることを
特徴とする、材料硬さ測定評価装置用断面形状検出器。
1. A stylus, which is in sliding contact with the surface of a measurement object, is moved in an overlapping manner along the average surface of the measurement object, and each time the stylus passes, the contour shape of the cross section of the measurement object is cross-sectioned. A cross-sectional shape detector for use in a material hardness measurement / evaluation device that detects a curve and, based on each cross-sectional curve, determines the material hardness of the measurement object, wherein the cross-sectional shape detector is the measurement A support that is fed and moved in a direction along the average surface of an object, a plurality of stylus that can swing independently of each other with respect to the same, and relative displacement of each stylus with respect to the support. A cross-section shape detector for a material hardness measurement / evaluation apparatus, comprising:
【請求項2】 測定物の表面上を摺接する触針を、上記
測定物の平均的な表面に沿って重複移動させ、上記触針
の通過毎に上記測定物の断面の輪郭形状をそれぞれ断面
曲線として検出し、各断面曲線に基づいて、上記測定物
の材料硬さを判定する材料硬さ測定評価装置において使
用するための断面形状検出器であって、同断面形状検出
器は、上記測定物の平均的な表面に沿った方向に送り移
動される支持体と、同支持体に対して互いに独立して揺
動可能に支持され、先端部において上記送り方向に相互
に間隔をおいてそれぞれ触針を支持する複数のアーム
と、上記各アームの上記支持体に対する変位を各アーム
毎に検出する複数個の変位検出手段とを備えていること
を特徴とする、材料硬さ測定評価装置用断面形状検出
器。
2. A contact needle that slides on the surface of the object to be measured is moved in an overlapping manner along the average surface of the object to be measured, and the contour shape of the cross section of the object to be measured is crossed each time the pointer is passed. A cross-sectional shape detector for use in a material hardness measurement / evaluation device that detects a curve and, based on each cross-sectional curve, determines the material hardness of the measurement object, wherein the cross-sectional shape detector is the measurement A support body that is fed and moved in a direction along the average surface of the object, and is swingably supported independently of the support body, and the tip end portions thereof are spaced from each other in the feed direction. A material hardness measuring and evaluating device, comprising: a plurality of arms for supporting a stylus; and a plurality of displacement detecting means for detecting a displacement of each arm with respect to the support body, for each arm. Cross-section shape detector.
【請求項3】 測定物の表面上を摺接する触針を、上記
測定物の平均的な表面に沿って重複移動させ、上記触針
の通過毎に上記測定物の断面の輪郭形状をそれぞれ断面
曲線として検出し、各断面曲線に基づいて、上記測定物
の材料硬さを判定する材料硬さ測定評価装置において使
用するための断面形状検出器であって、同断面形状検出
器は、上記測定物の平均的な表面に沿った方向に移動す
るように駆動される支持体と、同支持体に対して上記測
定物の平均的な表面に直交する断面が含む面内で互いに
独立して揺動可能に支持され、先端部において送り方向
に相互に間隔をおいてそれぞれ触針を支持する複数のア
ームと、上記各触針をそれぞれ一定の測定圧で上記測定
物の表面上に当接させるように上記各アームに対して個
別にばね力を付与する複数個の荷重ばねと、上記各アー
ムの上記支持体に対する変位を各アーム毎に検出する複
数個の変位検出コイルとを備えていることを特徴とす
る、材料硬さ測定評価装置用断面形状検出器。
3. A contact probe that is in sliding contact with the surface of the object to be measured is moved in an overlapping manner along the average surface of the object to be measured, and the contour shape of the cross section of the object to be measured is crossed each time the probe is passed. A cross-sectional shape detector for use in a material hardness measurement / evaluation device that detects a curve and, based on each cross-sectional curve, determines the material hardness of the measurement object, wherein the cross-sectional shape detector is the measurement The support is driven so as to move in a direction along the average surface of the object, and the support is independently rocked in a plane including a cross section orthogonal to the average surface of the measurement object. A plurality of arms that are movably supported and that support the stylus at intervals at mutual intervals in the feed direction and the stylus are brought into contact with the surface of the measurement object at a constant measurement pressure. Spring force is applied to each arm individually. A plurality of load springs, and a plurality of displacement detection coils for detecting the displacement of each arm with respect to the support, for each arm. Detector.
JP7351694A 1995-12-26 1995-12-26 Cross-sectional-shape detector for material-hardness measuring and evaluating apparatus Pending JPH09178635A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7351694A JPH09178635A (en) 1995-12-26 1995-12-26 Cross-sectional-shape detector for material-hardness measuring and evaluating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7351694A JPH09178635A (en) 1995-12-26 1995-12-26 Cross-sectional-shape detector for material-hardness measuring and evaluating apparatus

Publications (1)

Publication Number Publication Date
JPH09178635A true JPH09178635A (en) 1997-07-11

Family

ID=18418996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7351694A Pending JPH09178635A (en) 1995-12-26 1995-12-26 Cross-sectional-shape detector for material-hardness measuring and evaluating apparatus

Country Status (1)

Country Link
JP (1) JPH09178635A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110155118A (en) * 2019-05-08 2019-08-23 中国神华能源股份有限公司神朔铁路分公司 Portable rail abrasion and profile detection device and its detection method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110155118A (en) * 2019-05-08 2019-08-23 中国神华能源股份有限公司神朔铁路分公司 Portable rail abrasion and profile detection device and its detection method

Similar Documents

Publication Publication Date Title
US5892157A (en) Apparatus for measuring the flexural stiffness of moved laminar-shaped material
Gee et al. A new friction measurement system for the frictional component of touch
CN103822603B (en) Calibration method and equipment
DE69917780T2 (en) TEST APPARATUS AND METHOD FOR MEASURING THE SCRATCH RESISTANCE OF A FILM OR COATING
US11781957B2 (en) Material performance testing including improved load detection
KR880009274A (en) Non-destructive test method for creep damage of ferromagnetic weak pieces
JP2009534198A (en) Error correction method
US5818605A (en) Method and apparatus for high resolution sensing of engraving stylus movement
JPH09178635A (en) Cross-sectional-shape detector for material-hardness measuring and evaluating apparatus
KR20190067228A (en) A method for evaluating a film for a pen input device, a device for evaluating a film input device for a pen, and a film for a pen input device
JPH09178634A (en) Method and apparatus for measuring evaluating material hardness
JPH09178470A (en) Surface roughness test evaluation method and device thereof
JPH09178633A (en) Method and apparatus for measuring evaluating material hardness
US5610329A (en) Low-cost runout sensor with high frequency response and negligible stiction in the direction of travel
JP2019100767A (en) measuring device
JP2003536060A (en) Apparatus for evaluating surface condition of material and method for implementing the apparatus
JP2008164568A (en) Method and device for analyzing surface physical property
JPH11230875A (en) Micro spring constant measuring device and measuring method therefor
Fontaine et al. Development of a sensor for surface state measurements using experimental and numerical modal analysis
RU96428U1 (en) SCAN NANOTHERDOMETER
CN109211302A (en) Calibration device, calibration system and the scaling method of naked FBG strain transducer
JP2000292109A (en) Method of measuring shape of side and apparatus therefor
JPH07218358A (en) Tension distribution measurement method of a strip of body
RU2516022C2 (en) Method to collect and process information on sample surface
CN105222672A (en) Multistation hi-precision cutting emery wheel thicknessmeter

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20100924

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100924

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20110924

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20120924

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120924

Year of fee payment: 13

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20120924

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20120924

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees