JPH09178157A - Controller for coal burning boiler fuel - Google Patents

Controller for coal burning boiler fuel

Info

Publication number
JPH09178157A
JPH09178157A JP33308495A JP33308495A JPH09178157A JP H09178157 A JPH09178157 A JP H09178157A JP 33308495 A JP33308495 A JP 33308495A JP 33308495 A JP33308495 A JP 33308495A JP H09178157 A JPH09178157 A JP H09178157A
Authority
JP
Japan
Prior art keywords
coal
pulverized
machine
simulated
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33308495A
Other languages
Japanese (ja)
Other versions
JP3757319B2 (en
Inventor
Hiroshi Oshima
拓 大島
Takashi Kamigaki
尚 神垣
Mitsugi Sugasawa
貢 菅沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP33308495A priority Critical patent/JP3757319B2/en
Publication of JPH09178157A publication Critical patent/JPH09178157A/en
Application granted granted Critical
Publication of JP3757319B2 publication Critical patent/JP3757319B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Feeding And Controlling Fuel (AREA)
  • Disintegrating Or Milling (AREA)

Abstract

PROBLEM TO BE SOLVED: To stabilize a steam temperature, pressure or the like by properly controlling the total amount of fuel supplied to a boiler during the change of the kind of coal (change of the rotating speed of a classifier). SOLUTION: A fuel controller to which a coal flow rate command 3 calculated based on a combustion amount command 2 and the total simulated amount of supplied coal 8 of a dust coal machine are input outputs a mill demand signal 9. In the fuel controller, time constant setting devices 17 to 20 for outputting a first order lag set for each kind of coal, switches 24A to 24C for selecting any one of the outputs of the time constant setting devices 17 to 20 depending on the kind of coal, and a simulated supplied coal amount computing means 15, to which the amount of fed coal of a coal feeder is input, for calculating the simulated supplied coal amount of the dust coal machine by using the outputs of the switches 24A to 24C are provided for each coal feeder. The simulated supplied coal amounts 6 and 7 calculated respectively for the coal feeders added together so that the total simulated supplied coal amount 8 of the dust coal machine is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は石炭焚ボイラの燃料
制御装置に係わり、特に炭種変化により微粉炭機の回転
分級機回転数が変化した場合の微粉炭機模擬出炭量を正
確に模擬し、安定したボイラ特性を得るに好適な燃料制
御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel control device for a coal-fired boiler, and particularly, it accurately simulates the amount of pulverized coal machine simulated coal output when the rotational speed of a rotary classifier of a pulverized coal machine changes due to a change in coal type. And a fuel control device suitable for obtaining stable boiler characteristics.

【0002】[0002]

【従来の技術】石炭焚ボイラの燃料供給制御において
は、発電所の発電量指令に応じてボイラの燃料量指令が
作成され、この燃料量指令が複数の運転中の給炭機へ給
炭量要求信号(ミルデマンド信号)として送られる。
2. Description of the Related Art In fuel supply control of a coal-fired boiler, a fuel quantity command for a boiler is created according to a power generation quantity command of a power plant, and this fuel quantity command is supplied to a plurality of operating coal feeders. It is sent as a request signal (mill demand signal).

【0003】給炭機では給炭量要求信号に応じてコール
フィーダの速度調整を行い、石炭を微粉炭機へ給炭す
る。給炭機から微粉炭機へ供給された石炭は、微粉炭機
内のローラにより粉砕される。微粉炭機の下流側には、
微粉炭機で粉砕されてできた微粉が微粉炭機から火炉に
搬送される前に燃焼に適した微粉粒度となるように、粉
砕炭中の粗粉を分離し、粉砕部へ戻す回転式の分級機が
設置されており、回転数制御によって微粉粒度を調整す
る機構となっている。分級機を通過した微粉炭は一次空
気によってボイラ火炉内に搬送され、火炉内で燃焼す
る。このように石炭焚ボイラの燃料は、給炭/粉砕/分
級/搬送のプロセスを経て火炉へ供給されるため、燃料
系の応答性は、油/ガス焚ボイラに比較して大きな遅れ
特性を有している。
In the coal feeder, the speed of the coal feeder is adjusted according to the coal supply amount request signal, and the coal is supplied to the pulverized coal machine. The coal supplied from the coal feeder to the pulverized coal machine is crushed by the rollers in the pulverized coal machine. Downstream of the pulverized coal machine,
The rotary type that separates the coarse powder in the crushed coal and returns it to the crushing unit so that the fine powder crushed by the pulverized coal machine has a fine powder particle size suitable for combustion before being conveyed from the pulverized coal machine to the furnace A classifier is installed and has a mechanism to adjust the fine powder particle size by controlling the rotation speed. The pulverized coal that has passed through the classifier is transported into the boiler furnace by the primary air and burns in the furnace. As described above, the fuel of the coal-fired boiler is supplied to the furnace through the processes of coal feeding / crushing / classification / conveyance, so that the responsiveness of the fuel system has a large delay characteristic as compared with the oil / gas-fired boiler. doing.

【0004】この石炭焚ボイラの石炭燃料系の遅れ特性
を考慮するための従来の石炭燃料制御系を図5に示す。
石炭流量指令(CFD)3は、燃焼量指令(FRD)2
と混焼率設定(MXR)1とを乗算器12にて乗算した
もの(油流量指令16)をFRD2から減算した信号で
あり、ミルデマンド信号9はCFD3から微粉炭機合計
模擬出炭量8を減算した信号を比例積分した信号であ
り、ミルデマンド信号9が各給炭機への給炭量指令とな
る。ここで、微粉炭機合計模擬出炭量8は各微粉炭機へ
の給炭量測定値4,5に対して一次遅れを持たせてお
り、この一次遅れ時定数にて石炭燃料系の遅れを模擬し
ている。
FIG. 5 shows a conventional coal fuel control system for considering the delay characteristics of the coal fuel system of this coal-fired boiler.
The coal flow rate command (CFD) 3 is the combustion amount command (FRD) 2
Is a signal obtained by multiplying the mixed combustion rate setting (MXR) 1 by the multiplier 12 (oil flow rate command 16) from the FRD 2, and the mill demand signal 9 is the pulverized coal machine total simulated coal output 8 from CFD 3. It is a signal obtained by proportionally integrating the subtracted signal, and the mill demand signal 9 serves as a coal supply amount command to each coal feeder. Here, the total simulated coal output 8 of the pulverized coal machine has a first-order lag with respect to the measured values 4 and 5 of the coal supply to each pulverized coal machine, and the delay of the coal fuel system is determined by this first-order lag time constant. Is simulated.

【0005】しかし、この一次遅れは炭種に係わらず固
定設定であり、炭種変更に伴う回転分級機の回転数設定
変更に対する出炭応答特性が大きく変化することが配慮
されていなかった。この回転分級機の回転数は、石炭燃
焼性からの要求微粉粒度(一般的に燃料比の大きい炭種
ほど回転数は高い)と微粉炭機の振動抑制の必要性(炭
種によって回転数を高くすると石炭の摩擦角により振動
が発生し易くなる)により決定される。回転分級機の回
転数を増加させると微粉炭機から出炭される微粉炭の粒
度が上昇、つまり粉砕炭中の粗粉が粉砕部へ戻される割
合が増加するため出炭応答が遅くなり、また回転数を減
少させると微粉炭機から出炭される微粉炭の粒度が低
下、つまり粉砕炭中の粗粉が粉砕部へ戻される割合が減
少するため出炭応答が早くなる特性となる。
However, this first-order lag is fixed regardless of the type of coal, and no consideration has been given to the fact that the coal output response characteristics with respect to changes in the rotational speed setting of the rotary classifier due to changes in the type of coal are greatly changed. The number of revolutions of this rotary classifier depends on the required fine powder particle size (generally, the higher the number of coals with a larger fuel ratio) from the combustibility of the coal and the necessity of suppressing vibration of the pulverized coal machine (the number of revolutions depends on the type of coal). If it is made higher, vibration easily occurs due to the friction angle of coal). Increasing the rotation speed of the rotary classifier increases the particle size of the pulverized coal discharged from the pulverized coal machine, that is, the proportion of coarse powder in the pulverized coal that is returned to the pulverization unit increases, which delays the coal production response. When the number of revolutions is decreased, the particle size of the pulverized coal discharged from the pulverized coal machine is reduced, that is, the ratio of the coarse powder in the pulverized coal returned to the pulverization unit is reduced, and thus the coal production response becomes faster.

【0006】一般的な炭種の定義としては、石炭に含ま
れる成分から求まり燃焼性を評価するための指標となる
燃料比(固定炭素と揮発分との割合)と、石炭の粉砕性
を評価するための指標となるHGIが用いられ、燃料比
から微粉炭機出口の要求微粉粒度つまり回転分級機の回
転数が決定され、この回転数と炭種のHGI特性とで出
炭特性が変動することになる。
As a general definition of coal type, a fuel ratio (ratio of fixed carbon and volatile matter) which is an index for evaluating combustibility obtained from components contained in coal and pulverizability of coal are evaluated. HGI is used as an index to determine the required fine powder particle size at the outlet of the pulverized coal machine, that is, the rotation speed of the rotary classifier from the fuel ratio, and the coal output characteristics vary depending on this rotation speed and the HGI characteristics of the coal type. It will be.

【0007】[0007]

【発明が解決しようとする課題】上記従来制御は、炭種
変更に伴う回転分級機回転数の設定変更に伴って出炭応
答特性が大きく変化することが配慮されておらず、回転
分級機の回転数設定が変更された場合に下記の理由によ
り負荷変化(ミルデマンド変動)時にボイラの蒸気温
度、圧力が変動する問題点があった。
The conventional control described above does not take into consideration that the coal output response characteristics greatly change with the setting change of the rotation classifier rotation speed due to the change of coal type. When the rotation speed setting was changed, there was a problem that the steam temperature and pressure of the boiler fluctuate when the load changes (mill demand fluctuation) for the following reasons.

【0008】ボイラの蒸気温度、圧力が変動する理由を
図4に示す。図4は負荷上昇時において、回転分級機の
回転数設定が異なるA〜C炭(回転数設定はA炭<B炭
<C炭)を同一の出炭遅れ時定数(図5中の模擬出炭量
演算手段15に設定)を用いた場合の模擬出炭量特性
を、縦軸に出炭量及び負荷を、横軸に時間をとって示す
が、B炭の出炭応答特性に合わせた出炭遅れ時定数を用
いた場合、A炭使用時は実出炭量が模擬出炭量信号(図
5中の微粉炭機合計模擬出炭量8)より過渡的に多くな
り、またC炭使用時は実出炭量が模擬出炭信号(図3中
の微粉炭機合計模擬出炭量8)より過渡的に少なくなる
ことから、炭種変更に伴う回転分級機回転数変更時にボ
イラの蒸気温度、圧力特性が変動することとなる。
The reason why the steam temperature and pressure of the boiler fluctuate is shown in FIG. Fig. 4 shows the same coal delay time constants (simulated output in Fig. 5) for A to C coals (rotational speed setting is A coal <B coal <C coal) with different rotation speed settings of the rotary classifier when the load increases. The simulated coal output amount characteristics when using the coal amount calculation means 15) are shown, the vertical axis shows the coal output amount and load, and the horizontal axis shows time. When the coal output delay time constant is used, the actual coal output is transiently larger than the simulated coal output signal (total pulverized coal machine simulated output of 8 in Fig. 5) when A coal is used, and C coal is also used. During use, the actual coal output is transiently less than the simulated coal output signal (total simulated coal output of pulverized coal machine in Fig. 3), so when changing the rotational speed of the rotary classifier due to coal type change, the boiler The steam temperature and pressure characteristics will fluctuate.

【0009】本発明の目的は、炭種変更(分級機回転数
の変更)時においても微粉炭機の出炭特性を正確に模擬
することにより、ボイラへ供給される合計燃料量を適切
に制御し、蒸気温度、圧力等のボイラ特性の安定化を図
る制御装置を提供することにある。
The object of the present invention is to accurately control the total amount of fuel supplied to the boiler by accurately simulating the coal output characteristics of the pulverized coal machine even when the type of coal is changed (the number of revolutions of the classifier is changed). However, another object of the present invention is to provide a control device that stabilizes boiler characteristics such as steam temperature and pressure.

【0010】[0010]

【課題を解決するための手段】上記目的は、微粉炭機の
模擬出炭量を算出する際に用いる一次遅れ時定数を、炭
種毎に、あるいは回転分級機の回転数により変更して、
炭種変更時においても微粉炭機の出炭量を正確に模擬す
ることによって達成される。
[Means for Solving the Problems] The above object is to change the first-order lag time constant used when calculating the simulated coal output of a pulverized coal machine for each coal type or by the rotation speed of a rotary classifier,
This is achieved by accurately simulating the coal output of the pulverized coal machine even when the coal type is changed.

【0011】本発明は、上記目的を達成する第1の手段
として、石炭を粉砕する微粉炭機と、微粉炭機で粉砕さ
れた微粉の粒度を回転数によって分級する回転分級機
と、前記微粉炭機に給炭する給炭機とを備えてなり、ミ
ルデマンド信号により給炭機の給炭量を制御して火炉へ
微粉炭を供給し燃焼させる石炭焚ボイラの燃料制御装置
において、ミルデマンド信号にフィードバックする微粉
炭機の模擬出炭量を、炭種毎に設定された一次遅れ時定
数により算出する手段を設けたことを特徴とする。
As a first means for achieving the above object, the present invention provides a pulverized coal machine for pulverizing coal, a rotary classifier for classifying the particle size of the fine powder pulverized by the pulverized coal machine according to the number of revolutions, and the fine powder. A fuel control device for a coal-fired boiler, which is equipped with a coal feeder for supplying coal to a coal machine, controls the amount of coal supplied by the coal feeder by a mill demand signal, and supplies pulverized coal to a furnace to burn the coal. It is characterized in that means for calculating the simulated coal output of the pulverized coal machine fed back to the signal by the first-order lag time constant set for each coal type is provided.

【0012】上記目的を達成する第2の手段として、炭
種毎に設定された一次遅れ時定数により微粉炭機の模擬
出炭量を算出する手段に代えて、回転分級機の回転数に
対応して設定された一次遅れ時定数により微粉炭機の模
擬出炭量を算出する手段を設けたものとしてもよい。
As a second means for achieving the above object, instead of the means for calculating the simulated coal output of the pulverized coal machine from the first-order lag time constant set for each coal type, it corresponds to the rotation speed of the rotary classifier. A means for calculating the simulated coal output of the pulverized coal machine based on the first-order lag time constant set by the above may be provided.

【0013】上記目的を達成する第3の手段として、炭
種毎に設定された一次遅れ時定数により微粉炭機の模擬
出炭量を算出する手段に代えて、炭種及び回転分級機の
回転数に対応して設定された一次遅れ時定数により微粉
炭機の模擬出炭量を算出する手段を設けたものとしても
よい。
As a third means for achieving the above-mentioned object, in place of the means for calculating the simulated coal output of the pulverized coal machine by the first-order lag time constant set for each coal type, the coal type and the rotation of the rotary classifier are replaced. A means for calculating the simulated coal output of the pulverized coal machine based on the first-order lag time constant set corresponding to the number may be provided.

【0014】本発明は上記目的を達成する第4の手段と
して、石炭を粉砕する微粉炭機と、微粉炭機で粉砕され
た微粉の粒度を回転数によって分級する回転分級機と、
前記微粉炭機に給炭する給炭機と、燃焼量指令に基づい
て石炭流量指令を生成出力する第1の演算手段と、該石
炭流量指令とフィードバックされる微粉炭機の模擬出炭
量を入力としてミルデマンド信号を生成する第2の演算
手段とを含んでおり、該ミルデマンド信号により給炭機
の給炭量を制御して火炉へ微粉炭を供給し燃焼させる石
炭焚ボイラの燃料制御装置において、フィードバックす
る微粉炭機の模擬出炭量を、給炭機が給炭する石炭の炭
種及び当該給炭機の出炭量を入力として炭種毎に設定さ
れた一次遅れ時定数を用いて算出する第3の演算手段を
設けたことを特徴とする。
As a fourth means for achieving the above object, the present invention comprises a pulverized coal machine for pulverizing coal, a rotary classifier for classifying the particle size of the fine powder pulverized by the pulverized coal machine according to the number of revolutions,
A coal feeder for supplying coal to the pulverized coal machine, a first computing means for generating and outputting a coal flow rate command based on a combustion amount command, and a simulated coal output of the pulverized coal machine fed back to the coal flow rate command. A second calculation means for generating a mill demand signal as an input, and the fuel control of a coal-fired boiler for controlling the coal feed amount of the coal feeder by the mill demand signal to supply pulverized coal to the furnace for combustion. In the equipment, feed back the simulated coal output of the pulverized coal machine as the primary delay time constant set for each coal type by inputting the coal type of the coal fed by the coal feeder and the coal output of the coal feeder. It is characterized in that a third calculating means for calculating by using is provided.

【0015】本発明は上記目的を達成する第5の手段と
して、石炭を粉砕する微粉炭機と、微粉炭機で粉砕され
た微粉の粒度を回転数によって分級する回転分級機と、
前記微粉炭機に給炭する給炭機と、燃焼量指令に基づい
て石炭流量指令を生成出力する第1の演算手段と、該石
炭流量指令とフィードバックされる微粉炭機の模擬出炭
量を入力としてミルデマンド信号を生成する第2の演算
手段とを含んでおり、該ミルデマンド信号により給炭機
の給炭量を制御して火炉へ微粉炭を供給し燃焼させる石
炭焚ボイラの燃料制御装置において、フィードバックす
る微粉炭機の模擬出炭量を、給炭機の出炭量及び該給炭
機によって給炭される微粉炭機に接続された回転分級機
の回転数を入力として回転分級機の回転数に応じて設定
された一次遅れ時定数を用いて算出する第4の演算手段
を設けたことを特徴とする。
As a fifth means for achieving the above object, the present invention comprises a pulverized coal machine for pulverizing coal, a rotary classifier for classifying the particle size of the fine powder pulverized by the pulverized coal machine according to the number of revolutions,
A coal feeder for supplying coal to the pulverized coal machine, a first computing means for generating and outputting a coal flow rate command based on a combustion amount command, and a simulated coal output of the pulverized coal machine fed back to the coal flow rate command. A second calculation means for generating a mill demand signal as an input, and the fuel control of a coal-fired boiler for controlling the coal feed amount of the coal feeder by the mill demand signal to supply pulverized coal to the furnace for combustion. In the device, the simulated coal output of the pulverized coal machine to be fed back is input to the coal output of the coal feeder and the rotation speed of the rotary classifier connected to the pulverized coal machine supplied by the coal feeder to perform the rotary classification. It is characterized in that a fourth calculation means for calculating using a first-order lag time constant set according to the number of revolutions of the machine is provided.

【0016】本発明は上記目的を達成する第6の手段と
して、石炭を粉砕する微粉炭機と、微粉炭機で粉砕され
た微粉の粒度を回転数によって分級する回転分級機と、
前記微粉炭機に給炭する給炭機と、燃焼量指令に基づい
て石炭流量指令を生成出力する第1の演算手段と、該石
炭流量指令とフィードバックされる微粉炭機の模擬出炭
量を入力としてミルデマンド信号を生成する第2の演算
手段とを含んでなり、該ミルデマンド信号により給炭機
の給炭量を制御して火炉へ微粉炭を供給し燃焼させる石
炭焚ボイラの燃料制御装置において、フィードバックす
る微粉炭機の模擬出炭量を、給炭機の出炭量と炭種及び
該給炭機によって給炭される微粉炭機に接続された回転
分級機の回転数を入力として炭種及び回転分級機の回転
数に応じて設定された一次遅れ時定数を用いて算出する
第5の演算手段を設けたことを特徴とする。
As a sixth means for achieving the above object, the present invention comprises a pulverized coal machine for pulverizing coal, a rotary classifier for classifying the particle size of the fine powder pulverized by the pulverized coal machine according to the number of revolutions,
A coal feeder for supplying coal to the pulverized coal machine, a first computing means for generating and outputting a coal flow rate command based on a combustion amount command, and a simulated coal output of the pulverized coal machine fed back to the coal flow rate command. A second calculation means for generating a mill demand signal as an input, and controlling the amount of coal fed by the coal feeder by the mill demand signal to supply fuel to a furnace to supply pulverized coal for combustion; In the equipment, input the simulated coal output of the pulverized coal machine fed back, the coal output of the coal feeder, the type of coal, and the rotation speed of the rotary classifier connected to the pulverized coal machine fed by the coal feeder. As a second aspect, a fifth arithmetic means for calculating using the first-order lag time constant set according to the coal type and the rotation speed of the rotary classifier is provided.

【0017】本発明は上記目的を達成する第7の手段と
して、給炭機で給炭された石炭を微粉炭機で粉砕し、微
粉炭機で粉砕された微粉の粒度を回転分級機で回転数に
よって分級し、分級された微粉炭を火炉へ供給し燃焼さ
せる石炭焚ボイラの燃料制御方法において、前記給炭機
の出炭量をミルデマンド信号により制御し、該ミルデマ
ンド信号にフィードバックする微粉炭機の模擬出炭量
を、炭種毎に設定された一次遅れ時定数により算出する
ことを特徴とする。
As a seventh means for achieving the above object, the present invention pulverizes coal fed by a coal feeder by a pulverized coal machine and rotates the particle size of the fine powder pulverized by the pulverized coal machine by a rotary classifier. In a fuel control method for a coal-fired boiler in which pulverized coal classified according to number is supplied to a furnace and burned, the coal output of the coal feeder is controlled by a mill demand signal, and the fine powder is fed back to the mill demand signal. It is characterized in that the simulated coal output of the coal machine is calculated by the primary delay time constant set for each coal type.

【0018】上記目的を達成する第8の手段として、ミ
ルデマンド信号にフィードバックする微粉炭機の模擬出
炭量を、回転分級機の回転数に対応して設定された一次
遅れ時定数を用いて算出するようにしてもよい。
As an eighth means for achieving the above object, the simulated coal output of the pulverized coal machine fed back to the mill demand signal is calculated by using the first-order lag time constant set in correspondence with the rotation speed of the rotary classifier. It may be calculated.

【0019】上記目的を達成する第9の手段として、ミ
ルデマンド信号にフィードバックする微粉炭機の模擬出
炭量を、炭種及び回転分級機の回転数に対応して設定さ
れた一次遅れ時定数を用いて算出するようにしてもよ
い。
As a ninth means for achieving the above object, the simulated coal output of the pulverized coal machine fed back to the mill demand signal is set as a first-order lag time constant corresponding to the coal type and the rotation speed of the rotary classifier. You may make it calculate using.

【0020】本発明は上記目的を達成する第10の手段
として、給炭機から給炭された石炭を微粉炭機で粉砕
し、微粉炭機で粉砕された微粉の粒度を回転分級機で回
転数によって分級し、分級された微粉炭を火炉へ供給し
て燃焼させる石炭焚ボイラの燃料制御方法において、燃
焼量指令に基づいて石炭流量指令を生成出力し、該石炭
流量指令とフィードバックされる微粉炭機の模擬出炭量
を入力としてミルデマンド信号を生成し、該ミルデマン
ド信号により給炭機の給炭量を制御し、フィードバック
する微粉炭機の模擬出炭量を、給炭機が給炭する石炭の
炭種及び当該給炭機の出炭量を入力として炭種毎に設定
された一次遅れ時定数を用いて算出するようにしたこと
を特徴とする。
As a tenth means for achieving the above object, the present invention crushes coal fed from a coal feeder with a pulverized coal machine and rotates the particle size of the fine powder pulverized with the pulverized coal machine with a rotary classifier. In a fuel control method of a coal-fired boiler that classifies by number, supplies classified pulverized coal to a furnace and burns it, generates and outputs a coal flow rate command based on a combustion amount command, and the fine powder fed back with the coal flow rate command. The simulated coal output of the coal machine is input, a mill demand signal is generated, the coal supply amount of the coal supply machine is controlled by the mill demand signal, and the simulated coal output of the pulverized coal machine is fed back by the coal supply machine. It is characterized in that the coal type of the coal to be coaled and the coal output of the coal feeder are used as inputs and the calculation is performed using the first-order lag time constant set for each coal type.

【0021】上記目的を達成する第11の手段として、
フィードバックする微粉炭機の模擬出炭量を、給炭機の
出炭量及び該給炭機によって給炭される微粉炭機に接続
された回転分級機の回転数を入力として回転分級機の回
転数に応じて設定された一次遅れ時定数を用いて算出す
るようにしてもよい。
As an eleventh means for achieving the above object,
The simulated coal output of the pulverized coal machine to be fed back is input to the coal output of the coal feeder and the rotation speed of the rotary classifier connected to the pulverized coal machine supplied by the coal feeder, and the rotation of the rotary classifier is input. You may make it calculate using the primary delay time constant set according to the number.

【0022】上記目的を達成する第12の手段として、
フィードバックする微粉炭機の模擬出炭量を、給炭機の
出炭量と炭種及び該給炭機によって給炭される微粉炭機
に接続された回転分級機の回転数を入力として炭種及び
回転分級機の回転数に応じて設定された一次遅れ時定数
を用いて算出するようにしてもよい。
As a twelfth means for achieving the above object,
The simulated coal output of the pulverized coal machine to be fed back is input as the coal output and coal type of the coal feeder and the rotation speed of the rotary classifier connected to the pulverized coal machine fed by the coal feeder. Alternatively, the calculation may be performed using the first-order lag time constant set according to the rotation speed of the rotation classifier.

【0023】回転分級機の回転数が高い、つまり燃焼性
を向上させるために高微粉粒度が要求される高燃料比炭
の場合は模擬出炭量を算出する一次遅れ時定数を大きく
し、また回転分級機の回転数が低い、つまり低燃料比炭
の場合は一次遅れ時定数を小さくすることにより、炭種
が変更となった場合においても実機の出炭特性を正確に
模擬可能となり、常に適正な合計燃料流量の調整が実現
されることになるので、炭種変更による蒸気温度、圧力
特性が大きく変動することが無くなる。
In the case where the rotation classifier has a high rotation speed, that is, in the case of a high fuel ratio coal in which a high fine powder particle size is required to improve combustibility, the primary delay time constant for calculating the simulated coal output is increased, and When the rotational speed of the rotary classifier is low, that is, when the coal has a low fuel ratio, the primary delay time constant can be reduced to accurately simulate the coal output characteristics of the actual machine even when the coal type is changed. Since the appropriate adjustment of the total fuel flow rate is realized, the steam temperature and pressure characteristics due to the change of coal type do not significantly change.

【0024】[0024]

【発明の実施の形態】図1に本発明の第1の実施例に係
わる制御ブロック図を示す。本実施例の制御装置は、混
燃率設定(MXR)1と燃料量指令(FRD)2とを入
力として油流量指令16を出力する乗算器12と、燃料
量指令(FRD)2から油流量指令16を減算して石炭
流量指令3を出力する加算器13Aと、石炭流量指令3
から微粉炭機合計模擬出炭量8を減算しその結果を出力
する加算器13Bと、加算器13Bの出力を比例積分し
てミルデマンド信号9として給炭機10,11,……に
出力する比例積分器14と、高燃料比炭,中燃料比炭,
低燃料比炭,高湿分炭にそれぞれ対応した時定数を出力
する時定数設定器17,18,19,20と、時定数設
定器17,18のいずれかの出力を選択して出力するス
イッチ24Aと、時定数設定器19とスイッチ24Aの
いずれかの出力を選択して出力するスイッチ24Bと、
時定数設定器20とスイッチ24Bのいずれかの出力を
選択して一次遅れ時定数設定値21として出力するスイ
ッチ24Cと、給炭機10の給炭量4を一次遅れ時定数
設定値21により補正して給炭機10に接続された微粉
炭機の模擬出炭量6として出力する模擬出炭量演算手段
15と、模擬出炭量6と給炭機11に接続された微粉炭
機の模擬出炭量7を合計し微粉炭機合計模擬出炭量8と
して出力する加算器13Cと、を含んで構成されてい
る。
1 is a control block diagram according to a first embodiment of the present invention. The control device of the present embodiment includes a multiplier 12 that inputs a mixed fuel ratio setting (MXR) 1 and a fuel amount command (FRD) 2 and outputs an oil flow rate command 16, and an oil flow rate from the fuel amount command (FRD) 2. An adder 13A that subtracts the command 16 and outputs a coal flow rate command 3, and a coal flow rate command 3
From the pulverized coal machine total simulated coal output 8 and outputs the result, and the output of the adder 13B is proportionally integrated and output as a mill demand signal 9 to the coal feeder 10, 11, .... Proportional integrator 14, high fuel ratio coal, medium fuel ratio coal,
Time constant setters 17, 18, 19, 20 for outputting time constants corresponding to low fuel ratio coal and high humidity coal, respectively, and a switch for selecting and outputting one of the outputs of the time constant setters 17, 18. 24A, a switch 24B that selects and outputs one of the outputs of the time constant setter 19 and the switch 24A,
The output of either the time constant setter 20 or the switch 24B is selected and output as the primary delay time constant set value 21, and the coal feeding amount 4 of the coal feeder 10 is corrected by the primary delay time constant set value 21. Then, the simulated coal output amount calculating means 15 for outputting the simulated coal output amount 6 of the pulverized coal machine connected to the coal feeder 10 and the simulated coal output amount 6 and the pulverized coal machine connected to the coal feeder 11 are simulated. And an adder 13C that sums the coal production amount 7 and outputs it as a pulverized coal machine total simulated coal production amount 8.

【0025】乗算器12と加算器13Aとが第1の演算
手段を構成し、加算器13Bと比例積分器14とが第2
の演算手段を構成し、時定数設定器17,18,19,
20とスイッチ24A,24B,24Cと模擬出炭量演
算手段15とが第3の演算手段を構成している。
The multiplier 12 and the adder 13A constitute a first calculating means, and the adder 13B and the proportional integrator 14 are the second.
Of the time constant setters 17, 18, 19,
20, the switches 24A, 24B, and 24C and the simulated coal output calculating means 15 constitute a third calculating means.

【0026】スイッチ24A,24B,24Cには炭種
を示す信号が入力されるように構成され、それぞれ設定
された炭種を示す信号が入力されたとき、該当する炭種
の時定数を選択し、それ以外のときは他方の信号を選択
して出力する。時定数設定器17,18,19,20は
複数の給炭機に共通したものとし、スイッチ24A,2
4B,24Cから下流部分のみを各給炭機ごとに配置し
てもよいし、時定数設定器17,18,19,20を含
めて各給炭機ごとに配置してもよい。図では、時定数設
定器17’,18’,19’,20’、スイッチ24
A’,24B’,24C’及び模擬出炭量演算手段1
5’を給炭機11に対応して配置した例を示してある。
スイッチ24A,24B,24Cに、それぞれ中燃料比
炭,低燃料比炭,高湿分炭の炭種が設定されている。
The switches 24A, 24B, and 24C are configured to receive a signal indicating a coal type. When a signal indicating a set coal type is input, the time constant of the corresponding coal type is selected. In other cases, the other signal is selected and output. The time constant setters 17, 18, 19, 20 are common to a plurality of coal feeders, and the switches 24A, 2
Only the downstream portion from 4B and 24C may be arranged for each coal feeding machine, or may be arranged for each coal feeding machine including the time constant setters 17, 18, 19, 20. In the figure, the time constant setters 17 ', 18', 19 ', 20', the switch 24
A ', 24B', 24C 'and simulated coal output calculating means 1
An example in which 5'is arranged corresponding to the coal feeder 11 is shown.
Coal types of medium fuel ratio coal, low fuel ratio coal, and high wet coal are set in the switches 24A, 24B, and 24C, respectively.

【0027】スイッチ24A,24B,24Cに、低燃
料比炭を示す信号が入力されると、スイッチ24Aに
は、中燃料比炭が設定されているからスイッチ24Aは
他方の信号、すなわち時定数設定器17の出力信号を選
択、出力する。次にスイッチ24Bには低燃料比炭が設
定されているから、低燃料比炭を示す信号が入力される
と、スイッチ24Bは時定数設定器19の出力信号を選
択、出力する。次にスイッチ24Cには高湿分炭が設定
されているから、低燃料比炭を示す信号が入力される
と、スイッチ24Cは他方の信号、すなわちスイッチ2
4Bの出力信号を選択、出力する。したがって、模擬出
炭量演算手段15に出力される一時遅れ時定数設定値2
1は、低燃料比炭に対応する時定数を出力する時定数設
定器19の出力信号となる。
When a signal indicating a low fuel ratio coal is input to the switches 24A, 24B and 24C, a medium fuel ratio coal is set in the switch 24A, so the switch 24A sets the other signal, that is, a time constant setting. The output signal of the device 17 is selected and output. Next, since the low fuel ratio coal is set in the switch 24B, when the signal indicating the low fuel ratio coal is input, the switch 24B selects and outputs the output signal of the time constant setter 19. Next, since the high-humidity coal is set in the switch 24C, when the signal indicating the low fuel ratio coal is input, the switch 24C causes the other signal, that is, the switch 2 to operate.
4B output signal is selected and output. Therefore, the temporary delay time constant set value 2 output to the simulated coal output calculating means 15
1 is an output signal of the time constant setter 19 which outputs the time constant corresponding to the low fuel ratio coal.

【0028】上記構成の制御装置において、石炭流量指
令(CFD)3は、燃料量指令(FRD)2と混燃率設
定(MXR)1とを乗算器12にて乗算したもの(油流
量指令16)をFRD2から減算した信号となり、ミル
デマンド信号9はCFD3から微粉炭機合計模擬出炭量
8を減算した信号を比例積分した信号であり、ミルデマ
ンド信号9が各給炭機への給炭量指令となる。ここで、
微粉炭機合計模擬出炭量8は各微粉炭機への給炭量(測
定値)4に対して一次遅れを持つが、この一次遅れ時定
数は炭種によって設定変更される。つまり、模擬出炭量
演算手段15は、連続的に(あるいは所定のサンプリン
グ間隔で)入力される給炭量4を、一次遅れ時定数にし
たがって時間をずらせて微粉炭機の出炭量、すなわち模
擬出炭量として出力するが、この一次遅れ時定数が給炭
される炭種に応じて変更され、ある時点の給炭量4が入
力されたとき、その給炭量4が模擬出炭量として出力さ
れるまでの時間ずれ量が変えられるのである。
In the control device having the above structure, the coal flow rate command (CFD) 3 is obtained by multiplying the fuel quantity command (FRD) 2 and the mixed fuel ratio setting (MXR) 1 by the multiplier 12 (oil flow rate command 16 ) Is subtracted from FRD2, and the mill demand signal 9 is a signal obtained by proportionally integrating a signal obtained by subtracting the total simulated coal output 8 from the pulverized coal machine from CFD3. The mill demand signal 9 supplies the coal to each coal feeder. It becomes a quantity command. here,
The total simulated coal output 8 of the pulverized coal machine has a first-order lag with respect to the coal supply amount (measured value) 4 to each pulverized coal machine, and this first-order lag time constant is changed depending on the coal type. That is, the simulated coal output calculating unit 15 shifts the coal supply amount 4 input continuously (or at predetermined sampling intervals) according to the first-order delay time constant, that is, the coal output of the pulverized coal machine, that is, This is output as a simulated coal output, but when this primary delay time constant is changed according to the type of coal to be supplied and the coal supply amount 4 at a certain point is input, that coal supply amount 4 is the simulated coal output amount. The amount of time lag until it is output as is changed.

【0029】図1では炭種区分の一例として、高燃料比
炭、中燃料比炭、低燃料比炭、高湿分炭に炭種を区分し
ており、炭種ごとに時定数設定器17,18,19,2
0が設けられている。ある給炭機が高燃料比炭を給炭す
るよう設定された場合には、時定数設定器17の時定数
が高燃料比炭を給炭する当該給炭機の模擬出炭量演算手
段15に設定されることになる。他の炭種においても同
様に模擬出炭量演算手段15の時定数が設定変更され、
石炭の燃焼性による回転分級機の回転数設定に見合った
一次遅れ時定数が設定されることになる。
In FIG. 1, as an example of coal type classification, the coal types are classified into high fuel ratio coal, medium fuel ratio coal, low fuel ratio coal, and high moisture content coal, and the time constant setter 17 for each coal type. , 18, 19, 2
0 is provided. When a certain coal feeding machine is set to feed the high fuel ratio coal, the time constant of the time constant setting unit 17 feeds the high fuel ratio coal, and the simulated coal output calculating means 15 of the coal feeding machine. Will be set to. Similarly, for other coal types, the time constant of the simulated coal output computing means 15 is changed,
The first-order lag time constant is set to match the rotation speed setting of the rotary classifier depending on the combustibility of coal.

【0030】本実施例では、微粉炭機模擬出炭量を算出
するための一次遅れ時定数が炭種毎に設定されるため、
炭種毎に変動する微粉炭機からの出炭応答特性を精度良
く模擬することが可能となり、ボイラへ供給される合計
燃料量の適正な調整が実現できる。以上により、炭種変
更、つまり回転分級機回転数変更による微粉炭機からの
出炭応答特性が変化した場合においても、蒸気温度、圧
力等のボイラ特性の安定化を図ることが可能となる。
In this embodiment, since the primary delay time constant for calculating the pulverized coal machine simulated coal output is set for each coal type,
It is possible to accurately simulate the coal output response characteristics from the pulverized coal machine, which varies for each coal type, and it is possible to realize appropriate adjustment of the total amount of fuel supplied to the boiler. As described above, it is possible to stabilize the boiler characteristics such as steam temperature and pressure even when the coal output response characteristics from the pulverized coal machine change due to the change of coal type, that is, the rotation speed of the rotary classifier.

【0031】図2に本発明の第2の実施例を示す。本実
施例が前記第1の実施例と異なるのは、時定数設定器1
7,18,19,20及びスイッチ24A,24B,2
4Cに代えて分級機回転数22を入力として一次遅れ時
定数21を出力する関数発生器23を設けた点である。
関数発生器23と模擬出炭量演算手段15が第4の演算
手段を構成し、他の構成は第1の実施例と同じなので図
示及び説明を省略してある。関数発生器23は分級機回
転数22を入力として一次遅れ時定数21を出力する関
数を内蔵しており、分級機回転数22に応じた一次遅れ
時定数21を出力するようになっている。
FIG. 2 shows a second embodiment of the present invention. This embodiment is different from the first embodiment in that the time constant setter 1
7, 18, 19, 20 and switches 24A, 24B, 2
The point is that a function generator 23 that receives the classifier rotation speed 22 as an input and outputs the first-order delay time constant 21 is provided instead of 4C.
The function generator 23 and the simulated coal output calculating means 15 constitute the fourth calculating means, and the other configurations are the same as those in the first embodiment, so that the illustration and description thereof are omitted. The function generator 23 has a built-in function that outputs the first-order delay time constant 21 with the classifier rotation speed 22 as an input, and outputs the first-order delay time constant 21 according to the classifier rotation speed 22.

【0032】本実施例は図1における炭種区分による一
次遅れ時定数設定に代えて、微粉炭機の回転分級機回転
数を変数とする一次遅れ時定数設定関数によって一次遅
れ時定数を変更するものであり、炭種毎に設定される分
級機回転数による出炭応答特性の違いを精度良く模擬
し、ボイラへ供給される合計燃料量の適正な調整を実現
するものである。
In this embodiment, instead of setting the primary delay time constant depending on the type of coal in FIG. 1, the primary delay time constant is changed by a primary delay time constant setting function having the rotation speed of the rotary classifier of the pulverized coal machine as a variable. It accurately simulates the difference in the coal output response characteristics depending on the number of revolutions of the classifier set for each type of coal, and realizes an appropriate adjustment of the total amount of fuel supplied to the boiler.

【0033】図3に本発明の第3の実施例を示す。本実
施例は、前記第1及び第2の実施例を組合せたもので、
炭種に応じて予め設定された時定数を出力する時定数設
定器17〜19と、時定数設定器17〜19のうちのい
ずれか一つの出力を炭種に応じて選択するスイッチ24
A,24B,24Cと、回転分級機の回転数22を入力
として係数を生成出力する関数発生器25と、スイッチ
24Cの出力と関数発生器25の出力を乗算して一次遅
れ時定数21として出力する乗算器26とを設け、給炭
機の給炭量4を入力とし乗算器26の出力信号を用いて
模擬出炭量演算手段15により該給炭機に接続された微
粉炭機の模擬出炭量6を算出するように構成されてい
る。時定数設定器17〜19、スイッチ24A,24
B,24C、関数発生器25、乗算器26及び模擬出炭
量演算手段15で第5の演算手段を構成している。他の
構成要素は、前記第1の実施例と同じであるので説明を
省略する。
FIG. 3 shows a third embodiment of the present invention. This embodiment is a combination of the first and second embodiments,
A switch 24 for selecting any one of the time constant setters 17 to 19 for outputting a preset time constant according to the coal type and the time constant setters 17 to 19 according to the coal type.
A, 24B, 24C, a function generator 25 that generates and outputs a coefficient by inputting the number of revolutions 22 of the rotation classifier, and the output of the switch 24C and the output of the function generator 25 are multiplied and output as a first-order lag time constant 21. And a multiplier 26 for inputting the coal feed amount 4 of the coal feeder, and using the output signal of the multiplier 26, the simulated coal output amount calculation means 15 simulates the output of the pulverized coal machine connected to the coal feeder. It is configured to calculate the coal amount 6. Time constant setters 17 to 19 and switches 24A and 24
B, 24C, the function generator 25, the multiplier 26, and the simulated coal output computing means 15 constitute a fifth computing means. The other constituent elements are the same as those in the first embodiment, and the description thereof will be omitted.

【0034】本実施例では、回転分級機の回転数と炭種
に応じて設定される時定数と、炭種ごとに回転分級機の
回転数に応じて設定される係数を用いて一次遅れ時定数
が算出され、この一次遅れ時定数を用いて微粉炭機の模
擬出炭量が算定されるから、より高精度の模擬出炭特性
を得ることができ、他の実施例と同様に、ボイラへの適
正な燃料量を調整して炭種変更時にも安定した蒸気温度
特性を維持する効果がある。
In this embodiment, the time constant set according to the number of revolutions of the rotary classifier and the coal type and the coefficient set according to the number of revolutions of the rotary classifier for each coal type are used to obtain the primary delay time. Since the constant is calculated and the simulated coal output of the pulverized coal machine is calculated using this first-order lag time constant, more accurate simulated coal output characteristics can be obtained. The effect is to maintain a stable steam temperature characteristic even when the coal type is changed by adjusting the appropriate amount of fuel to

【0035】[0035]

【発明の効果】本発明によれば、炭種の違いによる微粉
炭機の出炭応答特性を、炭種区分による一次遅れ時定数
設定、あるいは回転分級機回転数による一次遅れ時定数
設定にて模擬出炭特性を精度良く模擬することが可能と
なり、ボイラへの合計燃料量の適正な調整が実現できる
ため、炭種変更、つまり回転分級機回転数変更による微
粉炭機からの出炭応答特性が変化した場合においても、
蒸気温度、圧力等のボイラ特性の安定化を図ることが可
能となる。
According to the present invention, the coal discharge response characteristics of a pulverized coal machine depending on the type of coal can be set by setting the primary delay time constant depending on the type of coal or by setting the primary delay time constant depending on the rotational speed of the rotary classifier. Since it is possible to accurately simulate the simulated coal output characteristics and realize the appropriate adjustment of the total fuel amount to the boiler, the coal output response characteristics from the pulverized coal machine by changing the coal type, that is, the rotation classifier rotation speed. Even if
It is possible to stabilize the boiler characteristics such as steam temperature and pressure.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例を示す制御ブロック図で
ある。
FIG. 1 is a control block diagram showing a first embodiment of the present invention.

【図2】本発明の第2の実施例を示す制御ブロック図で
ある。
FIG. 2 is a control block diagram showing a second embodiment of the present invention.

【図3】本発明の第3の実施例を示す制御ブロック図で
ある。
FIG. 3 is a control block diagram showing a third embodiment of the present invention.

【図4】炭種の違い、つまり回転分級機回転数の違いに
よる微粉炭機の出炭応答特性を示す図である。
FIG. 4 is a diagram showing a coal output response characteristic of a pulverized coal machine due to a difference in coal type, that is, a difference in rotation speed of a rotary classifier.

【図5】従来技術における微粉炭機の模擬出炭信号作成
の制御ブロック図である。
FIG. 5 is a control block diagram for creating a simulated coal output signal of a pulverized coal machine in the prior art.

【符号の説明】[Explanation of symbols]

1 混焼率設定 2 燃焼量指
令 3 石炭流量指令 4 A−給炭
量 5 B−給炭量 6 A−模擬
出炭量 7 B−模擬出炭量 8 微粉炭機
合計模擬出炭量 9 ミルデマンド 10 A−給
炭機 11 B−給炭機 12 乗算器 13A,13B,13C 加算器 14 比例積
分器 15 模擬出炭量演算手段 16 油流量
指令 17 時定数設定器(高燃料比炭) 18 時定数
設定器(中燃料比炭) 19 時定数設定器(低燃料比炭) 20 時定数
設定器(高湿分炭) 21 一次遅れ時定数設定値 22 A−分
級機回転数 23 関数発生器 24A,24
B,24C スイッチ 25 関数発生器 26 乗算器
1 Mixed combustion rate setting 2 Combustion amount command 3 Coal flow rate command 4 A-Coal supply amount 5 B-Coal supply amount 6 A-Simulated coal output 7 B-Simulated coal output 8 Pulverized coal machine total simulated coal output 9 Mil demand 10 A-coal feeder 11 B-coal feeder 12 Multipliers 13A, 13B, 13C Adder 14 Proportional integrator 15 Simulated coal output amount calculation means 16 Oil flow rate command 17 Time constant setter (high fuel ratio coal) 18:00 Constant setter (medium fuel ratio coal) 19 Time constant setter (low fuel ratio coal) 20 Time constant setter (high humidity coal) 21 First-order lag time constant set value 22 A-Classifier rotation speed 23 Function generator 24A , 24
B, 24C switch 25 function generator 26 multiplier

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 石炭を粉砕する微粉炭機と、微粉炭機で
粉砕された微粉の粒度を回転数によって分級する回転分
級機と、前記微粉炭機に給炭する給炭機とを備えてお
り、ミルデマンド信号により給炭機の給炭量を制御して
火炉へ微粉炭を供給し燃焼させる石炭焚ボイラの燃料制
御装置において、ミルデマンド信号にフィードバックす
る微粉炭機の模擬出炭量を、炭種毎に設定された一次遅
れ時定数により算出する手段を設けたことを特徴とする
石炭焚ボイラ燃料制御装置。
1. A pulverized coal machine for pulverizing coal, a rotary classifier for classifying the particle size of the fine powder pulverized by the pulverized coal machine according to the number of revolutions, and a coal feeder for feeding coal to the pulverized coal machine. In the fuel control device of the coal-fired boiler that controls the coal feed amount of the coal feeder by the mill demand signal and supplies the pulverized coal to the furnace for combustion, the simulated coal output of the pulverized coal machine fed back to the mill demand signal is set. A coal-fired boiler fuel control device comprising means for calculating a first-order lag time constant set for each coal type.
【請求項2】 炭種毎に設定された一次遅れ時定数によ
り微粉炭機の模擬出炭量を算出する手段に代えて、回転
分級機の回転数に対応して設定された一次遅れ時定数に
より微粉炭機の模擬出炭量を算出する手段を設けたこと
を特徴とする請求項1に記載の石炭焚ボイラ燃料制御装
置。
2. A first-order lag time constant set corresponding to the rotational speed of a rotary classifier, instead of the means for calculating the simulated coal output of the pulverized coal machine by the first-order lag time constant set for each coal type. The coal-fired boiler fuel control device according to claim 1, further comprising means for calculating a simulated coal output of the pulverized coal machine.
【請求項3】 炭種毎に設定された一次遅れ時定数によ
り微粉炭機の模擬出炭量を算出する手段に代えて、ミル
デマンド信号にフィードバックする微粉炭機の模擬出炭
量を、炭種及び回転分級機の回転数に対応して設定され
た一次遅れ時定数により算出する手段を設けたことを特
徴とする請求項1に記載の石炭焚ボイラ燃料制御装置。
3. The simulated coal output of the pulverized coal machine fed back to the mill demand signal is replaced with a means for calculating the simulated coal output of the pulverized coal machine based on the first-order lag time constant set for each coal type. The coal-fired boiler fuel control device according to claim 1, further comprising means for calculating a first-order lag time constant set corresponding to the seed and the rotation speed of the rotary classifier.
【請求項4】 石炭を粉砕する微粉炭機と、微粉炭機で
粉砕された微粉の粒度を回転数によって分級する回転分
級機と、前記微粉炭機に給炭する給炭機と、燃焼量指令
に基づいて石炭流量指令を生成出力する第1の演算手段
と、該石炭流量指令とフィードバックされる微粉炭機の
模擬出炭量を入力としてミルデマンド信号を生成する第
2の演算手段とを含んでおり、該ミルデマンド信号によ
り給炭機の給炭量を制御して火炉へ微粉炭を供給し燃焼
させる石炭焚ボイラの燃料制御装置において、フィード
バックする微粉炭機の模擬出炭量を、給炭機が給炭する
石炭の炭種及び当該給炭機の出炭量を入力として炭種毎
に設定された一次遅れ時定数を用いて算出する第3の演
算手段を設けたことを特徴とする石炭焚ボイラ燃料制御
装置。
4. A pulverized coal machine for pulverizing coal, a rotary classifier for classifying the particle size of the fine powder pulverized by the pulverized coal machine according to the number of revolutions, a coal feeder for supplying coal to the pulverized coal machine, and a combustion amount. A first calculation means for generating and outputting a coal flow rate command based on the command; and a second calculation means for generating a mill demand signal by inputting the simulated coal output of the pulverized coal machine fed back with the coal flow rate command. In the fuel control device of the coal-fired boiler for controlling and supplying the pulverized coal to the furnace by controlling the coal feeding amount of the coal feeding device by the mill demand signal, the simulated coal output of the pulverized coal feeding machine is fed back, It is characterized in that a third computing means is provided for calculating the coal type of the coal fed by the coal feeder and the coal output of the coal feeder using the first-order lag time constant set for each coal type. And a coal-fired boiler fuel control device.
【請求項5】 第3の演算手段に代えて、フィードバッ
クする微粉炭機の模擬出炭量を、給炭機の出炭量及び該
給炭機によって給炭される微粉炭機に接続された回転分
級機の回転数を入力として回転分級機の回転数に応じて
設定された一次遅れ時定数を用いて算出する第4の演算
手段を設けたことを特徴とする請求項4に記載の石炭焚
ボイラ燃料制御装置。
5. Instead of the third calculation means, the simulated coal output of the pulverized coal machine fed back is connected to the coal output of the coal feeder and the pulverized coal machine supplied by the coal feeder. 5. The coal according to claim 4, further comprising: fourth arithmetic means for calculating the number of revolutions of the rotary classifier as an input and using a first-order lag time constant set according to the number of revolutions of the rotary classifier. Boiler fuel control system.
【請求項6】 第3の演算手段に代えて、フィードバ
ックする微粉炭機の模擬出炭量を、給炭機の出炭量と炭
種及び該給炭機によって給炭される微粉炭機に接続され
た回転分級機の回転数を入力として炭種及び回転分級機
の回転数に応じて設定された一次遅れ時定数を用いて算
出する第5の演算手段を設けたことを特徴とする請求項
4に記載の石炭焚ボイラ燃料制御装置。
6. Instead of the third calculating means, the simulated coal output of the pulverized coal machine to be fed back is supplied to the coal output of the coal feeder, the type of coal, and the pulverized coal machine fed by the coal feeder. A fifth arithmetic means for calculating the number of revolutions of the connected rotary classifier as an input using a first-order lag time constant set according to the coal type and the number of revolutions of the rotary classifier is provided. Item 4. A coal-fired boiler fuel control device according to Item 4.
【請求項7】 給炭機で給炭された石炭を微粉炭機で粉
砕し、微粉炭機で粉砕された微粉の粒度を回転分級機で
回転数によって分級し、分級された微粉炭を火炉へ供給
し燃焼させる石炭焚ボイラの燃料制御方法において、前
記給炭機の出炭量をミルデマンド信号により制御し、該
ミルデマンド信号にフィードバックする微粉炭機の模擬
出炭量を、炭種毎に設定された一次遅れ時定数により算
出することを特徴とする石炭焚ボイラ燃料制御方法。
7. The coal fed by the coal feeder is pulverized by the pulverized coal machine, the particle size of the fine powder pulverized by the pulverized coal machine is classified by the number of rotations by the rotary classifier, and the pulverized coal is classified by the furnace. In a fuel control method for a coal-fired boiler that supplies and burns to a coal-fired boiler, the coal output of the coal feeder is controlled by a mill demand signal, and the simulated coal output of a pulverized coal machine that is fed back to the mill demand signal is set for each coal type. A coal-fired boiler fuel control method, characterized in that the fuel is controlled by a first-order lag time constant set in step 1.
【請求項8】 給炭機で給炭された石炭を微粉炭機で粉
砕し、微粉炭機で粉砕された微粉の粒度を回転分級機で
回転数によって分級し、分級された微粉炭を火炉へ供給
し燃焼させる石炭焚ボイラの燃料制御方法において、前
記給炭機の出炭量をミルデマンド信号により制御し、該
ミルデマンド信号にフィードバックする微粉炭機の模擬
出炭量を、回転分級機の回転数に対応して設定された一
次遅れ時定数を用いて算出することを特徴とする石炭焚
ボイラ燃料制御方法。
8. The coal fed by a coal feeder is pulverized by a pulverized coal machine, the particle size of the fine powder pulverized by the pulverized coal machine is classified by the number of revolutions by a rotary classifier, and the pulverized coal is classified by a furnace. In a fuel control method for a coal-fired boiler that supplies and burns to a coal-fired boiler, the coal output of the coal feeder is controlled by a mill demand signal, and the simulated coal output of a pulverized coal machine that is fed back to the mill demand signal is a rotary classifier. The method for controlling fuel of a coal-fired boiler is characterized in that calculation is performed using a first-order lag time constant set corresponding to the number of revolutions.
【請求項9】 給炭機で給炭された石炭を微粉炭機で粉
砕し、微粉炭機で粉砕された微粉の粒度を回転分級機で
回転数によって分級し、分級された微粉炭を火炉へ供給
し燃焼させる石炭焚ボイラの燃料制御方法において、前
記給炭機の出炭量をミルデマンド信号により制御し、該
ミルデマンド信号にフィードバックする微粉炭機の模擬
出炭量を、炭種及び回転分級機の回転数に対応して設定
された一次遅れ時定数を用いて算出することを特徴とす
る石炭焚ボイラ燃料制御方法。
9. Coal fed by a coal feeder is pulverized by a pulverized coal machine, and the particle size of the fine powder pulverized by the pulverized coal machine is classified by the number of revolutions by a rotary classifier, and the pulverized coal is classified in a furnace. In a fuel control method for a coal-fired boiler that supplies and burns to a coal-fired boiler, the coal output of the coal feeder is controlled by a mill demand signal, and the simulated coal output of a pulverized coal machine that is fed back to the mill demand signal is the coal type and A coal-fired boiler fuel control method, characterized in that calculation is performed using a first-order lag time constant set corresponding to the rotation speed of a rotary classifier.
【請求項10】 給炭機から給炭された石炭を微粉炭機
で粉砕し、微粉炭機で粉砕された微粉の粒度を回転分級
機で回転数によって分級し、分級された微粉炭を火炉へ
供給して燃焼させる石炭焚ボイラの燃料制御方法におい
て、燃焼量指令に基づいて石炭流量指令を生成出力し、
該石炭流量指令とフィードバックされる微粉炭機の模擬
出炭量を入力としてミルデマンド信号を生成し、該ミル
デマンド信号により給炭機の給炭量を制御し、フィード
バックする微粉炭機の模擬出炭量を、給炭機が給炭する
石炭の炭種及び当該給炭機の出炭量を入力として炭種毎
に設定された一次遅れ時定数を用いて算出するようにし
たことを特徴とする石炭焚ボイラ燃料制御方法。
10. Coal fed from a coal feeder is crushed by a pulverized coal machine, and the particle size of the fine powder pulverized by the pulverized coal machine is classified by the number of rotations by a rotary classifier, and the pulverized coal is classified in a furnace. In a fuel control method for a coal-fired boiler to supply and burn the coal flow rate command based on the combustion amount command,
A simulated demand of the pulverized coal machine is generated by inputting the simulated coal production amount of the pulverized coal machine fed back with the coal flow rate command, and the coal supply amount of the coal feeder is controlled by the mill demand signal to give a simulated output of the pulverized coal machine. It is characterized in that the amount of coal is calculated by using the first-order lag time constant set for each coal type with the coal type of the coal fed by the coal feeder and the coal output of the coal feeder as input. Method for controlling coal-fired boiler fuel.
【請求項11】 給炭機から給炭された石炭を微粉炭機
で粉砕し、微粉炭機で粉砕された微粉の粒度を回転分級
機で回転数によって分級し、分級された微粉炭を火炉へ
供給して燃焼させる石炭焚ボイラの燃料制御方法におい
て、燃焼量指令に基づいて石炭流量指令を生成出力し、
該石炭流量指令とフィードバックされる微粉炭機の模擬
出炭量を入力としてミルデマンド信号を生成し、該ミル
デマンド信号により給炭機の給炭量を制御し、フィード
バックする微粉炭機の模擬出炭量を、給炭機の出炭量及
び該給炭機によって給炭される微粉炭機に接続された回
転分級機の回転数を入力として回転分級機の回転数に応
じて設定された一次遅れ時定数を用いて算出するように
したことを特徴とする石炭焚ボイラ燃料制御方法。
11. Coal fed from a coal feeder is pulverized by a pulverized coal machine, and the particle size of the fine powder pulverized by the pulverized coal machine is classified by the number of rotations by a rotary classifier, and the pulverized coal is classified in a furnace. In a fuel control method for a coal-fired boiler to supply and burn the coal flow rate command based on the combustion amount command,
A simulated demand of the pulverized coal machine is generated by inputting the simulated coal production amount of the pulverized coal machine fed back with the coal flow rate command, and the coal supply amount of the coal feeder is controlled by the mill demand signal to give a simulated output of the pulverized coal machine. A primary quantity set according to the number of revolutions of the rotary classifier by inputting the output of the coal feeder and the number of revolutions of the rotary classifier connected to the pulverized coal machine fed by the coal feeder. A coal-fired boiler fuel control method characterized by being calculated using a delay time constant.
【請求項12】 給炭機から給炭された石炭を微粉炭機
で粉砕し、微粉炭機で粉砕された微粉の粒度を回転分級
機で回転数によって分級し、分級された微粉炭を火炉へ
供給して燃焼させる石炭焚ボイラの燃料制御方法におい
て、燃焼量指令に基づいて石炭流量指令を生成出力し、
該石炭流量指令とフィードバックされる微粉炭機の模擬
出炭量を入力としてミルデマンド信号を生成し、該ミル
デマンド信号により給炭機の給炭量を制御し、フィード
バックする微粉炭機の模擬出炭量を、給炭機の出炭量と
炭種及び該給炭機によって給炭される微粉炭機に接続さ
れた回転分級機の回転数を入力として炭種及び回転分級
機の回転数に応じて設定された一次遅れ時定数を用いて
算出するようにしたことを特徴とする石炭焚ボイラ燃料
制御方法。
12. Coal fed from a coal feeder is pulverized by a pulverized coal machine, and the particle size of the fine powder pulverized by the pulverized coal machine is classified by the number of revolutions by a rotary classifier, and the pulverized coal is classified in a furnace. In a fuel control method for a coal-fired boiler to supply and burn the coal flow rate command based on the combustion amount command,
A simulated demand of the pulverized coal machine is generated by inputting the simulated coal production amount of the pulverized coal machine fed back with the coal flow rate command, and the coal supply amount of the coal feeder is controlled by the mill demand signal to give a simulated output of the pulverized coal machine. Input the coal output and the coal type of the coal feeder and the rotational speed of the rotary classifier connected to the pulverized coal machine supplied by the coal feeder into the coal type and the rotational speed of the rotary classifier. A coal-fired boiler fuel control method, characterized in that it is calculated using a first-order lag time constant set accordingly.
JP33308495A 1995-12-21 1995-12-21 Coal fired boiler fuel control system Expired - Fee Related JP3757319B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33308495A JP3757319B2 (en) 1995-12-21 1995-12-21 Coal fired boiler fuel control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33308495A JP3757319B2 (en) 1995-12-21 1995-12-21 Coal fired boiler fuel control system

Publications (2)

Publication Number Publication Date
JPH09178157A true JPH09178157A (en) 1997-07-11
JP3757319B2 JP3757319B2 (en) 2006-03-22

Family

ID=18262100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33308495A Expired - Fee Related JP3757319B2 (en) 1995-12-21 1995-12-21 Coal fired boiler fuel control system

Country Status (1)

Country Link
JP (1) JP3757319B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100412444C (en) * 2006-06-28 2008-08-20 印建平 Coal combustion boiler unit consumption measuring and calculating method based on DCS
CN107272634A (en) * 2017-08-23 2017-10-20 合肥中盈信息工程有限公司 A kind of virtual coal mining Exercise Control system based on three-dimensional VR and data server
JP6229822B1 (en) * 2017-02-17 2017-11-15 中国電力株式会社 Operation method of boiler in coal-fired power plant
CN111453450A (en) * 2020-05-18 2020-07-28 北京能为科技股份有限公司 Intelligent blending and stacking device and method for fire coal
CN112884095A (en) * 2020-12-31 2021-06-01 华中科技大学 Coal output prediction device and method and storage medium

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100412444C (en) * 2006-06-28 2008-08-20 印建平 Coal combustion boiler unit consumption measuring and calculating method based on DCS
JP6229822B1 (en) * 2017-02-17 2017-11-15 中国電力株式会社 Operation method of boiler in coal-fired power plant
WO2018150542A1 (en) * 2017-02-17 2018-08-23 中国電力株式会社 Method for operating boiler in coal-fired power generation facility
CN107272634A (en) * 2017-08-23 2017-10-20 合肥中盈信息工程有限公司 A kind of virtual coal mining Exercise Control system based on three-dimensional VR and data server
CN111453450A (en) * 2020-05-18 2020-07-28 北京能为科技股份有限公司 Intelligent blending and stacking device and method for fire coal
CN112884095A (en) * 2020-12-31 2021-06-01 华中科技大学 Coal output prediction device and method and storage medium
CN112884095B (en) * 2020-12-31 2022-08-23 华中科技大学 Coal output prediction device and method and storage medium

Also Published As

Publication number Publication date
JP3757319B2 (en) 2006-03-22

Similar Documents

Publication Publication Date Title
US9731298B2 (en) Control device of coal pulverizer
JP6218448B2 (en) Vertical crushing and classifying equipment
CN102639937B (en) System and associated method for monitoring and controlling a power plant
JPH09178157A (en) Controller for coal burning boiler fuel
CN113028441B (en) Coal mill outlet temperature adjusting method and device and storage medium
US4540129A (en) Pulverizer control system
CN104728854A (en) Pulverized coal preparation system and method with air-blew pulverized coal heat measurement and control functions
JP2947900B2 (en) Minimum load control unit for coal combustion equipment
JPH08243429A (en) Method for controlling coal output amount of mill and device therefor
JP3048617B2 (en) Pulverized coal machine
JP3797689B2 (en) Combustion control device for coal fired boiler
JPH0438464B2 (en)
JPH0929117A (en) Pulverizer
JPH1038257A (en) Method for estimating stable combustion by coal property
JP3129347B2 (en) Roller mill operation control method
US3467036A (en) Steam generator and coal pulverizing apparatus
JPS5816123A (en) Combustion control system for coal burning boiler
JPH0118326B2 (en)
JP2002195551A (en) Device for compensating measurement of quantity of coal produced by lateral mill
JP6702109B2 (en) Process control method in grinding plant, process control device in grinding plant, and program
JPS6046338B2 (en) Combustion system automatic control device
JPH08215600A (en) Method and device for controlling mill operation
JP2019005708A (en) Mixing judging method of solid fuel and solid fuel pulverizing device
JPH09122517A (en) Controller for crusher
JPH0824705A (en) Mill device and control method thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051213

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100113

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110113

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120113

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130113

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140113

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees